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A NEW VERSION OF THE 
TWO-DIMENSIONAL LAX-FRIEDRICHS SCHEME 

T. BOUKADIDA AND A. Y. LEROUX 

ABSTRACT. We develop a new two-dimensional version of the Lax-Friedrichs 
scheme, which corresponds exactly to a transport projection method. The 
scheme we obtain in this way is different from the one derived by averaging 
the one-dimensional scheme in the two directions as usually done. The Lax- 
Friedrichs scheme is known to be a very stable scheme with much diffusion. 
However, this diffusion can be easily reduced by using corrected fluxes, without 
altering the total-variation estimates. The accuracy of this corrected scheme is 
of order two except near a local extrema. The numerical results computed by us- 
ing this corrected scheme are similar to the ones obtained by using the Godunov 
scheme with corrected fluxes but require less CPU time. Convergence towards 
the entropy solution is proved, and some extensions to systems of conservation 
laws or three-dimensional models are discussed. Some numerical experiments 
are reported. 

1. INTRODUCTION 

We are concerned with the approximation of the initial value problem in two 
space dimensions, on QT = R2 X (0, T) for a given T > 0, 

Ut + f(u), + g(u)y = O for (x, y, t) E QT, 
( ) u(x, y, O) = uo(x, y) for (x, y) E R2, 

where u is a function of (x, y, t) defined on QT. We assume that 

(2) f, g E C2(R), uO E Lo?(R2) n BVi0c(R2), 

where 
BV10(R2) 

is the set of all locally bounded variation functions on R2, in 
the sense of Tonelli-Cesari. This means that for any bounded open set Q in 
R2 

(3) Var(u; Q) = j Var(u(-, y); QY) dy + j Var(u(x, x); Qx)dx 

with 
QY = Qn{(, y); IR}; Qx = Q n{(x, t1); tI E R}. 

The entropy condition, which is required for uniqueness, is contained in the 
following Kruzkov characterization (see [8]). 
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For any real k and any nonnegative test function 0 lying in C2 (R2 X [0, T)), 

III ('u - klqt + sgn(u - k) 
QT 

(4) x [(f(u) - f(k))qOx + (g(u) - g(k))qy$] dx dy dt 

+ luo- k(x, y, ) dx dy > 0. 

Here sgn denotes the sign function. The formulation (4) leads to the definition 
of a semigroup operator S(t) such that u(-, t) = S(t)uo for all t E (0, T]. 
Such a solution is called a Kruzkov solution or an entropy solution. We know 
(see [7]) that this semigroup is a contraction in L1 (1R2). 

The usual version of the Lax-Friedrichs scheme for several space dimensions 
has been developed in [9], and convergence is proved in [3]. This scheme is 
obtained as an average of one-dimensional schemes proceeding in each direc- 
tion. Even though the one-dimensional scheme is really a transport projection 
method, that is, a combination of S(t)-operators and projection operators on 
a discrete space, this is no longer true for the several-dimensional scheme con- 
structed as above. Moreover, the dimensional averaging introduces an addi- 
tional error on the numerical fluxes, which makes the correction of these fluxes 
more difficult to handle. 

For each time cycle, the one-dimensional scheme corresponds to an exact 
computation of the fluxes from a constant piecewise approximate solution, and 
then to a projection on a shifted mesh. This projection introduces a great deal 
of linear diffusion, which can be reduced easily and efficiently. We use here the 
same arguments: exact computation of fluxes and shifted projections. 

This construction is detailed in ?2. Then ?3 deals with a result of conver- 
gence involving a stability condition which is weaker than for the usual two- 
dimensional Lax-Friedrichs scheme. The accuracy may be improved too, by 
using some flux-corrected method. Two such methods are proposed in ?4. The 
first preserves the L?? stability, but not the BV estimate, and leads to a really 
improved approximate solution. The second preserves the BV stability, but is 
not really efficient for the correction and involves some squeezing conditions, 
which makes it inoperative because the order-two accuracy is attained for too 
few points. Section 5 deals with a discussion of some extensions of this scheme 
to systems of conservation laws or to the three-dimensional case. Numerical re- 
sults are given in ??2 and 4, to illustrate the properties of the different schemes 
presented in this study. 

2. THE CONSTRUCTION OF THE SCHEME 

We denote by h = Ax the space meshsize in the x- and y-directions, and 
we set for any i, j in Z, xi = ih, yj = jh. We use for simplicity the same 
space meshsize in the two directions; the generalization to different meshsizes 
is obvious. We shall use the notations a = i + 1/2 and ,B = j + 1/2 as a 
convention. In this way the plane R2 is discretized with the cells 

ra = (xi, xi+I) x (yj, Yj+I) 

for i, j E Z. We define the discrete space 

Vh = {v E L?(R2)1v = constant on Faf i, j E Z}. 
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The constant value of v E Vh on the cell r is denoted v,> . 
Let Ph be the orthogonal projection on Vh associated with the usual L2 inner 

product. This projection gives the usual mean value on each cell as follows: 

Vv E L(R2) Phv(x, y)= Jh2 j v(, t))d dt if (x ,y) EFa. 

The midpoint of the cell Fr is denoted (x,>, yfi). 
We construct a second discrete space, which corresponds to the shifted mesh. 

We set as before Jij = (x-I, x,) x (Yf-1, ye), for i, j E Z, and 

Wh= {w E L?(R2) I w constant on Fij, i, j E Z}. 

The constant value of w E Wh on Fij is denoted wij. The space Wh is made 
up of the translated functions of Vh with the shift h/2 in both directions. The 
orthogonal projection onto Wh is denoted Qh. 

Let At be the time stepsize. We introduce the sequence t, = nAt, and define 
the ratio r = At/h, which will be used to control the stability. 

The approximate solution at time tn is denoted un, and is supposed to 
belong to Vh . The numerical scheme corresponds to the following formulation: 

2 ) QhS 
2 )u 

This formula corresponds effectively to a double time cycle, each part of which 
advances in time by At/2. We set u = n + 1/2, and tY = tn_I + At/2. 

Let n E N, n > 1. We assume that the approximate solution un-1 E Vh 
is known. Then by integrating over rf x (tn-1, t) the solution of (1) which 
corresponds to the Cauchy data 

U(X, y, tn-1) 
= n 

)(X,y) 

for (x, y) E JR2 at time t = tn,-, we get the following value: 

(6) ulu = I - n 
I,+ 

n 1 - 
(6) i,(Ujij + Ui+i++ Ul,ji+ I ,j+ I , j+ I ,+ + 

Vi+l,P 

where u8 is the averaged value of the solution at t = t, on r, and Ij 
denotes the flux through the interface 

-uj {(x , y , t) I Xi < x < Xi+1 , Y = Y;, tn-I < t < t0}, 

which is a face of Fij x (tn-1, ty). The fluxes , j+l through F1 j+1, 5iJ 
through VF, and V through F' are defined the same way, with 

rIF' = {(x 5Y t) I x = xi 5Yj < Y < Yi+1 , tn-I < t < tii}. 
Figure 1 (next page) corresponds to the construction of the scheme. 

We have 
(7) 

=a 1ffu dydtf(u) dx dt. 
Jj(h2 u)ddt h2 Lrp 

'2i~~~~~~~~~~~~~~~~~~~~~~~/ 
If At is small enough (the size will be limited by a stability condition in ?3), the 
exact computation of these fluxes can be performed by using a one-dimensional 
Riemann solver. As a matter of fact, we have 

I ty Yj+1 
(8) i,8 f(v(y, t))dydt, 
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r ffi one-dimensional Riemann problems 

Y) Y 
A 

xS / ! ,N, I:,~~ ~ ~~ ~~~i Vaj p; 

/ 4 (lj) /(I +jl) 

FIGURE 1 

where v is the solution of the following Riemann problem: 

vt+g(v)y=O fort>t,1,yEXR, 

(9) v(, i) j forY< ffh, 
V{Y, tn n for y > lh. 

We compute (8) as follows. Let g be either the convex hull of g on the interval 

1UnI , u7 nI1] if u77' ? u<n- 

or the concave hull of g on the interval 

[UnI J11, ulj] if unI > un1-I 

For instance, in the first case one gets, with Y = y - yj, T = t - tn,-I that 

u n-1 for 4 < Tk'(u7-1), 

(10) v((, ) = i [g'V T (-) for Tk' (Un%I) < < Tk'(un-, 1) 

U1 n7% for 4 > Tz'(un- 1). 

This formula takes into account the discontinuities of v, which correspond to 
linear segments of the convex (or concave) hull g. 

By using (10) in (8), we get, since At = rh, 

r= (1r+ g/(u7n1)) f(u7n1) + 
r 

(1r- j'(unji 1)) f(Unj 1) +K A 

with 
1 At/2 /Tk'(u'- 1 

= h JIoi j;2j) f(V(4, T))d dT. 
Iij 
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In this last integral we change the variable 4 into v by writing r = zg'(v), 
and we get 

At/2 dg(ij, 

l h l2 dT 
(Un1) 

' 
(f1'(v)) dd. 

Then, by integrating by parts, we obtain 

.2 /n- 
= 8~ ff(utnI )g'(u"n ) - f(un-I)kg(un-l) 

i 
I+l f'(v) '(v) 

1iJ 1,+1l i n-I 
1,] 

which allows us to write .I4 the following way: i/i 

r r + f (U77 )] - r2 
(11) ~ ~ ~ ~ 

LJk'4i4]) ,)] 8 1'fl 

where 
F n- I = F(uUn-pI, U7n 71), 

with 
ob 

(12) F(a, b) = jbfI(k)I'(4) d 

By generating the .Vj using the same technique, we can compute the values 
uA by means of (6) for any a and ,B . This corresponds to the result of the 
projection of S(At/2)un-1 on Wh. That is exactly the value of QhS(At/2)Un- 
on each F . We have computed in this way UA E Wh. We have 

Ul !Iun-l + un-i + un-i 1 + un1j 

(13) - r[f(un -1I1) - f(un 1) + f(un -j+,) -(Un I 

- 4[g(u77i+ )-g(i7 j) + g(ui+1 j+1 +) -g(u7 )] 

r2 n- nI nI n1 + r2[Gn -Gn + F.+ l_Fn ] 

where, as in (12), 
b 

(14) Gz-l = G(u71, u+ j), with G(a, b) = d 

which involves a Riemann problem for the equation 

Vt + f(v)X = 0. 

From these values we compute 

Un = PhS (At) u', 

which corresponds to the same scheme as above, but with shifted indices: i 
(resp. j) becomes a (resp. f,), and a - 1 (resp. fi- 1) becomes i (resp. j). 
This completes the construction of the scheme. 
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We may notice that the computation of F(a, b) or G(a, b) is rather simple 
in practice. For example, for g concave, we have 

F(a, b) = [f(b) - f(a)][g(b) - g(a)] 

Moreover, by writing g = 0, we get a one-dimensional problem (we identify 
all the values with the same index i), and the corresponding scheme is exactly 
the one-dimensional Lax-Friedrich scheme 

U = 2[un1 + uni1]= r[f(u n-1)_f(U1)n . 

The two-dimensional extension which is proposed in [3] by Conway and Smoller 
corresponds to (13) with F _ G -0 and after two At/2-timesteps. These terms 
F and G correspond to a crossed derivative of the second order. This remark 
shows that this scheme is not an alternating direction scheme. 

One may notice that this term allows the timestep to be twice as big in the 
stability condition. For example, in the linear case, with f(u) = Au and g(u) = 
Bu, the scheme reads 

ua= {u-I l( + rA)(l +(rB) + ul (+rA)(l - rB) 

+ un-l7j(l -rA)(l +rB)+un+-l4j+ (I -rA)(l -rB)}, 

which is obviously L??-stable for rnAt < 1 and rIBI < 1 . If we get rid of the r2 
terms in the expression above, the condition becomes r(IAI + IBI) < 1, and the 
scheme becomes the usual Lax-Friedrichs scheme (after two At/2-timesteps). 

We present now a numerical result using the scheme (13) and the flux func- 
tions 

f (u) = g(u) = 

and the initial data 

u(x, 5Y, 0) 
I ifO <x<0.45, 

{ O elsewhere. 

In Figure 2 we have used a 40 x 40 space grid and a CFL number equal to 0.8. 

FIGURE 2 
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Some numerical diffusion of the shock surface is still present, but less than for 
the usual scheme. The aim of ?4 is to reduce this numerical diffusion. 

3. A CONVERGENCE THEOREM 

We consider the following form of the scheme: 

(15) ~ u = PhS () QhS ( j)u 

U?= PhUo. 

The convergence theorem is now easy to prove by using the properties of S, 
Ph, and Qh. However, we have to notice that the practical interest of (15) 
is in its potential to provide an effective computational scheme. Actually, this 
is possible only when At is small enough to prevent too complex interactions 
between the waves emanating from the different cells. Such interactions cannot 
occur if the Courant-Friedrichs-Lewy (CFL) condition 

(16) At MIiax (Ig()I, If ()I) ' 1 

is satisfied. This comes from the following argument. The solution of (1) 
computed by starting from un-I as the Cauchy data at t = tn-i coincides with 
the solution of a Riemann problem such as (9) on each side of Fi, i x [tn,-I tu 
as long as At satisfies ( 16). Otherwise, the solution on the segments IF" or r 
will be perturbed by characteristics coming from cells other than the adjacent 
one. 

We underline the importance in the introduction of F and G, which allows 
the CFL condition (16) with a bound (also called CFL number) equal to 1 in- 
stead of 1/2 as usual for two-dimensional schemes, including the usual version 
of the two-dimensional Lax-Friedrichs scheme. 

Theorem 1. The formula (15) allows to construct a sequence of approximate 
solutions which is convergent towards the Kruzkov solution of (1). Moreover, if 
the CFL condition (16) is satisfied, a numerical scheme can be derivedfrom (15) 
and leads to convergence. 

The proof is part of another one given in ?4 below. We only mention that 
it is based on properties of LI-contraction and LI and BV stability of the 
operators S(t), Ph, and Qh 

4. ANTIDIFFUSION 

The main drawback of the Lax-Friedrichs scheme is its excessive numerical 
diffusion. If we are able to reduce efficiently this diffusion, we get a scheme 
for which the error is lower than for many other schemes. We have noticed 
that the main part of the diffusion comes from the double projection. This part 
of the diffusion can easily be exhibited and the corresponding correction easily 
performed. This is evaluated by applying the scheme to the trivial equation 
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ut = 0. We get 

Ui,jnUI-Un-!(un un-I nlI+u- U jl- 2uj + u7111 j) + 8(u.jj -2u7;1 + uL. j 1) 

(17) + _(uI -2Un-I + un- 

+ 1 1+-1l _ 2u; + ui7 1, j+1) 

This corresponds to a discretization of a heat equation using four directions in 
the plane: the two axes and the two diagonals. By using Taylor expansion, we 
get 

( 18) Ui, j=Uin,-jI+ h4(Aun_ i)i j + o(h 2), 

where (Aun- )i, denotes the value of the Laplace operator applied to un at the 
point (ih, jk). From this formula we get the amount of diffusion introduced 
at each double cycle, and the antidiffusion technique is now a way to get rid of 
it. 

The new version of the scheme corresponds to the following formulas. First 
we compute the value -n, using the scheme (15) as before. Then we perform 
the antidiffusion step by using some operator Ah; that is, 

un = Ahin. 

This leads to the following scheme: 

(19) U = AhPhS (2I) QhS (42) U 

The operator Ah has the form 

(20) Uin = Uan - an , + an ,-an +an 

The coefficients an j or ai, are real parameters called corrected fluxes. Such 
methods were introduced in [1] and analyzed, for example, in [10]. 

The corrected fluxes correspond to space finite differences because our aim is 
to approximate a Laplace operator. 

They are written this way: 

na7f = Il(ui,+2 j-Ui+ ) = jAn, j(U7] -U 

ai j =ui j (i, j+2-Unj1)=Ai g(i -i j_ ) 

with some real parameters yun 1, u7 n ,n , An 7 to be chosen later. We first 
look for sufficient conditions concerning these parameters. 

Lemma 1. Iffor any i, j 

nu > O, ,n fl> O, An > ?, An fl> 0, 

(22) 1 + A n n n < 

then the scheme (19) is LOO-stable, that is, 
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Proof. The LOO stability of S(t), Ph, or Qh implies that IWn JL- < Iun-l1LOO . 
Next, for any i and j, we have 

1i}=( i -1n_ )u n n -al j + 
,n 

u 

+ Al, - Afi1-) Ui'; + A'i,f _Bi,J_1 + H ,8- i, j+ 

where all coefficients are nonnegative. Then LOO stability is easily derived. O 

Of course, the conditions (22) are not sufficient to define uniquely the an 
and ai 0,. In practice, we consider (22) as a set of constraints, and the optimal 
scheme is obtained by minimizing 

la , -(un U- u,)l2 and 1a7,fl- (Un, +l-u7,1)1 

subject to the constraints (22). Other choices are also possible, for example, by 
computing successively 

-a7nj = sgn(ui n+ W-n), 

a^nj = Max (0, min {anj (uni+2 -ui 1j) 

(23) 1 
21 i+l,j ~ n 

jtl a(y s-UtIj} 

an. = -67n, nj /2. 

The conditions (22) are not sufficient to maintain the BV estimates. We can 
get a stronger correction which implies a BV estimate stability by proceeding as 
follows. This is specific to the multidimensional case, since BV is not a subset 
of LOO. The analogue of Lemma 1 in one dimension yields the BV stability 
too. 

Let un denote the approximate solution computed after the first correction 
(21). On any cell 1ij, the corrected value will have the form 

(24) un = u + kn 

This way the previous correction corresponds to 

and up to now we have no BV stability for this value. This BV stability requires 
a reduction of the kin . In order to get it, we assume that we can find four real 
numbers a7., ,/3, y<-, 3 such that 

25jk = a(-n 1 j- j j - al I nj) 

()= (bia -a j) = Jp.(Nan - -aq,j-1) 

This means that kic is automatically set to zero if ui is a local extremum 
when compared to its neighbors ii q , j, Ui j+1 , or W j-I . We have the 
following lemma. 
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Theorem 2. Under the conditions 

anflAn >O y0 Y,c5? > 0, 
(26) l-a tj + 3 O, l-y +6 O 

1-cBi + fflj > O, 1 _ yinj + RSn > 0 

we have BV stability for the scheme. 
Proof. As before, we know that all operators S(t), Ph, and Qh preserve the 
total variation. It remains to prove this also for the correction operator Ah. 
We have 

Var(u'; R 2) (IU7+1 , j- u7,jl + lu7,j+l - uq,jl)h. 
We set 

Ui j = sgn(41 j) = sgn(fif j) zTi = sgn(yQ j) = sgn(iP j) 
and then 

+1J- u7,J = (7n+ ,j - Wi7j)(l - an + fin 9, 
which leads to 

lu+n+l j- Uqnjl < IUin+ ,j -nijl + ?>in+1J j,jjn+ j- cr j1Vi jl. 
By using the same arguments, we get 

luq j+lu Jl < u j1 -u,W j+ ts+10 +l-ijlli 
- u711? I17j+i - + r7+I1lj1+i 71k,I 

Now, by summing for i, j E Z, we get 

Var(u'; R 2) < Var(an ; R22) 
which completes the proof. 0 

From the stability results we can state a theorem of convergence towards a 
weak solution. Here we denote by Uh the approximate solution defined by 

Uh(X, t) = f S(t-tn-)ul 1 if tn1 < t < tn, 

which coincides with an exact solution of (4) on each layer JR2 x [tn_, t_ ) or 
JR2 X [t,, tn). 

Theorem 2. From the family {Uh} of approximate solutions constructed by (19) 
with the correction operator satisfying (22) and (26), we can extract a sequence 
{Uhl } which converges towards a weak solution of( 1) as h goes to zero. 

The proof is a classical one. We only sketch it. For Bh being any of the 
operators Ah, Ph, Qh, or S(t), and for any w E BV(1R2), we have 

IBhWIL? ?< IWIL??, Var(BhW; JR2) < Var(w; JR2) 

and 

(27) Jj(Bhw - w)qdxdy < Ch2Var(w; R2)|Vq$Lo 

where C does not depend on h. Then thanks to Helly's theorem, we can 
extract a subsequence which converges in the L1 norm towards some function 
u in BV(R2 x R+). Next, by writing that Uhl (from an extracted sequence) is 
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FIGURE 3 FIGURE 4 

a weak solution on the layers JR2 x [t,_1, t,L) or JR2 X [t/,L tn), and using (27) to 
bound the jumps at each tn-I or t'L, we get that the limit u is a weak solution. 

To have the convergence towards the entropy solution, we assume as in [10] 
the coefficients an1 and ani to be bounded by a modulus of continuity co(h); 
that is, 

(28) an I< c@(h) and lanI < co(h). 

Then we get 

Theorem 3. Suppose that the correction operator Ah satisfies (22), (26), and 
(28). Then the whole family {Uh} converges towards the entropy solution as h 
goes to zero. 

The proof is also a classical one. We use an approximate solution Uhl from 
any extracted sequence in the previous theorem. Since Uhl is an entropy solu- 
tion on any layer JR2 X [tn_1, t,L) or JR2 X [t/,L tn), and using (27) and (28) to 
bound the jumps at the times tn-I and t1 , we get that the limit u satisfies (4). 
Next, from the uniqueness of the entropy solution, we have convergence for the 
whole family. 

We present now some computational results on the same example as before, 
with the same conditions. Figure 3 deals with the correction (20), (23), and 
Figure 4 with (24), and 

kn = onj (-a n + an l-in -0 + al n_ l1 ) 

where 0n E [0, 1] is as large as possible subject to the constraints (26). 
The difference between Figure 2 and Figure 4 is not significant, which means 
that the correction which preserves the BV norm is not really operative (that 
is, kn =0 too often). On the other hand, Figure 3 shows a really improved 
result. 

5. CONCLUSIONS 

We can expect another theorem of convergence by using some results of 
convergence by R. DiPerna [5], or adapted to some two-dimensional cases by 
A. Szepessy [12]; see also [4], where the different steps of the proof are detailed. 
However, the hypotheses (22) and (28) seem to be not sufficient for this theorem, 
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and we need to add another one, which is close to (26) in practice. In any case, 
a correction is needed (see [6]). 

The three-dimensional case may be solved in this way also. However, the 
corresponding two-dimensional Riemann problem is the following one: 

3 

Ut + E{fi(u)x} = 0 
i=-1 

with 
{ u1 if x > O andy > 0, 

u(x,0)= 
U2 

if x < O and y > 0, 
U3 if x < O and y <0, 
U4 if x > O and y < O. 

This is far more complicated, and the resulting scheme would be rather slow in 
practice. However, the above 2D scheme can be used to approximate the 2D 
Riemann problem on each 3D face in order to construct a 3D version of the 
scheme. 

The two-dimensional scheme, mainly with the correction (22), is a relatively 
efficient method in terms of CPU time. This method can be adapted to systems 
of conservation laws as long as we are able to solve the one-dimensional Rie- 
mann solver. Many one-dimensional Riemann solvers have been generated in 
practice for the usual applications such as those in hydrodynamics. 

This scheme allows us to work with a method which is not an alternating 
direction one, and no axes phenomena are expected. It may be a good investi- 
gation tool for the validation of other methods. A Lagrange-Euler version (as 
in [1 1 ]) can also be derived. 
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