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ON GENERALIZED INVERSIVE CONGRUENTIAL 
PSEUDORANDOM NUMBERS 

JURGEN EICHENAUER-HERRMANN 

ABSTRACT. The inversive congruential method with prime modulus for gener- 
ating uniform pseudorandom numbers has several very promising properties. 
Very recently, a generalization for composite moduli has been introduced. In 
the present paper it is shown that the generated sequences have very attractive 
statistical independence properties. 

1. INTRODUCTION AND MAIN RESULTS 

Several nonlinear congruential methods of generating uniform pseudorandom 
numbers in the interval [0, 1) have been studied during the last few years. A 
review of the developments in this area is given in the survey articles [3, 13, 
14, 16, 17] and in H. Niederreiter's excellent monograph [15]. A particularly 
attractive approach is the inversive congruential method with prime modulus, 
which has been analyzed in [1, 2, 4-6, 11, 12, 17]. Recently, a generalization 
for arbitrary composite moduli has been introduced in [8]. The present paper 
restricts itself to the case of a modulus m = PI * P2 ... Pr with arbitrary distinct 
primes P1I P2 ... , Pr > 5. Let Zm = {0, 1, ..., m - 1}. For integers a, b E 
Zm with gcd(a, m) = 1 a generalized inversive congruential sequence (Yn)n>o 
of elements of Zm is defined by 

Yn+ ayI(ma l + b (modm), n > 0, 

where (0(m) = (PI - 1) ... (Pr - 1) denotes the number of positive integers less 
than m which are relatively prime to m. A sequence (xn)n>o of generalized in- 
versive congruentialpseudorandom numbers in the interval [0, 1) is obtained by 
Xn = yn /m for n > 0. The result below shows that these sequences are closely 
related to the following inversive congruential sequences with prime moduli. 
For 1 < i < r let Zp, = {,1, ..., Pi - 1},m i = m/pi, and ai, bi E Zp, be 
integers with 

a _ Im?aj (modpi) and b _ mibi (modpi). 

Let (yni))n>O be a sequence of elements of Zp, given by 

i) =- aj(yji))Pi-2 + bi (modpi), n > 0, 
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where yo- miyi) (modpi) is assumed. Note that zA-2 = Z-1 (modpi) for 
any integer z E Zp,\{O} according to Fermat's Theorem; i.e., (y(4))n?O is an 
(ordinary) inversive congruential sequence in the sense of [1]. As usual, a se- 
quence (x(i))n>o of (ordinary) inversive congruential pseudorandom numbers 
in the interval [0, 1) is defined by x(i) = j(4)/pi for n > 0. 

Theorem 1. Let (yn())n>o and (x(i))n>O for 1 < i < r be defined as above. Then 

(1) (r) 

and 
xn--x(l)+.+x(r)V(modl) 

for n >0. 

The proof of Theorem 1 is given in the third section. Theorem 1 shows that 
an implementation of generalized inversive congruential generators is possible, 
where exact integer computations have to be performed only in ZPl , ... ZP,r 
but not in Zm . From now on it is always assumed that the generalized inversive 
congruential sequence (Yn)n>O is purely periodic with maximal period length 
m; i.e., {yo, YI, .--, ym-I} = Zm . Theorem 1 implies that (Yn)n>o shares 
this property if and only if (yn(i))n>o is purely periodic with period length pi 
for 1 < i < r. A characterization of these (ordinary) inversive congruential 
generators is given in [6], whereas a handy sufficient condition demands for 
z2 - biz - ai (or equivalently, y2 - by - a) to be a primitive polynomial modulo 
pi for 1 < i < r (cf. [1, 11]). 

Obviously, generalized inversive congruential pseudorandom numbers are 
well equidistributed in one dimension. A reliable theoretical approach for as- 
sessing their statistical independence properties is based on the discrepancy of 
s-tuples of pseudorandom numbers. For N arbitrary points to, t1, ..* , tN 1 E 

[0, 1)S the discrepancy is defined by 

DN(to, tl, 
... , tN-1) = SUp IFN(J) - V(J)j, 

J 

where the supremum is extended over all subintervals J of [0, 1)S, FN(J) is 
N-1 times the number of points among to, t1, ... , tN 1 falling into J, and 
V(J) denotes the s-dimensional volume of J. For s > 2 consider the s-tuples 

Xn := (xn 5 Xn+1 5... ., Xn+s- 1) E [0 , 1) , n > 0,5 

of generalized inversive congruential pseudorandom numbers. In the following, 
the abbreviation D(s) := Dm (xo ,x , ... , xm- ) is used. In the results of the 
next theorems upper and lower bounds for the discrepancy D(s) are established. 
Their proof is given in the third section. 

Theorem 2. Let s > 2. Then the discrepancy D(s) satisfies 

D(s) m /2 (3 logm+ 7)S J(2s-2+sp1/2) + sm- 

for any generalized inversive congruential operator. 
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Theorem 3. There exist generalized inversive congruential generators with 

D(s) > (I m- 1/2 II(i_3 1/ 

for all dimensions s > 2. 

For a fixed number r of prime factors of m, Theorem 2 shows that D(s) - 

O(m-1/2(logm)s) for any generalized inversive congruential sequence. In this 
case, Theorem 3 implies that there exist generalized inversive congruential gen- 
erators having a discrepancy D(s) which is at least of the order of magni- 
tude m-1/2 for all dimensions s > 2. However, if m is composed only of 
small primes, then r can be of an order of magnitude (log m)/log log m, and 
hence HI=1(2s - 2 + sp7-1/2) = O(m_) for every e > 0 (cf. [7]). Therefore, 

one obtains in the general case D(s) = O(M-1/2+e) for every e > 0. Since 

H-1 ((pi - 3)/(pi - 1)) 1/2 > 2-r/2 similar arguments imply that in the general 
case the lower bound in Theorem 3 is at least of the order of magnitude m- 1/2-8 
for every e > 0. It is in this range of magnitudes where one also finds the dis- 
crepancy of m independent and uniformly distributed random points from 
[0, 1)s, which almost always has the order of magnitude m-1/2(loglogM)1/2 
according to the law of the iterated logarithm for discrepancies (cf. [9]). In this 
sense, generalized inversive congruential pseudorandom numbers model true 
random numbers very closely. 

2. AUXILIARY RESULTS 

First, some further notation is necessary. For integers k > 1 and q > 2 let 
Ck(q) be the set of all nonzero lattice points (h1, ..., hk) E Zk with -q/2 < 
hj < q/2 for 1 < j < k. Define 

(1 for h = O, 
r(h, q) = j qsin 7IhI for h E Cl(q), 

q 
and 

k 

r(h, q) = ]7 r(hj, q) 
j=1 

for h = (h1, ... , hk) E Ck(q) . For real t the abbreviation e(t) - e2bit is used, 
and u * v stands for the standard inner product of u, v E Rk. 

In the following, three known general results for estimating discrepancies are 
stated. The first lemma follows from [15, Theorem 3.10], the second one is a 
special version of [ 15, Corollary 3.17], and the third lemma is from [ 10, Lemma 
2.3]. 

Lemma 1. Let N > 1 and q > 2 be integers, and let t, = q -IY E [O, I)k with 
Yn E o0, 1, . . ., q - I}k for 0 < n < N. Then the discrepancy of the points 
to, tl, ... , tN-1 satisfies 

k 1 I N-1 

q hE Ck(q) 0( q = 
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Lemma 2. The discrepancy of N arbitrary points to, t1, ..., tN1 E [O, i)k 

satisfies 
N-1 

DN(tO, tl,. ,tN-l)? 1 :eh n 2(7r + 2)|hlh2jN Z=e 
for any lattice point h = (hi, h2, 0, ..., 0) E Zk with h1 h2 5 0. 

Lemma 3. Let q > 2 be an integer. Then 
1 21 2 

NT' 
I 

<-2logq + 
2 

hECI(q) r(h, q) ir 5 

Lemmas 1 and 2 indicate that a crucial role for the analysis of the discrepancy 
Ds) is played by the exponential sums 

m-i 

S(h) :e(h xn) 

n=O 

for h E Zs. The next lemma shows that these sums are closely related to the 
exponential sums 

Si(h):= Z e(h * xki)) 
k~~~ 

kEZpi 

for h E Zs, where x(5) : e [0, 1)5 for k >0 and 
1 < < r. 

Lemma 4. Let h E Zs. Then 
r 

S(h) = fJSi(h). 
i=1 

Proof. First, it follows from 
r 

xnZx(') (mod 1), n > 0, 
i=l 

that 
m-1 r \ m-1 r 

S(h) = e ( h*x ) =Z e X e(h * xn)) 
n=O i=l n=O i=1 

Now, the Chinese Remainder Theorem implies that 
r 

S(h) =l |e(h * x(')). 
(k1,.*-,kr)EZp1 X * X Zpr i=1 
n-=ki (modpi), 1<i<r 

Since the sequence (xn )n>o has period length pi for 1 < i < r, one finally 
obtains 

r 

S(h) = r IIfe(h . x(i)) 
(kl,...,kr)EZpi x x Zpr i=1 

r r 

= rj E ei(h x(')) = rj Si(h). 
i= 1 kez.i i= 1 
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Observe that Si(h) = pi for all h E Z7 with h _ 0 (modpi). The upper 
bound for ISi(h)I with h 0 0 (modpi) given in the next lemma follows from 
[11, proof of Theorem 1]. 

Lemma 5. Let 1 < i < r and h E Zs with h 0 0 (modpi). Then 

jSi(h)I < (2s- + s- 1. 

3. PROOF OF THE MAIN RESULTS 

Proof of Theorem 1. First, observe that mi- 0 (modpj) for i 5# j, and hence 
Yn-m I Yn + + mry) (modm) if and only if Yn- m iYi) (modpi) for 
1 < i < r, which will be shown by induction on n > 0. Recall that yo 
miy1') (modpi) is assumed for 1 < i < r. Now, suppose that 1 < i < r and 

Yn-miy( ) (mod pi) for some integer n > 0. Then straightforward calculations 
and Fermat's Theorem yield 

Yn+i- ayp(m)>l + b =- mi(aim?tf(m)(y(4));p(m)-1 + 
bi) 

-mi(ai(yi))p,2 +bi)+ b miy)1 (modpi), 

which implies the desired result. 51 

Proof of Theorem 2. First, Lemma 1 is applied with N = q = m, k = s, and 
tn= xn for 0 < n < m. This yields 

D ?s - + - ZIS(h)I Dm) m m E r(h, m) 

s 
~~~~~~~~~~r 

- + rl~~~~F JSi(h) I 
hECs(m) r(h m) i=1 

s 
~~~~~~~~~~~~~~~~~r 

m m r , m r 
IC{1,...,r} hECs(m) i=1 

gII<r h=0 (modp,), iEI 
hA0 (mod pi), i?I 

where in the second step Lemma 4 has been used. Now, Lemma 5 can be 
applied to obtain 

D(s) < m + 
I 

E mI l((2s - 2)p'2 +s -1 m - 
m ' 'r}1 hEC3m r(h, m) 

gII<r ... h=0 (modp,), iEI 
hWO (mod p, ), i?I 

< 
1 

MIFI((2s -2)pl/2+s-\ 
1 

Ic1.} IhECs(m)rh,m 
wIe<r subses hI_0 (mod m l) 

where MI := fliEPi for subsets I of {1, ., r}. Straightforward calculations 
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show that 

1 1 
~~+1 -1 

hECs(m) r(h, m) hECI(m) r(hI m) 
h_O (mod mi) h-=O (mod mi) 

M( I r(k, m/mI)+1)1, 

and hence Lemma 3 implies that 

hECs(m) r(h, m) < (J r (3.log(m/m') + + - 1 
h=O (mod mi) 

1 (27 2\ < ( -1(2log m + 5)+1) - I 

i-logm+-i. 

Altogether, one obtains 

D) <-+ m (-log m +5) E j((2s - 2)p'2+s -1) 
IC{l,.,r} i?I 

= +1 (logm + )7 ((2s -2)pj +5) 

which yields the desired result. 51 

Proof of Theorem 3. First, Lemma 2 is applied with N = m, k = s, tn =Xn 
for 0< n < m, and h= (1, 1, 0 ...,0) eZs. ThisandLemma4yield 

m - 2(7 + 2)m S(h)I 2(r + 2)m fI '1S(h)I. 

Now, it follows from [2, Lemma 2] that there exist inversive congruential gen- 
erators with 

jSj(h)j > (P' -3) pi1/ 

for 1 < i < r. Hence, according to the Chinese Remainder Theorem there exist 
generalized inversive congruential generators with 

D(s) > 
_rL( _ ) Pi 

-(7 m 2)iii S pI - 1/2 
2(7r +2) j1p 
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