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ABSTRACT. In this paper we discuss the use of block principal pivoting and 
predictor-corrector methods for the solution of large-scale linear least squares 
problems with nonnegative variables (NVLSQ). We also describe two implemen- 
tations of these algorithms that are based on the normal equations and corrected 
seminormal equations (CSNE) approaches. We show that the method of normal 
equations should be employed in the implementation of the predictor-corrector 
algorithm. This type of approach should also be used in the implementation of 
the block principal pivoting method, but a switch to the CSNE method may be 
useful in the last iterations of the algorithm. Computational experience is also 
included in this paper and shows that both the predictor-corrector and the block 
principal pivoting algorithms are quite efficient to deal with large-scale NVLSQ 
problems. 

1. INTRODUCTION 

The linear least squares problem with nonnegative variables (NVLSQ) can 
be stated as 

(1) min 2F IlAx -bl2 subject to x > 0, 
x 

where A E Ri mxn and b E RWm are given, m > n, x E Rn , and 11 2 represents 
the 12 norm. This problem has been studied over the years and has found many 
applications in different areas of science and engineering [ 13]. By the definition 
of the 12 norm, it is possible to restate the NVLSQ problem as the following 
quadratic program: 

(2) min-(ATb)Tx + IXTATAx subject to x > 0. 
x2 

Since ATA is a positive semidefinite matrix, this program is convex, whence 
the Karush-Kuhn-Tucker optimal conditions constitute the following monotone 
linear complementary problem (LCP): 

(3) y =ATAx-ATb, y > 0, x > 0, xTy = 0. 
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If the matrix A has full column rank (rank(A) = n), the matrix ATA is 
positive definite and the strictly convex program (2) and the strictly monotone 
LCP (3) have unique solutions for each vector b. In this paper we only deal 
with this case. 

Owing to its equivalence to the quadratic problem (2), the unique optimal 
solution of the NVLSQ problem can be found by a large number of algorithms 
that have been designed for this type of programs. In particular, active-set meth- 
ods and projected gradient algorithms can be used for this purpose. Recently, 
Bierlair, Toint, and Tuyttens [1] have studied the performance of projected gra- 
dient algorithms for the solution of large-scale NVLSQ problems. In another 
paper [2], Bjorck proposes an efficient implementation of the active-set method 
discussed in [ 13], which is capable of dealing with large-scale NVLSQ problems. 

In [1 1] the performance of block principal pivoting methods for the solution 
of large-scale strictly convex quadratic programs with nonnegative variables has 
been investigated. This study has shown that this kind of algorithm is in general 
quite efficient for this type of programs. On the other hand, it has been shown 
in [ 17] that interior-point methods also seem to be a good alternative technique 
for the solution of these quadratic programs. In this paper we discuss the use 
of these last two procedures for the solution of large-scale NVLSQ problems. 
We describe two types of implementations for these algorithms that are based 
on the method of normal equations and on the corrected seminormal equations 
(CSNE) approach. We also undertake a computational study that shows that 
the predictor-corrector and the block pivoting algorithms are quite suitable for 
the solution of this type of problems and are much more efficient than the 
active-set method. The predictor-corrector algorithm should be implemented by 
using the normal equations method. On the other hand, the use of the normal 
equations is also advantageous in the implementation of the block principal 
pivoting algorithms. However, a possible switch to a CSNE approach may be 
profitable, particularly for ill-conditioned problems. 

The organization of this paper is as follows. Sections 2 and 3 contain brief 
descriptions of the active-set, block pivoting, and interior-point methods. The 
implementations of these algorithms are discussed in ?4. A technique for gen- 
erating NVLSQ problems with a known optimal solution is introduced in ?5. 
Computational experience with the algorithms is described in ?6, and some 
concluding remarks are made in the last section of the paper. 

2. PRINCIPAL PIVOTING ALGORITHMS 

Consider again the LCP (3). A point (x, y) E R22n is said to be a comple- 
mentary solution if it satisfies 

(4) y = ATAx-ATb, 

(5) xiyi=O, i=l,...,n. 

Next, we describe how a complementary solution can be obtained. Let F and 
G be two subsets of { 1, ... , n} such that FuG = {1, ... , n} and FnG = 0. 
Furthermore, consider the following column partition of the matrix A: 

A = [AF, AG], 

where AF E Rmlx Fl, AG E RlmxlGl, and IFI, IGI are the number of columns 
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of AF and AG, respectively. Based on this partition, we can rewrite (4) as 

(6) [Y] [AF AFGAG ][X] -[4b 1 
YG ATAF AT7AG XG _ATbJ 

where XF, YF E RIFI, XG, YG E RIGI, X = (XF, XG), and y = (YF, YG)- 
A complementary basic solution is obtained by setting XG = 0 and YF = 0 

in the conditions (6). The null variables xi, i E G, and YE, i E F, are called 
nonbasic, while xi, i E F, and Yi, i E G, are said to be basic variables. We 
may compute the values of the basic variables XF and YG by the following 
procedure: 

(1) Solve the unconstrained linear least squares (ULSQ) problem 

(7) min ]'IIAEXE- bII12 
XFERIFI 22 

(2) Set 

(8) YG = AG (AFXF-b). 

Hence the complementary basic solution is given by x = (XF, 0), Y = (0, YG)- 
This solution is called nondegenerate if the values of all the basic variables are 
nonzero. Otherwise it is said to be degenerate. 

A complementary basic solution is said to be feasible if XF > 0 and YG > 0. 
In this case it is the optimal solution of the NVLSQ. Hence a complementary 
basic solution is infeasible if there exists at least one i e F such that xi < 0 
or one i E G with yi < 0. If a solution is infeasible, the set of infeasibilities 
H = H1 u H2 is nonempty, where 

(9) H= {iEF:xi<0} and H2={iEG:yi<0}. 
Principal pivoting algorithms are procedures that use in each iteration infea- 

sible complementary solutions until finding a feasible complementary solution. 
In each iteration the sets F and G are modified according to the following 
rules: 

(10) F=F-H1 UH2, G= G-H2uHI, 
where H1 C H1 and H2 C H2. A principal pivoting algorithm is said to be 
single if the cardinality of H1 u H2 is one. Otherwise the algorithm is called a 
block principal pivoting algorithm. 

The active-set method for the solution of the NVLSQ problem has been 
introduced in [2]. The algorithm can be seen as a single principal pivoting 
algorithm, and may be stated in the following form: 

Active-set algorithm. 
Step0. Set F=0, G={l,...,n}, x=0,andy=-ATb. 
Step 1. Compute 

r = argmin{yi: i E G}. 
If Yr < 0, set H1 = 0, H2 = {r}, and update F and G by (10). 
Otherwise stop: x* = x is the optimal solution of the NVLSQ problem. 

Step 2. Compute xF by solving (7). If XF > 0, set x- (xF, 0) and go to 
step 3. Otherwise let r be such that 

0 -xr =min -Xi i E F and xs < 0 
Xr-Xr Xi-Xi 
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and set x = ((1 - O)XF + 6-F, 0), HI = {r}, and H2 = 0 . Update F 
and G by (10) and repeat step 2. 

Step 3. Compute YG by (8) and return to step 1. 

The active-set method converges to the optimal solution of the NVLSQ prob- 
lem provided its matrix has full column rank [10, 13]. Murty's method [16] is 
another single principal pivoting algorithm that can be applied for the solution 
of the NVLSQ problem in this case. Given a complementary basic solution, the 
last infeasibility 

r= max{i e HI uH2} 
is considered and the sets F and G are updated by (10), where 

H I 0 if r E G, HJ 0 if rEF, 

11{r} if r E F, 21{r} if r e G. 
The algorithm is also finite but is usually less efficient than the active-set method 
[10]. Murty's method can start with any sets F and G, and this can be exploited 
in the design of an efficient block algorithm for the solution of the NVLSQ 
problem. This property is not shared by the active-set method, since it requires 
a complementary basic solution satisfying XF > 0 to start with. 

As stated before, in single principal pivoting algorithms the sets of basic and 
nonbasic variables only change in one element in each iteration. Hence these 
algorithms are not efficient for large-scale NVLSQ problems. Block principal 
pivoting algorithms allow the sets of basic and nonbasic variables to change in 
more than one element and seem much more suited for this type of problem. 
The first block principal pivoting algorithm for the strictly monotone LCP is due 
to Kostreva [12]. However, the algorithm may cycle and has been abandoned. 
Judice and Pires [9] have studied this algorithm in practice and have concluded 
that it is quite suitable for large-scale strictly monotone LCPs. Cycling may 
occur, but it is extremely rare. In a more recent paper [ 1 1 ] they have proposed 
a simple way of transforming Kostreva's algorithm into a finite procedure by 
incorporating Murty's method. This latter algorithm should be used as seldom 
as possible if the hybrid algorithm is to be efficient for large-scale problems. 
The idea is to control the number of infeasibilities IHi u H21, where HI and 
H2 are given by (9), as described below. 

Let x be a complementary basic solution and let ninf = IH1 U H21 be the 
number of infeasibilities associated with this solution. Suppose we apply a step 
of Kostreva's algorithm (Hi = Hi, i = 1, 2). If IH, u H21 has been reduced, 
then we update ninf and repeat the same procedure. Otherwise we allow p - 1 
steps of Kostreva's method for IHI u H21 to be smaller than ninf. Here, p is 
a small positive integer (p < 10 usually works well in practice). If after p - 1 
steps, IH1 u H21 is still larger than ninf, then we use Murty's method until 
we find a complementary solution for which IHi u H21 < ninf. This is always 
possible, since Murty's method is a finite procedure for finding a complementary 
solution with a number of infeasibilities smaller than a required value. After 
such a solution is found, the whole procedure is repeated. The steps of this 
hybrid scheme are presented below. 

Block principal pivoting algorithm. 
Step 0. Let F = 0, G = {1, ... , n}, x = 0, y = -ATb, p - p-< 10, 

ninf = n + 1, and a be a permutation of the set {1, ... , n} . 
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Step 1. If XF > 0 and YG > 0, stop: x* = (XF, 0) is the solution of the 
NVLSQ problem. Otherwise define H1 and H2 as in (9). 

(1) If IHi u H21 < ninf, set ninf = IHi u H21, p =, =HI, and 
H2 = H2- 

(2) If IHi uH21 > ninf and p > 1, set p =p- 1, H1 = H1, and 
H2 = H2- 

(3) If IHi u H21 > ninf and p = 0, set 

H1 = {r} and H2=0, ifrEH1, 

H1 = 0 and H2= {r}, if r E H2, 

where r is the last element of the set H1 u H2 according to the 
order defined by a. 

Update F and G by (10). 
Step 2. Compute XF and YG by (7) and (8) and return to step 1. 

Although this algorithm works well in practice for strictly monotone LCPs 
[11], no complexity result has been established for its performance. Other 
combinations of the algorithms of Murty and Kostreva have been proposed 
by Juidice and Pires [11]. However, this scheme has proved, in general, to be 
the most efficient of this type of block principal pivoting methods. We also note 
that the block principal pivoting algorithm cannot deal with rank-deficient linear 
least squares problems with nonnegative variables. In contrast, these problems 
can be solved by the active-set method described in this section. 

3. INTERIOR-POINT METHODS 

In this section we discuss Newton approaches to solve the monotone LCP. 
The first algorithm is applied to the following system of nonlinear equations: 

F1(x, y) = XYe = O, 

where F1: SI -- Rn, SI = {(X, y) E R2n: (x, y) > 0 and ATAx-y-ATb = O}, 
e E R2n is a vector of ones, and X, Y E Rn,n are the diagonal matrices whose 
diagonal elements are the components of the vectors x and y, respectively. 

The procedure computes a sequence of points {xk} by 

(11) (xk+I yk+I) = (xk, yk) + Ok(Uk, Vk), 

where ok is a positive stepsize and (Uk, vk) E R2n. The sequence of points 
generated by the algorithm must belong to the set SI . To do this, we impose 
the following conditions: 

(i) (X , y0) E Si, (ii) Vk = ATAUk, (iii) (xk+I yk+I) E 52, 

where 

(12) S2 = {(X, y) E 2n: (X, y) > 0}. 

The direction (uk, vk) is computed by solving the linear system 

[Ayk xkt [Uk] [XkYyk+ ke] 

LATA -In J Vk 0 

where In represents the identity matrix of order n and /Pk is a centralization 
parameter [14]. 
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The value of Jik should be nonnegative to assure the variables to be positive. 
In addition, the value of ,Uk has an upper bound related to the decrease of 
g(X, y) = XTy in each iteration k. In fact, we have 

Akg = g(xk+l, yk+l ) - g(xk Iyk) 

= (xk + OkUk)T(yk + OkVk) _ (xk)Tyk 

= ((uk)Tvk)Qk + ((xk)Tvk + (yk)Tuk)Ok 

((uk)TATAUk)02 + (-(xk)Tyk + nfk)0k. 

Since ATA is a symmetric positive definite matrix, the condition -(xk)Tyk + 

n/Ik < 0 has to hold to assure that Akg < 0. Thus, 

0 k (x k) Tyk o <- i < ( 
n 

Let Ojmax be the largest value of Ok such that (iii) holds. This parameter 
must also verify 

0 < Ok < min(6kax, ok), 

where 
(x k) Tyk -nk 

k (uk)TVk 

By choosing Ok in this way, a monotone decrease for g(x, y) is always guar- 
anteed in each iteration. 

The second approach includes the application of Newton's method to the 
system of nonlinear equations 

F2(X,Y)= [ATAXe-Ye- ATb] 0, 

where (x, y) belongs to the set S2 defined by (12). Hence in this approach we 
do not force the iterates xk and yk to satisfy the linear constraints A TAx - 

y - ATb = 0. In this case, the Newton direction (uk, vk) is obtained by the 
solution of the system of linear equations 

( 13) p Y X l p ~u -./ _ F X e + like l (13) [ATA -I LVJ k -ATAXke + Yke + ATbJ 

By following arguments similar to those presented before, we reach the same 
lower and upper bounds for the value of Pk. However, in this case the value 
of the parameter ok has to verify 

(14)k0?< ?k < ok if (Uk)TVk < 0, 

( 0<6k < min(Omax, ok) if (k)Tvk > 0 

where Ok is defined as before. 
Our computational experience has shown that the condition Omax < ok/2 is 

usually fulfilled. This seems a good reason to choose Ok < Okmax Hence, we 
follow the recommendation stated in [4] and set Ok = 0.9999k5 x 6k'a in each 
iteration k. As in. [4], the parameter Ilk is given by 

(15) k xk) Tyk (15) 
ILk=~~~~~n 
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The solution of the linear system (13) is obtained in two major steps. First, 
we compute uk by solving the linear system 

(A TA + (Xk)-l yk) uk = (Xk< l Uke - ATAXke + ATb, 

where (ATA + (Xk) l yk) is a symmetric positive definite matrix. This is in 
turn equivalent to solving the ULSQ problem 

(16) mi [(Xk -1/2 uk - b_AXk 2 
UkERn 2 (Xk) -2(yk) 1[(X) (Y)2 ke 2 

where (Xk) 1/2, (yk) 1/2 E RnXn are diagonal matrices whose diagonal elements 
are the square roots of the components of the vectors xk and yk . In a second 
step we compute vk by 

(17) vk= yke + (Xk)-l uke - (Xk)1l Ykuk. 

The steps of the resulting Newton's algorithm are stated below. 

Newton's algorithm. 
Step 0. Let TOLl and TOL2 be two tolerances for zero, k = 0, and (xo, Yo) 

> 0. 
Step 1. Compute uk and vk by (16) and (17), respectively. 
Step 2. Set O7maX = minl{601 ,2}, where 

k k( k ?k = min m - I 
i = 1,..., n and UV < 0) 

02 = min {- k i =1, *..., nand Vk < 0 

Set 0k=0.99995x0 max andupdate (xk+1 , yk+l) by (11). 
Step 3. If (Xk+1)Tyk+l < TOLl and IIATAxk+l -ATb_yk+112 < TOL2 stop: 

x* = xk+l is an approximate solution of the problem NVLSQ. Other- 
wise set k := k + 1 and return to step 1. 

Some authors ([4] and [15]) have suggested the use of a predictor-corrector 
direction to improve Newton's algorithm. In a first step the direction (uk, vk) 
is predicted by 

yk Xk 1[k][ -Xk yke 

(18) [ATA -In [vk -AATAXke + Yke + ATb- 

To correct the direction, we compute zk and wk by 

(zk, wk) = (Uk, Vk) + (iUk, Vk), 

where (ulk , k) E j2n is found by 

[yk xk] [Uk ] [_UkVke?+,ke] 

with Uk = diag(uk) and Vk - diag(vk). The direction (zk, Wk) may also be 
computed by solving the linear system 

(19) [A' yk x z e + Uke - e 
(I 9) lATA -In l ,k -A =|_TAXke + yk e + ATb 
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Using similar arguments as above, one can see that a decrease in g(x, y) is 
guaranteed if the value of the parameter Ilk is restricted by 

0 ? Ilk <(xk)Tyk + (uk)TVk 

n 

and the value of Ok satisfies (14), where 

- (xk)Tyk + (uk)TVk -nk 
k- (zk)Twk 

A good practical criterion for the choice of ik,. has been introduced by Lustig, 
Marsten, and Shanno [141 and simply consists of setting 

(x + OkUk)T(yk + Ok Vk) 
(20) /k- 

n2 

where 6k is computed as in Newton's method. This value of Yk is used in ( 19) 
to obtain the predictor-corrector direction (zk, wk). It is important to notice 
that this choice of /Pk does not guarantee a decrease in g(x, y), but works 
well in practice. After such a direction is found, the new point (xk+l, yk+1 ) 

is obtained so that all variables remain positive. The steps of the resulting 
procedure are stated below. 

Predictor-corrector algorithm. 

Step 0. Let TOL1 and TOL2 be two tolerances for zero, k = 0, and (xo, yo) 
>0. 

Step 1. Compute uk and vk by solving the linear system (18). 
Step 2. Set Omax = min{6' 0 k} ,0 where 

ok k i{ uk i=1 .,nadU 

01k min { - i =1, ..., nand Uk< 0} 

Set 6tk = 0.99995 x ?kax 
Step 3. Let Pk be given by (20). Compute the direction (zk, wk) by solving 

(19). 
Step 4. Set Omax = min{1 0 o 02 where 

Sk = kin{ zk i=1 ,nadz 

?k = min {-Wki=,...,n and Zk < o} 

Set 6,. = 0.99995 x ornax and (xk+1, yk+l) = (xk,yk) +6,.(zk, wk). 
Step 5. If (xk+1)Tyk+1 < TOLl and IIATAxk+l ..ATb-yk+l112 < TOL2 stop: 

-* xk+1 is an approximate solution of the problem NVLSQ. Other- 
wise set k := k + 1 and return to step 1. 
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As before, it is important to note that the solution of the linear systems ( 18) 
and (19) can be stated in terms of unconstrained linear least squares problems. 
In fact, (18) is equivalent to 

(21) mmn 2 || [(Xk)-1/2(yk)1/2 ]0Uk[b Xk] 2 

and 

(22) vk = _yke -(Xk)-1 Ykuk. 

In a similar way, the linear system (19) reduces to the following ULSQ problem: 

zk(2) 
m [ (Xk)-112(yk 1I2 Zk (ykk e-1/2 (#k -Uk Vk)e 2 

2 

and 

(24) wk = yke + (Xk)-1(_ Ykzk + Ike-UkVke). 

It follows from the description of the predictor-corrector algorithm that each 
iteration of the procedure requires the solution of two ULSQ problems with the 
same matrix. Hence the computational effort of this algorithm per iteration is 
larger than that required by the simple version of Newton's method. However, 
as stated in [14], the number of iterations is usually smaller for the predictor- 
corrector algorithm, and this compensates for the larger computational effort 
of each predictor-corrector iteration. Furthermore, the solution obtained by 
the predictor-corrector strategy is usually more accurate. This explains why we 
have chosen the predictor-corrector algorithm in our experimentations. Finally, 
we note that the predictor-corrector algorithm is also capable of dealing with 
rank-deficient linear least squares problems with nonnegative variables. 

4. IMPLEMENTATION ISSUES 

In this section we discuss the implementations of the three algorithms in- 
troduced in the previous sections for the solution of large-scale linear least 
squares problems with nonnegative variables (NVLSQ). The implementation 
of the active-set method has been discussed in [2]. In the first step of this pro- 
cedure, a so-called analyze phase is performed in which a permutation of the 
columns of the matrix A is found by applying the minimum-degree strategy to 
the matrix ATA [8]. Hence, the algorithm seeks a solution of the NVLSQ prob- 
lem whose matrix A contains the columns of the original matrix in the order 
achieved by the minimum-degree procedure. This phase is important, since we 
are able to control the amount of fill-in that occurs during the so-called factor 
phase. After the analyze phase, the permuted matrix A is stored by rows in a 
collection of vectors scheme. Each iteration of the active-set method requires 
the computation of the vectors XF and YG that are given by the formulas (7) 
and (8). The factor and solve phases are to find these vectors. In the factor phase, 
the QR factorization of AF is computed. Since in the active-set algorithm the 
set F is modified in exactly one element in each iteration, it is advisable to 
update the QR factorization instead of computing it from scratch. As stated 
in [2], there are efficient procedures to perform this task when an index is taken 
or added to the set F. In the solve phase the corrected seminormal equations 
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(CSNE) method [3] is applied to find the vector XF, that is, XF is computed 
by 

(25) RTRxF= ATb, 

where AF = Q [] . As stated in [3], a step of an iterative refinement procedure 
is included in this method. We also note that the orthogonal matrix Q does 
not have to be stored, and this leads to important storage savings. The solve 
phase terminates by computing the vector YG according to the formula (8). It 
is important to notice that YG only requires the data structure of the matrix 
A, the vector b, and the vector XF that has been previously computed in this 
phase. 

The formulas (7) and (8) are also required to get the information that is 
necessary in each iteration of the block principal pivoting algorithm. However, 
in this case modifications of more than one element are allowed in the set 
F. So it may be better in many cases to compute the QR factorization from 
scratch according to the scheme described in [7], instead of updating it from 
the previous iteration. Extensive computational experience reported in [ 1 8] has 
led to a heuristic rule for deciding whether an updating or a computation of the 
QR factorization should be made. In this rule we compute the quantity 

JHR UfH21 
IF-H1UH21 

where HI and H2 are the sets mentioned in ?2. If A > 0.2, then it is cheaper 
to compute the QR factorization from scratch. Otherwise an update of the 
factorization is advisable. This update consists of performing IH1 u H21 mod- 
ifications of one element. Apart from this difference, the implementation of 
the block pivoting algorithm is similar to the active-set method. Hence, the 
implementation contains three phases, namely analyze, factor, and solve with 
purposes similar to those presented before. 

It is also possible to design another implementation of the block pivoting 
algorithm that is based on the method of normal equations. As before, an 
analyze phase is first applied, where a permutation of the columns of A is 
found by using the minimum-degree procedure for the matrix A. Then the 
permuted matrix A is stored by rows in a collection of vectors scheme. In 
the factor phase the Cholesky decomposition of AFAF is computed, that is, an 
upper triangular matrix R is found such that ATAF - RTR. Then this matrix 
R is used to find the vector XF according to the formula (25). The formula (8) 
is used to compute the vector YG in the same way as described before. These 
two calculations constitute the solve phase. 

It is nowadays widely accepted that the method of normal equations is 
cheaper than the CSNE method, but the latter procedure is able to find solutions 
with better accuracy. If we look cautiously at the block pivoting method, we re- 
alize that precision is not too important in all the iterations but the last. In fact, 
it is only necessary to known whether xi, i E F, and yj, j E G, are negative 
or not in each iteration of the algorithm. So, it seems that the implementation 
based on the normal equations is more appropriate for the block algorithm. 
A switch to an implementation based on the CSNE method is easy to perform 
and may be interesting in the last iterations, particularly for ill-conditioned least 
squares problems. In the last section of this paper we present computational 
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experience with both the implementations of the block algorithm which will 
support these claims. 

A last implementation issue for the block method is concerned with the choice 
of the permutation set a that has to be defined a priori. The choice of this set 
is not important for the modifications of more than one element, but has an 
important effect on the number of iterations when many modifications of one 
element take place in the set F. Extensive computational experience has shown 
that this type of modifications occurs rarely in practice. Hence the permuta- 
tion given by the minimum-degree algorithm is sufficient for our purposes. We 
suggest in [18] other heuristic rules that may be worthwhile in case too many 
one-element modifications of the set F take place. 

To conclude this section, we briefly describe the implementation of the 
predictor-corrector algorithm. The information that is required in each iter- 
ation of this algorithm is found in the formulas (21)-(24). The main computa- 
tional effort of this algorithm consists in the solution of the damped linear least 
squares problem of the form 

min 2 'lBkZ - eli2, 
zER, 22 

where 

(26) Bk [(Xk)-1/2(yk)1/2] 

and Xk, yk are diagonal matrices with positive diagonal elements. Since 

BTBk = ATA + (Xk)- IYk 

the matrices ATA and BkTBk only differ in the diagonal elements. Hence, the 
fill-in that occurs in the QR factorization of Bk is the same that would occur if 
the QR factorization of A were computed. This suggests to apply an analyze 
phase to the matrix A and find a permutation of the columns of this matrix. As 
before, this phase terminates by storing the permuted matrix A in a collection 
of vectors scheme. 

Each iteration of the predictor-corrector algorithm contains a factor phase in 
which the QR factorization of the matrix Bk (26) or the Cholesky factorization 
of the matrix B[TBk is computed. These factorizations are used in the solve 
phase to compute the vectors uk and zk given by (18) and (19) by using the 
CSNE method or the method of normal equations, respectively. The vectors vk 
and wk given by (22) and (24) are quite simple to compute after the vectors 
uk and zk have been calculated. 

We have briefly described two possible implementations of the predictor- 
corrector algorithm. By looking carefully at the factor phases of these imple- 
mentations, we immediately come to the conclusion that the gap between the 
computational efforts of the two implementations is much bigger in this case 
than in the block algorithm. In fact, the CSNE approach requires the com- 
putation of the QR factorization of the damped matrix Bk that has m + n 
rows and n columns. Recall that in the block method the matrix AF has IFI 
columns and m rows, whence the number of rows and columns of the matrix 
may be much smaller in this latter case. So, it seems that the use of normal 
equations in the predictor-corrector is even more advisable than in the block 
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pivoting algorithm. Computational experience presented in the last section will 
confirm exactly this statement and will reject the use of the CSNE approach for 
the predictor-corrector algorithm. 

To finish the description of the implementation of the predictor-corrector 
algorithm, we discuss the choice of the tolerances TOL 1 and TOL2. Extensive 
computational experience has shown that the feasibility tolerance TOL2 should 
not be too small. If EM is the machine epsilon, then TOL2 - n\/S2j is usually 
a good choice. On the other hand, the gap tolerance TOLl may be chosen 
quite small. We have chosen in our experiments TOLl nflM. This choice 
of TOLl usually leads to accurate solutions even when the normal equations 
approach is used. This will also be confirmed by the computational results 
presented in the last section of this paper. 

5. GENERATION OF TEST PROBLEMS 

In this section we propose a technique to generate large-scale linear least 
squares test problems with nonnegative variables (NVLSQ) with a known op- 
timal solution. Consider the NVLSQ (1) problem and its associated LCP (3). 
Furthermore, assume that the vectors x and y7 are given, and consider the 
following index sets: 

F = {i: Yi > 0 and jTi = }, 
(27) G= {i:L i=0andji >0}, 

D = {i: i = 0 and j7i = 0}. 

The procedure to be described in this section attempts to find a vector b E Rm 
such that (x, y7) is the unique solution of the LCP, where A is a given sparse 
matrix of order m x n. 

Let F, G, and D be the sets defined by (27), and consider the following 
partition of the matrix A: 

A = [AF, AG, AD], 

where AS E Rmxlsl is the submatrix of A containing all the columns of A 
whose indices belong to the set S, and 1SI represents the number of elements 
of S. We can also write the vectors x and y in the form 

i ? G? 

Hence, the vectors T and j7 satisfy the following equalities: 

Z = AFXF-;b. 
Therefore, the vector b can be obtained in two steps, by first computing the 
vector z satisfying the system ATZ = y, and then setting 

(28) b=AFXF-Z- 

Since m > n, the system ATz = y- has an infinite number of solutions. 
Hence, we are satisfied with the minimum 12 norm solution of this system, 
which is the unique optimal solution of the following optimization problem: 

minlIZI12 subject to ATz =y. 
zERm 
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This problem is in turn equivalent to the following set of equations: 

(29) ATAA = yj, 

(30) z = AA. 

We conclude that the vector b can be found by using the equalities (28), 
(29), and (30). It is now obvious that we wish to get a quite accurate vector b. 
Therefore, precision is quite important in the solution of the system (29), and 
we recommend the CSNE method with iterative refinement [3] to be used in 
this context. By using this procedure and the formulas (28) and (30), we obtain 
the following algorithm for the computation of the vector b: 

Algorithm GENB. 
Step 1. Compute the sparse QR decomposition of A and let P be the associ- 

ated permutation matrix. 
Step 2. Compute A by solving the linear systems 

RT = pTj7 and RA)=?A. 

Step 3. Compute 
r = pTy _ pTATAPA. 

Step 4. Compute 3, as follows: 

RUT = r and R65,=5- 

and 6r by setting 5r = PTA TAP3. 
Step 5. Correct A and r by 

A = A + ,6 r = r+br. 

Step 6. If 11r112 is not sufficiently small, go to step 4. Otherwise compute 

b = AFXF-APA 

and stop. 

The importance of this generator lies in the possiblity of generating NVLSQ 
test problems with some features that are important in the study of the efficiency 
of algorithms. In fact, by simple choices of the values of the variables xi and jYi 
and the sets F, G, and D associated with the optimal solution of the NVLSQ 
problem, we can generate test problems with the following characteristics: 

(i) Badly- or well-scaled optimal solutions. This is related to the values of 
the quantities 

maxi IxiI and maxi JjiT I 
mini IYi a mini m I 

(ii) Small or large optimal active-sets; this depends on the number of ele- 
ments of the set G U D. 

(iii) Nondegenerate or degenerate optimal solution (that is, strict comple- 
mentarity holds or not at the optimal solution); this depends on the set 
D to be empty or not, respectively. 
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6. COMPUTATIONAL EXPERIENCE 

In this section we report on computational experience with the active- 
set (AS), block principal pivoting (BLOCK) (p = 3), and predictor-corrector 
(PRECOR) algorithms on the solution of some linear least squares problems 
with nonnegative variables (NVLSQ). As stated before, we have considered two 
implementations for the BLOCK and PRECOR algorithms, differing in the pro- 
cedure that is used to solve the required ULSQ problems in each iteration. The 
versions 1 of these algorithms (BLOCK1, PRECOR1) employ a CSNE approach 
for the solution of the ULSQ problems, while the method of normal equations 
is used in their versions 2 (BLOCK2, PRECOR2). The implementations of the 
algorithms have been coded in FORTRAN 77 and have been tested on a SUN 
SPARC station SLC, whose machine epsilon is gM - 10-16. 

We have considered two types of test problems in our experiments. In the 
first category (problems TP) the elements of the matrix A have been randomly 
generated. The vector b has been generated according to the technique de- 
scribed in the previous section, where the positive components of the solution 
vectors Y and y7 have been set equal to one. The second set of test problems 
contains four least squares problems of the Harwell-Boeing collection [6]. In 
these test problems, the matrix A and the right-hand side vector b are given, 
whence we have only to request the values of the variables x to be nonnegative 
in order to get the desired NVLSQ problems. Table 1 contains information 
about all these test problems under the following headings: 

m-number of rows of A, 
n-number of columns of A, 
nza-number of nonzero elements of A, 
nzr-number of nonzero elements of the matrix R of the QR factor- 
ization of A. 

TABLE 1. Test problems 

m n nza nzr 
TP1 3000 250 6065 3602 
TP2 3000 500 18970 9154 
TP3 3000 750 5852 19340 
TP4 3000 1000 38737 39862 
TP5 500 250 2355 2366 
TP6 1000 250 1999 2182 
TP7 2000 250 2705 2268 
TP8 3000 250 10638 2492 
TP9 4000 250 12547 2305 

TP10 1000 250 4006 2165 
TP11 1000 250 2119 945 

WELL1033 1033 320 4732 2261 
ILLC1033 1033 320 4732 2261 

WELL1850 1850 712 8758 6749 
ILLCi850 1850 712 8758 6749 
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TABLE 2. Number of iterations to solve problem TP3 for dif- 
ferent values of IFI 

FI AS BLOCK PRECOR 
90 92 4 26 
195 203 5 25 
200 204 5 22 
285 291 5 25 
375 381 4 21 
550 556 4 21 

We have stressed before the importance of the number of elements IFI of the 
set F associated with the unique optimal solution of the NVLSQ problem. This 
value IF I represents the number of constraints that are inactive at the optimal 
solution. In our first experiment we have investigated the role that this value 
plays in the behavior of the algorithms. To do this, we have used the technique 
described in the previous section to generate six different instances of the test 
problem TP3 differing in the value of IFI associated with the optimal solution 
of the NVLSQ problem. In Table 2 we display the number of iterations that the 
algorithms AS, BLOCK, and PRECOR take to solve these six test problems. As 
expected, the results indicate that the number of iterations of the AS algorithm 
is always greater than IFI . The dependence on this value is the main drawback 
of the active-set algorithm and discourages its use for the solution of large-scale 
NVLSQ problems. In fact, since it is impossible to know a priori the number of 
constraints that are inactive at the optimal solution, this number may be quite 
large for large-scale NVLSQ problems with thousands of variables. In this case 
the active-set algorithm takes too long to find the desired optimal solution. In 
contrast, the algorithms BLOCK and PRECOR do not seem to be influenced 
by this value IF I and are much more appropriate for the solution of large-scale 
NVLSQ problems. 

In our second experiment, we have investigated the importance of the num- 
ber of variables on the performance of the algorithms. To do this, we have 
generated four test problems, where m is fixed (m = 3000) and n takes four 
different values. In all these test problems the vector b has been generated by 
the technique described in the previous section, where the sets F, G, and D 
associated with the unique optimal solution satisfy 

IFl= 2' IGI= 4, IDI 4. 

The results presented in Table 3 (next page) lead to the following conclusions: 

(i) The number of iterations of the active-set method increases with n. 
This confirms the results of our first experiment, since IFI increases 
with n. 

(ii) The number of iterations of the BLOCK and PRECOR algorithms do 
not seem to be influenced by an increase in the value of n . 

(iii) The gap between the CPU time of the versions 1 and 2 of the BLOCK 
algorithm increases with n. The situation is much more dramatic for 
the PRECOR algorithm, where its version 1 is not by any means com- 
petitive with the version 2. 
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TABLE 3. Solution of NVLSQ problems with fixed m and dif- 
ferent values of n 

AS BLOCK PRECOR 
TP n IT TIME IT TIME IT TIME 

BLOCK1 BLOCK2 PRECORI PRECOR2 
TP1 250 125 7.8 4 3.04 1.01 13 27.34 2.31 
TP2 500 250 52.44 3 12.77 2.71 14 140.00 7.69 
TP3 750 383 59.44 4 21.02 3.85 22 330.06 20.65 
TP4 1000 500 235.15 4 51.48 22.10 16 > 500 50.09 

TABLE 4. Solution of NVLSQ problems with fixed n and dif- 
ferent values of m 

AS BLOCK PRECOR 
TP m IT TIME IT TIME IT TIME 

- BLOCKI BLOCK2 PRECOR_ PRECOR2 
TP5 500 131 3.90 6 1.58 0.78 21 14.77 1.71 
TP6 1000 127 4.14 3 1.65 0.34 23 23.47 1.71 
TP7 2000 125 9.47 2 3.19 0.41 13 32.87 1.61 
TP8 3000 125 14.50 2 6.03 0.50 13 51.17 2.17 
TP9 4000 125 17.60 2 8.41 0.52 13 70.72 2.28 

(iv) The version 2 of the PRECOR algorithm and both versions of the 
BLOCK algorithm are more efficient than the active-set algorithm, and 
the gap increases with n. 

The effect of an increase in the number m of equations on the performance 
of the algorithms has been studied in our third experiment. We have considered 
for a fixed value of n (n = 250) five problems that differ in the value of m. 
The results displayed in Table 4 indicate that the number m does not play an 
important role on the number of iterations of the three algorithms. As expected, 
the CPU time for the versions 2 of the BLOCK and PRECOR algorithms does 
not seem to be influenced by an increase in the number m of equations. In 
contrast, the versions 1 of the BLOCK and PRECOR algorithms and the active- 
set method seem to be affected by an increase in the value of m. Again, the 
effect is much stronger in the PRECOR algorithm. 

As a final conclusion of these three experiments, we can claim that the 
BLOCK and PRECOR algorithms are quite suited for large-scale NVLSQ prob- 
lems if they are implemented by using the method of normal equations. The 
CSNE approach can still be useful in the BLOCK algorithm, but should not be 
employed in the PRECOR algorithm. The active-set method is not competitive 
with the BLOCK and PRECOR algorithms when n is sufficiently large. These 
conclusions are confirmed by the results displayed in Table 5 of the solution of 
the NVLSQ problems taken from the Harwell-Boeing collection. 

It is well known that the orthogonal factorizations usually lead to more accu- 
rate optimal solutions for the unrestricted linear least squares problem than the 
method of normal equations. The condition number of the matrix of the linear 
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TABLE 5. Solution of Harwell-Boeing NVLSQ problems 

AS BLOCK PRECOR 
IT TIME IT TIME IT TIME 

BLOCKI BLOCK2 PRECOR I PRECOR2 
WELL1033 283 18.67 11 10.38 1.76 20 33.96 1.98 
ILLC1033 201 9.99 10 6.10 0.80 18 31.07 1.74 

WELL1850 635 88.31 10 47.43 6.98 25 209.58 7.16 
ILLC1850 438 52.65 9 31.86 3.69 22 185.61 6.45 

TABLE 6. Importance of condition number on the solution of 
NVLSQ problems 

TP cond(AF) AS BLOCKI BLOCK2 PRECOR1 PRECOR2 
TP1 1.OOE+ 00 1.OOE-15 2.OOE- 16 8.OOE-14 1.OOE-16 3.OOE- 16 

TP10 1.OOE + 02 1.OOE- 14 9.OOE- 15 1.OOE-12 2.OOE-15 2.OOE- 15 
TP 1 1.0GE + 05 8.OOE-1 1 4.OOE- 12 4.OOE-08 5.OOE-13 4.OOE- 13 

TP61 1.OOE + 06 4.OOE-07 2.OOE-07 8.OOE-05 6.OOE-12 6.OOE- 12 

least squares problem is the most important factor for the choice of orthogonal 
factorizations. In fact, the method of normal equations may run into some 
numerical difficulties for ill-conditioned problems. Based on the observations, 
we have decided to investigate the importance of the condition number on the 
accuracy of the optimal solution found by the algorithms discussed in this paper. 
To do this, we have generated problems with four different LINPACK estimates 
[5] for the condition number of the submatrix AF associated with the inactive 
constraints of the optimal solution of the NVLSQ problems. Each problem has 
been solved by the active-set method and by the two versions of the BLOCK 
and PRECOR algorithms. For each problem we have calculated the relative 
error of the computed solution x*, which is given by 

11X* - 112 

where x is the exact optimal solution that is fixed in the generator described 
in the previous section. As before, IFI = I , IGI = 4, IDI = I are the sets of 
indices in the generation of the test problems. The results displayed in Table 6 
show that the accuracy of the solutions is adversely affected by an increase in the 
condition number of AF. As expected, the version 2 of the BLOCK method, 
that is based on the method of normal equations, is much more influenced by 
the condition number than its version 1 that relies on the CSNE method. This 
version provides a more accurate solution than the active-set method. This is 
also understandable, since updatings of the QR factorization are performed, 
while in general the QR factorization is computed from scratch in the BLOCK 
method. However, surprisingly or not, the two versions of the PRECOR al- 
gorithm have given the most accurate solutions, and we can see no substantial 
difference between them. So these results support our recommendation for the 
use of the normal equations in the implementation of the PRECOR algorithm. 
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However, a switch from the normal equations to the CSNE approach may 
be appropriate in the BLOCK method in the last iterations, particularly for the 
solution of ill-conditioned NVLSQ problems. 

7. CONCLUSIONS 

We have investigated the use of block principal pivoting and predictor- 
corrector algorithms for the solution of large-scale linear least squares problems 
with nonnegative variables (NVLSQ). This study has shown that both algo- 
rithms are quite efficient for this type of optimization problems. The predictor- 
corrector should be implemented by using the method of normal equations for 
the solution of the unrestricted linear least squares problem that are requested 
in each iteration of the algorithm. This type of approach should also be used in 
the implementation of the block principal pivoting algorithm, but a switch to 
the corrected seminormal equations (CSNE) method may be useful in the last 
iterations of the procedure. 

It is possible to generalize the block principal pivoting and the predictor- 
corrector algorithms for the solution of linear least squares problems with bound 
constraints. The solution of this type of problems seems to be worthwhile in 
the design of sequential techniques for the solution of nonlinear least squares 
problems with bound constraints. These are two topics of current research. 
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