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ON THE PERIODS OF GENERALIZED 
FIBONACCI RECURRENCES 

RICHARD P. BRENT 

ABSTRACT. We give a simple condition for a linear recurrence (mod 2W) of 
degree r to have the maximal possible period 2w 1 (2r - 1). It follows that 
the period is maximal in the cases of interest for pseudorandom number gen- 
eration, i.e., for three-term linear recurrences defined by trinomials which are 
primitive (mod 2) and of degree r > 2. We consider the enumeration of cer- 
tain exceptional polynomials which do not give maximal period, and list all such 
polynomials of degree less than 15. 

1. INTRODUCTION 

The Fibonacci numbers satisfy a linear recurrence 

Fn= Fn + Fn-2. 

Generalized Fibonacci recurrences of the form 

(1) Xn = ?Xn-s ? Xn-r mod 2w 

are of interest because they are often used to generate pseudorandom num- 
bers [1, 6, 7, 12, 14, 18]. We assume throughout that xo,. .. , xr_ are given 
and not all even, and w > 0 is a fixed exponent. Usually, w is close to the 
wordlength of the (binary) computer used. 

Apart from computational convenience, there is no reason to restrict attention 
to three-term recurrences of the special form (1). Thus, we consider a general 
linear recurrence 

(2) qoxn + qlxn+l + * * * + qrxn+r=O mod 2w 

defined by a polynomial Q(t) = qo + q It + . + qrtr with integer coefficients 
and degree r > 0. We assume throughout that qo and qr are odd. Because qo 
is odd, the sequence (xn) is reversible, i.e., xn is uniquely defined (mod 2w) 
by xn+1, ... , Xn+r. Thus, (xn) is purely periodic [20]. 
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In the following we often work in a ring Zm[t]/Q(t) of polynomials (mod Q) 
whose coefficients are regarded as elements of Zm , the ring of integers mod m. 
For relations A = B in Zm[t]/Q(t) we use the notation 

A=B mod (m,Q). 

It may be shown by induction on n that, if an, ... , an, r- 1 are defined by 

r-1 

(3) tn = Ean, itj mod (2w , Q (t)) 
j=0 

then 
r-1 

(4) Xn =E an, ixi mod 2w. 
j=0 

Also, the generating function 
00 

(5) G(t) = >3xn tn 
n=O 

is given by 

(6) G(t) = P( mod 2w, 
Q(t) 

where 
r-1 k 

P(t)= E E qr+]jkxj tk 

k=O j=0 

is a polynomial of degree less than r, and 

Q(t) = trQ(1/t) = qotr + qtr-l + + qr 

is the reverse of Q. In the literature, Q(t) is sometimes called the characteristic 
polynomial [5] or the associated polynomial [20] of the sequence. The use of 
generating functions is convenient and has been adopted by many earlier authors 
(e.g., Schur [ 16]). Ward [20] does not explicitly use generating functions, but his 
polynomial U is the same as our Q, and many of his results could be obtained 
via generating functions. 

Let Pw be the period of t under multiplication mod (2W, Q(t)), i.e., Pw is 
the least positive integer p such that 

tP = 1 mod (2W, Q(t)). 

In the literature, Pw is sometimes called the principal period [20] of the linear 
recurrence, sometimes simply the period [5]. For brevity we define A = Pi . 

If Q(t) is irreducible in Z2[t], then Q(t) is a factor of t2_ t (see, e.g., 
[19]), so A j 2r - 1. We say that Q(t) is primitive (mod 2) if A = 2r - 1. Note 
that primitivity is a stronger condition than irreducibility, i.e., Q(t) primitive 
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implies that Q(t) is irreducible1, but the converse is not generally true unless 
2- - 1 is prime. For example, the polynomial 1 + t + t2 + t4 + t6 is irreducible, 
but not primitive, since it has A = 21 < 26 _ 1. Tables of irreducible and 
primitive trinomials are available [5, 11, 15, 17, 21, 23, 24, 25]. 

In the following we usually assume that Q(t) is irreducible. Our assumption 
that q0 and q, are odd excludes the trivial case Q(t) = t, and implies that 
Q(t) is irreducible (or primitive) of degree r if and only if the same is true of 
Q(t).Q 

We are interested in the period Pw of the sequence (xv), i.e., the minimal 
positive p such that 

(7) Xn+p = Xn 

for all sufficiently large n . In fact, because of the reversibility of the sequence, 
(7) should hold for all n. The period is sometimes called the characteristic 
number of the sequence [20]. In general, the period depends on the initial 
values x0, ... , Xr 1, but under our assumptions the period depends only on 
Q(t), in fact Pw = Pw (see Lemma 2). 

It is known [8, 13, 20] that Pw < 2w 1)', with equality holding for all w > 0 
if and only if it holds for w = 3. The main aim of this paper is to give a simple 
necessary and sufficient condition for 

(8) p = 2w1. 

The result is stated in Theorem 2 in terms of a simple condition which we call 
"Condition S" (see ?2). In Theorem 3 we deduce that the period is maximal 
if Q(t) is a primitive trinomial of degree greater than 2. Thus, in cases of 
practical interest for pseudorandom number generation, it is only necessary to 
verify that Q(t) is primitive. This is particularly easy if 2r - 1 is a Mersenne 
prime, because then a necessary and sufficient condition is 

t2 = t mod (2, Q(t)). 

A word of caution is appropriate. Even when the period Pw satisfies (8), 
it is not desirable to use a full cycle of Pw numbers in applications requiring 
independent pseudorandom numbers. This is because only the most significant 
bit has the full period. If the bits are numbered from 1 (least significant) to w 
(most significant), then bit k has period Pk . 

The basic results on linear recurrences modulo m were obtained many years 
ago-see, for example, Ward [20]. However, our main results (Theorems 2 
and 3) and the statement of "Condition S" (?2) appear to be new. 

2. A CONDITION FOR MAXIMAL PERIOD 

The following lemma is a special case of Hensel's Lemma [8, 9, 22] and may 
be proved using an application of Newton's method for reciprocals [10]. 

Lemma 1. Suppose that P(t) mod 2 is invertible in Z2[t]/Q(t). Then, for all 
w > 1, P(t) mod 2w is invertible in Z2w [t]/Q(t) . 

IFor brevity we usually omit the "mod 2" when saying that a polynomial is irreducible or 
primitive. Thus " Q(t) is irreducible (resp. primitive)" means that Q(t) mod 2 is irreducible (resp. 
primitive) in Z2[t] . 
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We now give a sufficient condition for the periods Pw and Pw to be the 
same. 

Lemma 2. If Q(t) is irreducible of degree r, and at least one of xo . , Xr- 

is odd, then Pw = Pw. 

Proof. For brevity we write p = Pw and p = Pw . From (5), 

G(t) =1 (t) mod 2W, 

where R(t) has degree less than p. Thus, from (6), 

(9) R(t)Q(t) = (1 - tP)P(t) mod 2W. 

P(t) mod 2 has degree less than r, but is not identically zero. Since Q(t) mod 2 
is irreducible of degree r, application of the extended Euclidean algorithm [8] to 
P(t) mod 2 and Q(t) mod 2 constructs the inverse of P(t) mod 2 in Z2[t]/Q(t) . 
Thus, Lemma 1 shows that P(t) mod 2W is invertible in Z2w [t]/Q(t) . It follows 
from (9) that 

tP= I mod (2' , Q(t)), 
and p j p. However, from (3) and (4), p j p. Thus, p = p. n 

As an example, consider Q(t) = 1 - t + t2. We have t3 = 1 mod (2, Q(t)), 
t3 = -I mod Q(t), and t6 = I mod Q(t), so 

3if w=1 
(10) Pw {6 if w > 1. 

It is easy to verify that (10) gives the period Pw of the corresponding recurrence 

Xn=Xn-I-xn_2 mod2W, 

provided xo and xl are not both even. 
The assumption of irreducibility in Lemma 2 is significant. For example, 

consider Q(t) = t2 _ 1 and w = 1, with initial values xo = = 1. The 
recurrence is xn = xn2mod2, so PI = 1, but PI = 2. Here, P(t) = 1 + t is 

a divisor of Q(t) = 1- t2. 
We now define a condition which must be satisfied by Q(?t) if the period 

Pw of the sequence (xn) is less than 2w- 1 (see Theorem 2 for details). For 
given Q(t) the condition can be checked in 0(r2) operations, or in 0(r log r) 
operations if the FFT is used to compute the convolutions in (11). Even the 
0(r2) algorithm is much faster than the method suggested by Marsaglia and 
Tsay [13], which involves forming high powers of r x r matrices (mod 8), or 
the method of Knuth [8, ex. 3.2.2.1 1], which involves forming high powers in 
Z8[t]/Q(t) . 

Condition S. Let Q(t) = Er=- qjtj be a polynomial of degree r. We say that 
Q(t) satisfies Condition S if and only if 

Q(t)2 + Q(_t)2 = 2qr Q(t2) mod 8. 
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Lemma 3 gives an equivalent condition, which is more convenient for com- 
putational purposes. For another equivalent condition, see the remark follow- 
ing (22) in the proof of Theorem 1. The proof of Lemma 3 is straightforward, 
so is omitted. 

Lemma 3. A polynomial Q(t) of degree r satisfies Condition S if and only if 

(11) E qjqk=Em mod2 
j+k=2m 
O<?jk<r 

for 0< m < r, where 

(12) e = qm (qm-qr) 

As an exercise, the reader may verify that the polynomial Q(t) = 1 - t + t2 
satisfies both the definition of Condition S and the equivalent conditions of 
Lemma 3. For other examples, see Table 1. 

For convenience we collect in Lemma 4 some results regarding arithmetic in 
the rings Z2w[t]/Q(t) . 

Lemma 4. Let X(t) and Y(t) be polynomials over Z, and Q(t) be as in ?1. 
Then, for w > 1, 

(13) X= Y mod (2w, Q) =X x2 = y2 mod (2w+lQ). 

Also, if Q(t) is irreducible, then 

(14) X2 = y2 mod (2, Q) X2 = y2 mod (4, Q) 

and 

(15) X2 = y2 mod (8, Q) X =Y mod (4, Q). 

Proof. If X = Y mod (2W, Q), then X = Y + 2WR mod Q for some polynomial 
R(t) in Z[t]. Thus, X2 = y2+ 2w+lR(Y + 2w-1R) modQ, and (13) follows. 

If Q(t) is irreducible and X2 = y2 mod (2, Q), then (X - y)2 = 0 mod (2, Q). 
Since Q is irreducible, it follows that X = Y mod (2, Q). Thus, from (13), 
X2 = y2mod(4, Q), and (14) follows. 

Finally, if Q is irreducible and X2 = y2 mod (8, Q) then, as in the proof 
of (14), we obtain X = Y mod (2, Q), so X = Y + 2R mod Q, where R(t) is 
some polynomial in Z[t]. Thus, 4R(Y + R) = 0mod (8, Q), i.e., R(Y + R) = 
0 mod (2, Q) . Since Q is irreducible, either R = 0 mod (2, Q) or Y + R = 
0 mod (2, Q) . In the former case, X = Y mod (4, Q), and in the latter case, 
X = -- Y mod (4, Q) . Thus, X = ? Y mod (4, Q) . The implication in the other 
direction follows from (13). This establishes (1 5). n 

The following result is the key to the proof of Theorem 2. There is no obvious 
generalization to odd moduli. Recall that A = Pi . 
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Theorem 1. Let Q(t) mod 2 be irreducible in Z2[t]. Then 

t = 1 mod (4, Q(t)) 

if and only if Q(t) satisfies Condition S, and 

t- 1 mod (4, Q(t)) 

if and only if Q(-t) satisfies Condition S. 

Proof. Let 
Lrl2J L(r- 1)/21 

V(t) = E q21tj, WV(t) = E q2j+tj 
j=0 j=0 

so Q(t) splits into even and odd parts: 

(16) Q(t) = V(t2) + tW(t2). 

By the definition of A, we have t = tA+1 mod (2, Q(t)), so 

(17) V(t2) = ti+1WW(t2) mod (2, Q(t)). 

Because X(t2) = X(t)2mod2 for any polynomial X(t) in Z[t], equation 
(17) may be written as 

V(t)-2 = t+I W(t)2 mod (2, Q(t)). 

Since A is a divisor of 2r - 1, it is odd, so tA+- is a square. Thus, from (14), 

(18) V(t)2 = t+1W(t)2 mod (4, Q(t)). 

Also, since V(t) = V(-t) mod 2 and W(t) = W(-t) mod 2, we have 

(19) V(-t)2 = t+I W (-t)2 mod (4, Q(t)). 

To prove the first half of the theorem, suppose that 

t = 1 mod (4, Q(t)). 

Thus, from (18), 

(20) V(t)2 + tW(t)2 = 0 mod (4, Q(t)). 

It follows that 

(21) V(t)2 + tW(t)2 - qrQ(t) = 0 mod (4, Q). 

However, the left side of (21) is a polynomial of degree less than r. Hence, 

(22) V(t)2 + tW(t)2 - qrQ(t) = 0 mod 4. 

Replace t by t2 in the identity (22). From (16), the result is easily seen to be 
equivalent to Q(t) satisfying Condition S. 
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To prove the converse, suppose that Q(t) satisfies Condition S. Reversing 
our argument, we see that (20) holds. Thus, from (18), 

(ti+1 + t)W(t)2 = 0 mod (4, Q(t)). 

Now W(t) has degree less than r, and W(t) :$ 0 mod 2, because otherwise, us- 
ing ( 16), Q(t) = V(t)2 mod 2 would contradict the irreducibility of Q(t) . It fol- 
lows that W(t) mod 2 is invertible in Z2[t]/Q(t). From Lemma 1, W(t) mod 4 
is invertible in Z4[t]/Q(t), and we obtain 

t A+1 + t = 0 mod (4, Q(t)). 

Since Q(t) :$ t mod 2, we can divide by t to obtain 

tA= - mod (4, Q(t)). 

This completes the proof of the first half of the theorem. 
The proof of the second half is similar, with appropriate changes of sign. 

Suppose that 

(23) ti - 1 mod (4, Q(t)). 

From (19), 

V(_t)2= tW(-t)2 mod (4, Q(t)). 
Thus, instead of (22) we obtain 

(24) V(-t)2 _ tW(-t)2 _ (_1)rqrQ(t) = 0 mod 4. 

Replace t by _t2 in the identity (24). The result is equivalent to Q(-t) 
satisfying Condition S. The converse also applies: if Q(-t) satisfies Condition S 
then, by reversing our argument and using irreducibility of Q(t), we find that 
(23) holds. n 

We are now ready to state Theorem 2, which relates the period of the sequence 
(x,) to Condition S. In view of Theorem 1, Theorem 2 is implicit in Ward [20, 
p. 628]. More precisely, Ward's case T > 1 corresponds to Q(-t) satisfying 
Condition S, while Ward's case ( T = 1, K(x) = 1 mod 2) corresponds to Q(t) 
satisfying Condition S. However, Ward's exposition is complicated by consid- 
eration of odd prime power moduli (see for example his Theorem 13. 1), so we 
give an independent proof. 

Theorem 2. Let Q(t) be irreducible and define a linear recurrence by (2), with 
at least one of xo, . .. , Xr 1 odd. Then the sequence (x,) has period 

Pw < 2w2) 

for all w > 2 if Q(-t) satisfies Condition S, 

Pw < 2w2A 

for all w > 3 if Q(t) satisfies Condition S, and 

pw = 2w-1) 

for all w > 1 if and only if neither Q(t) nor Q(-t) satisfies Condition S. 
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Proof. From Lemma 2, Pw = Pw is the order of t mod (2W, Q(t)). If Q(-t) 
satisfies Condition S, then, from Theorem 1, 

t= 1 mod (4, Q(t)). 

By (13), it follows by induction on w that 

t22i = 1 mod (2W, Q(t)) 

for all w > 2. This proves the first part of the theorem. The second part is 
similar, so it only remains to prove the third part. 

Suppose that Pw = 2w-1A for all w > 0. In particular, for w = 3 we have 
period p3 = 4A. Thus, 

t2.1 :A I mod (8,~ Q(t)) 
and, from (15), 

(25) tA I&t mod (4, Q (t)). 

From Theorem 1, neither Q(t) nor Q(-t) can satisfy Condition S, or we would 
obtain a contradiction to (25). 

Conversely, if neither Q(t) nor Q(-t) satisfies Condition S, then we show 
by induction on w that 

(26) t2w- = 1 + 2WRw mod Q(t), 

where 

(27) RW :0 mod (2, Q(t)), 

for all w > 1 . Certainly, 

t= I mod (2, Q (t)) , 

but, from Theorem 1, 
tA I& mod (4, Q(t)), 

so (26) and (27) hold for w = 1. Defining 

(28) RW= RW-1(1 + 2W-2Rw 1i) 

for w > 2, we see that (26) holds for all w > 1. It remains to prove (27) for 
w> 1. 

For w = 2, inequality (27) follows from Theorem 1 and (1 5), as tA $ 
1 mod (4, Q(t)) implies t2A : 1 mod (8, Q(t)). For w > 2, the inequality 

(27) follows by induction from (28), since 2w-2 is even. It follows that Pw = 

2Wl,Aforallw>I. E 

3. PRIMITIVE TRINOMIALS 

In this section we consider a case of interest because of its applications to 
pseudorandom number generation: 

Q(t) = qo + qsts + qrtr 

is a trinomial (r > s > 0). Theorem 3 shows that the period is always maximal 
in cases of practical interest. The condition r > 2 is necessary, as the example 
Q(t) = 1 - t + t2 of ?2 shows. 
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Theorem 3. Let Q(t) = qo + q,tS + qrtr be a primitive trinomial of degree r > 2. 
Then the sequence (x,) defined by (2), with at least one of xo ..., Xr-I odd, 
has period Pw = 2w-1 (2r - 1). 
Proof. From Theorem 2 it is sufficient to show that Q(t) does not satisfy Con- 
dition S. (Since Q(-t) is also a trinomial, the same argument shows that Q(-t) 
does not satisfy Condition S.) 

Suppose, by way of contradiction, that Q(t) satisfies Condition S. We use 
the formulation of Condition S given in Lemma 3. Since Q(t) is irreducible, 
we have qo = qs = qr = 1 mod 2. If s is even, say s = 2m, then 

E qjqk = qoqs = I mod 2, 
j+k=2m 
O<j<k<r 

SO Em :$ 0, and (12) implies that qm :$ 0. Since 0 < m < s < r, this contradicts 
the assumption that Q(t) is a trinomial. Hence, s must be odd. 

If r is odd then r + s is even, and a similar argument shows that q(r+s)/2 $ O, 
contradicting the assumption that Q(t) is a trinomial. Hence, r must be even. 

Taking m = r/2, we see that Em :$ 0, SO qm :$ 0. This is only possible if 
m = s, so Q(t) = t2s + ts+1 mod 2. In this case, t3s = 1 mod (2, Q(t)) . Now 
r = 2s > 2, so 3s < 2r - 1, and Q(t) cannot be primitive. This contradiction 
completes the proof. n 

A minor modification of the proof of Theorem 3 gives: 

Theorem 4. Let Q(t) = qo + qsts + qrtr be an irreducible trinomial of degree 
r :$ 2s . Then the sequence (x,) defined by (2), with at least one of xO, . .. , Xr-I 
odd, has period pw = 2w-1A. 

As mentioned above, it is easy to find primitive trinomials of very high degree 
r if 2r - 1 is a Mersenne prime. Zierler [24] gives examples with r < 9689, 
and we found two examples with higher degree: t19937 + t9842 + 1 and t23209 + 
t9739 + 1 . These and other examples with r < 44497 were found independently 
by Kurita and Matsumoto [ 1]. Such primitive trinomials provide the basis for 
fast random number generators with extremely long periods and good statistical 
properties [3]. In general, random number generators with larger r have better 
statistical properties than those with smaller r, and generators with small r 
should be avoided [3, 4]. 

4. EXCEPTIONAL POLYNOMIALS 

We say that a polynomial Q(t) of degree r > 1 is exceptional if conditions 
E1-E3 hold, and is a candidate if conditions E2-E3 hold: 

El. Q(t) mod2 is primitive. 
E2. Q(t) has coefficients qj E {0, -1, +1}, and qo = qr = 1 
E3. Q(t) satisfies Condition S. 
If Q(t) is exceptional then, by Theorem 2, Q(t) and Q(-t) define linear 

recurrences (mod 2w) which have less than the maximal period for all w > 2. 
In Table 1 we list the exceptional polynomials Q(t) of degree r < 14. If Q(t) 
is exceptional, then so is Q(t) . Thus, we only list one of these in Table 1. 
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TABLE 1. Exceptional polynomials of degree r < 14 

r Q(t) 
2 1 -t+t2 

5 1-t-t2+t4+t5 
1 - t + t2 + t3 - t4- t6 + t9 

9 1 -t+t2-t3-t4+t8+t9 
1 -t+ t2 - t3- t4 t5 + t6 + t8 + t9 

10 1-t+t2+t3+t4+t6-t7+t9+t10 

I2 1 -t+t2-t3-t4+t5+t6- t8 +tII 
12 t 4-t 9+t 1 

1 -t+ t2 -t3 + t4 - t5- t6 + t12 + t13 
1 -t+ t2 -t3 + t4 - t- t6- t7 + t8 + t12 + t13 

13 1 -t-t2-t4-t6+t7 -t8+t9+t10+t12+t13 
- -t +t2 +t3 +t4 +t5 +t7 +t9_l _ tl -'2+ t13 
- -t +t2 +t3 +t4 +t5 -t8 -t9 -tll - t12+ t13 

1 - t + t2 + t3 - t4 - t6 t7 + t8 + t9 - tll + t14 
1+ t + t3 - t4- t5 + t6 + t7 + t8 + t9 - tll + t4 

14 1 -t-t2+t3 -t5+t6+t7-t8 -t9+t13+t14 
1t - t2 - t3-t5 + t7 + t9 + t0 - tl + t3 + t14 

1t - t2 + t4 - t6 + t8 + t9 + t10 + tll + t13 + t14 

Only the coefficients of Q(t) mod 4 are relevant to Condition S. If condition 
E2 is relaxed to allow coefficients equal to 2, then, by Lemma 3, there is one such 
Q(t) corresponding to each primitive polynomial in Z2[t]. With condition E2 
as stated, the number of these Q(t) is considerably reduced. 

It is interesting to consider strengthening condition E2 by asking for certain 
patterns in the signs of the coefficients. For example, we might ask for polyno- 
mials Q(t) with all coefficients qj E {0, 1 }, or for all coefficients of ?Q(-t) to 
be in {0, 1 }. There are candidates satisfying these conditions, but we have not 
found any which are also exceptional, apart from the trivial Q(t) = 1 - t + t2 . 
It is possible for an exceptional polynomial to have (-1 )iq; > 0 for 0 <j < r. 
The only example for 2 < r < 44 is 

Q(t) = I1-t + t2 _ tl + t6 + t8 _ t9 + t10 + t 12 _t13 + t16 + t18 + t2i. 

Observe that Q(-t) defines a linear recurrence with nonnegative coefficients 

Xn+21 =Xn + Xn+1 + Xn+2 + Xn+5 + Xn+6 + Xn+8 

+ Xn+9 + Xn+1o + Xn+12 + Xn+13 + Xn+16 + Xn+18, 

which has period P2 = PI = 221 - 1 when considered mod 2 or mod 4. 
The number v(r) of exceptional Q(t) (counting only one of Q(t), Q(t)) is 

given in Table 2. The term "exceptional" is justified as v(r) appears to be a 
much more slowly growing function of r than the number [5] 

22(r) = (p(2r- l)/r 
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TABLE 2. Number of exceptional polynomials 

r v(r) Pv(r) r v(r) vh(r) r v(r) v(r) r v(r) vT(r) 
1 0 0 11 1 0.13 21 79 0.3923 31 4380 0.4721 
2 1 1.78 12 1 0.22 22 94 0.4390 32 3125 0.4636 
3 0 0 13 5 0.33 23 231 0.4837 33 7232 0.4549 
4 0 0 14 5 0.37 24 129 0.4650 34 8862 0.4656 
5 1 0.70 15 15 0.62 25 428 0.4388 35 18870 0.4792 
6 0 0 16 12 0.58 26 448 0.4615 36 10516 0.4560 
7 0 0 17 26 0.45 27 883 0.4964 37 40082 0.4547 
8 0 0 18 18 0.41 28 635 0.4218 38 39858 0.4623 
9 3 0.83 19 62 0.53 29 1933 0.4410 39 75370 0.4712 
10 1 0.30 20 34 0.45 30 1470 0.4619 40 54758 0.4598 

of primitive polynomials of degree r in Z2[t] (where (0 is Euler's totient 
function) or the total number of polynomials of degree r with coefficients in 
{O, -1, +1}. A heuristic argument suggests that the number K(r) of candi- 
dates should grow like (3/2)r and that v(r) should grow like (3/4)r)2(r) . The 
argument is as follows: 

There are 2r- 1 polynomials Q(t) of degree r with coefficients in {O, 1 }, sat- 
isfying qo = qr = 1 . Randomly select such a Q(t), and compute Eo, E1, . . ,r 
from 

E+k=2mqjqk = Em mod 2. 
j+k=2m 
O<j<k<r 

Extend Q(t) to a polynomial Q(t) with coefficients qm E {- 1, 0, 1, 2} such 
that qm = qm mod 2 and (1 2) is satisfied for 0 < m < r . The (unique) mapping 
is given by qm = qm + 2Em mod4. It is easy to see that qo = qr = 1 . If we 
assume that, for 1 < m < r, each qm has independent probability 1/4 of 
assuming the "forbidden" value 2, then the probability that Q(t) is a candidate 
is (3/4)r-1 . Thus, 

K(r) (3/2)r-1. 

The probability that a randomly chosen Q(t) with qO = 4ir = 1 is primi- 
tive is just )2(r)/2r-l . If there is the same probability that a randomly cho- 
sen candidate is primitive, then the number of primitive candidates should be 
(3/4)r-lIA2(r), and v(r) should be half this number. 

The argument is not strictly correct. For example, it gives a positive prob- 
ability that q1 = 0, q2 = 1, but this never occurs for r > 2. However, the 
argument does appear to predict the correct order of magnitude of Ki(r) and 
v(r). In Table 2 we give 

V(r) = v(r) 

the numerical evidence suggests that Th(r) converges to a positive constant h(oo) 
as r - ox . However, h(oo) is less than the value 2/3 predicted by the heuristic 
argument. Our best estimate (obtained from a separate computation which 
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gives faster convergence) is 

V(oo) = 0.45882 i 0.00002. 

The computation of Table 2 took 166 hours on a VaxStation 3100. We outline 
the method used. It is easy to check if a candidate polynomial is exceptional [8]. 
A straightforward method of enumerating all candidate polynomials of degree 
r is to associate a polynomial Q(t) such that qo = q, = 1 with an (r - 1)- 
bit binary number N = b... br, i, where bj = qj mod 2. For each such N, 
compute co , ... , Er from (1 1). Now (1 2) defines qo, ... , qr mod 4. If there is 
an index m such that em = 1 mod 2 but qm = 0 mod 2, then (12) shows that 
qm = 2 mod 4, contradicting condition E2. The straightforward enumeration 
has complexity Q(2r), but this can be reduced by two devices: 

A. If (12) shows that qm = 2 mod 4 for some m < r/2, we may use the fact 
that em in (1 1) depends only on qo, ... , q2m to skip over a block of 2r-2m-I 

numbers N. By an argument similar to the heuristic argument for the order 
of magnitude of v(r), with support from empirical evidence for r < 40, we 
conjecture that this device reduces the complexity of the enumeration to 

O(r22r(3/4)r/2) = O(r23r/2). 

B. Fix s, 0 < s < r. Since Er-m in (1 1) depends only on qr-2m, qr, 
we can tabulate those low-order bits br-s ... br-I which do not necessarily lead 
to condition E2 being violated for some qr-m, 2m < s. In the enumeration 
we need only consider N with low-order bits in the table. We conjecture that 
this reduces the complexity of the enumeration to 

O(r22r(3/4)s/2) = 0(r22r`3s2-) 

provided care is taken to generate the table efficiently. 
The two devices can be combined, but they are not independent. The com- 

plexity of the combination is conjectured to be 

O(r22r(3/4)(6r+5s)/12) = 0(r23r/2(3-4)5s112 ) 

where the exponent 5s/12 (instead of s/2) reflects the lack of independence. 
In the computation of Table 2 we used s < 22 because of memory constraints. 
The table size is O(s3Y12) bits, if the table is stored as a list to take advantage 
of sparsity. 

Note added in proof Examples of primitive trinomials with r < 132049 were 
recently found by Heringa, Blote and Compagner, Internat. J. Modem Phys. C 
3 (1992), 561-564. 
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