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ON THE COMPUTATION OF BATTLE-LEMARIE’S WAVELETS

MING-JUN LAI

ABSTRACT. We propose a matrix approach to the computation of Battle-
Lemarié’s wavelets. The Fourier transform of the scaling function is the prod-
uct of the inverse F(x) of a square root of a positive trigonometric polynomial
and the Fourier transform of a B-spline of order m . The polynomial is the
symbol of a bi-infinite matrix B associated with a B-spline of order 2m . We
approximate this bi-infinite matrix B,,, by its finite section Ay , a square ma-
trix of finite order. We use Ay to compute an approximation xy of x whose
discrete Fourier transform is F(x). We show that xy converges pointwise to
x exponentially fast. This gives a feasible method to compute the scaling func-
tion for any given tolerance. Similarly, this method can be used to compute the
wavelets.

1. INTRODUCTION

Battle-Lemarié’s wavelets [1, 3] may be constructed by using a multiresolution
approximation built from polynomial splines of order m > 0. See, e.g., [4] or
[2]. To be precise, let ¥, be the vector space of all functions of L?(R) which
are m—2 times continuously differentiable and equal to a polynomial of degree
m—1 on each interval [n+m/2, n+1+m/2] for all n € Z. Define the other
resolution space Vj by

Vi:={u@*t):ueW}, VkelZ.
It is known that {V;},cz provide a multiresolution approximation, and there
exists a unique scaling function ¢ such that

Vi = spanp.{2¥/2p(2kt — n) : n € Z}
for all k, and the integer translates of ¢ are orthonormal to each other. (See,
e.g., [4].) Define a transfer function H(w) by

9(2w)
H(w) = ——,
() 9(w)
where ¢ denotes the Fourier transform of ¢ . Then the wavelet y associated
with the scaling function ¢ is given in terms of its Fourier transform by

¥(w) =e P H(w/2+ 7)§(w/2).
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Here and throughout, j := +/—1. The scaling function ¢ associated with the
multiresolution approximation may be given by

(1) b(w) = _
V/ Skez | Bm(w + 2km)|2

where B,, is the well-known central B-spline of order m whose Fourier trans-
form is given by

By (w),

= sinw/2\"
Bt = (%571°)
By using Poisson’s summation formula, we have
. 1 =
P(w) = — B(w).
\/Ekez By (k)e—ike
Thus, the transfer function is
_ | Lkez Bam(k)e~ /20
Lkez Bam(k)e=ike
Then the wavelet  associated with ¢ is given by
1

e Bl

The above Fourier transforms of ¢, H, and y suggest that the scaling func-
tion, transfer function, and wavelet have the following representations:

o(t) =D o Bm(t—k),

(2) H(w)

(cosw/2)™.

Bn(w/2).

(3) ¥(w) = e /°*H(w]2 + )

kezZ
H(w) =Y Bre~ro,
keZ
w(t)=> nBm(2t—k).
keZ

In this paper, we propose a matrix method to compute the a;’s, fi’s, and
7’s. Let us use ¢ to illustrate our method as follows: view Y-, ., Bo(k)e—ike
as the symbol of a bi-infinite matrix By, = (bj); kez With b; = by j—; =
Bom(k — i) forall i, k € Z. Similarly, \/zkez Bym(k)e=Ik@ can be viewed as

the symbol of another (unknown) bi-infinite matrix C,,, . Then it is easy to see
that

C}, =Bm.
To find
> age /e = : :
keZ \/Zkez B2m(k)e_1kw
is equivalent to solving
szx =0

with 0 = (d;)iez, 0o = 1, and J;, = 0 for all i € Z\{0}, where X = (ay)kez -
Our numerical method is to find an approximation to x within a given tolerance.
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Let Ay = (bix)-n<i, k<n be afinite section of By, . Note that Ay is symmetric
and totally positive. Thus, we can find Py such that

P} = Ay

by using, e.g., the singular value decomposition. Then we solve Pyxy = dy with
Jdn avector of 2N+1 components which are all zeros except for the middle one,
which is 1. We can show that xy converges pointwise to x exponentially fast.
Similarly, we can use this idea to compute an approximation of {Bi}icz by
(2) and {yx}kez by (3). Therefore, the discussion mentioned above furnishes
a numerical method to compute Battle-Lemarié’s wavelet.

To prove the convergence of xy to x, we place ourselves in a more gen-
eral setting. We study a general bi-infinite matrix 4. (For the case of Battle-
Lemarié’s wavelets, 4 = B,,,.) We look for certain conditions on 4 such that
the solution xy of ﬁNxN = Jy with P2 =4 N converges to the solution x of
Px = 6 with P2 = 4, where Ay is a finite section of 4. This is discussed
in the next section. In the last section, we show that the bi-infinite matrix B,
satisfies the conditions on 4 obtained in §2. This will establish our numerical
method for computing Battle-Lemarié’s wavelets.

2. MAIN RESULTS

Let Z be the set of all integers. Let /2 := [2(Z) be the space of all square
summable sequences with indices in Z . That is,

IZ(Z)= {(...,x_l,xo,xl, ...)t: i |x,-|2<oo} .

i=—o00

It is known that /2 is a Hilbert space. We shall use x to denote each vector in
12 and use A4 to denote a linear operator from /2 to /2. It is known that 4
can be expressed as a bi-infinite matrix. Thus, we shall write 4 = (a;x); kez -
In the following, we shall consider A to be a banded and/or Toeplitz matrix.
That is, 4 is said to be banded if there exists a positive integer » such that
a;x = 0 whenever |i—k| > b. The matrix A is said to be Toeplitz if @; i mik =
a;,m forall i, k, m e Z. Denote by F(x)(w) the symbol of a vector x € /2,
ie.,
F(x)(w) =) xie™ /.
i€Z
Denote by F(A4)(w) the symbol of a Toeplitz matrix 4 = (a); kez > i-€.,
F(A)() =) a; e
i€Z
Suppose that F(A4)(w) # 0 and ),z la;i 0l < oo. It is known from the
well-known Wiener’s theorem that there exists a sequence x such that

__L_ — —jkw
FlA) @) ,;x""’ :

with 37, x| < co. It is easy to see that to find this sequence x is equivalent
to solving the linear system of bi-infinite order:

Ax =9,
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where d =(...,d-1,d0,01,...)" with o=1 and J; =0 for all i € Z\{0}.

Furthermore, if the matrix A is a positive operator, then there exists a unique
positive square root P of A. That is, P2 = A. The symbol representation is
F(P)(w) = /F(4)(w). To find F(P)(w) is equivalent to finding a matrix P
such that P2=4. ,

Certainly, we cannot solve a linear system of bi-infinite order. Neither can we
decompose a matrix of bi-infinite order into two matrices of bi-infinite order.
However, we can do this approximatively. Let N be a positive integer, and let
An = (ai)-n<i k<n be a finite section of 4. Let In o = (0, Ihnt1,2n841,0)
be a matrix of 2N + 1 rows and bi-infinite columns with Iy, 2n4+; being the
identity matrix of size (2N + 1) x (2N + 1) such that

AN=IN,°°AII’V’°°.

Denote dy = Iy, 0 and Xy = Iy .oX. Then we shall solve the following linear
system:
A N’A‘N = (SN .

We claim that Xy converges to x exponentially fast as N increases to oo,

under certain conditions on 4. Furthermore, we shall solve P? = Ay for Py

by using the singular value decomposition. Once we have Py, we shall solve
Pnyn = On.

We claim that §5 converges to y exponentially fast as N — oo, provided A4
satisfies certain conditions.
To check the conditions on A, we need the following definition.

Definition. A matrix A = (a;); kez is said to be of exponential decay off its
diagonal if .
@] < KrliH

for some constant K and r € (0, 1).
We begin with an elementary lemma.

Lemma 1. Suppose that A is of exponential decay off its diagonal and has a
bounded inverse. Suppose that A;,‘ = (ik)-N<i, k<N Satisfies the property that

a; ¢ (N)| < Krli=%l, ¥Y—N<i, k<N,
forall N > 0. Then there exists r; € (0, 1) and a constant K, such that
1N, 00X — Xn |2 < KyrfY,

where X is the solution of Ax =3 and Xy is the solution of Axxy =0y .

Proof. From the assumption of the lemma, there exist K and r € (0, 1) such
that 4 = (a)i kez and Ay' = (& k(N))-n<i,k<n satisfy

laj] < Krli=¥l and |ay] < KrliH
Write
B
AN
C

AI}tV,oo = and d= BA;,IJN withd=(...,d_n—-1, d_N)t.
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Then we have, foreach i= -, ...,-N—-1, =N,
N N
dil = | 3> andy o) < K2 Y rlivklplk
=—N k=—N
N
= K? (r‘i >+ Nr‘i) <Cii
k=0

for some constant C and A € (0, 1). Thus, |[BA~'dy||» < C'AVN . Similarly,
|CAR'dn|l2 < C'AN . Hence,

1N, coX = %nll2 < lIX = T}y okwll2 < 147 12ll6 = ATy o AR Onll2

B
<472 |lo = | An
C

A;,‘JN

2

[ BAj
<[ A7 Y2 |6 = | Tan+1,2n+1 | ON
c4y' 2

< 47 2 (1BAR Ol + IC Ay onll2) < 147 122C"AY,

hence the assertion with K; = 2C’||[A7 |, and r; = A. This establishes the
lemma. O

Next, we consider approximating the square root of a positive operator.

Lemma 2. Let P be the unique square root of a positive operator A. Suppose
that A is banded and ||A—I||; < r < 1, where I is the identity operator from
I to I*. Then P = (py); kez is of exponential decay off its diagonal.

Proof. The uniqueness of P and the convergence of the series
o (2i -=3)1

-1y A-1
g( A=

imply that

P=VA=\/T+(A-1)= Z(l )(A ).

The matrix A4 is banded and sois A —1I. If 4 -1 has bandwidth b, then
(4 —1I)! is also banded with bandwidth ib. Thus, |p;| < Krli=kl/b for some
constant K . This finishes the proof. O

Lemma 3. Let P be the unique square root of a positive operator A. Suppose
that A is banded and ||A - I||; < r < 1, where I is the identity operator from
12 to I2. Then P~' = (Pix)i rez Is of exponential decay off its diagonal.

Proof. The uniqueness of P! and the convergence of the series

S - a-
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imply that

=) =I+A-D)"= Z( 1),(222 )n) (A-T1).

i=0
Now we use the same argument as in the lemma above to conclude that P! is
of exponential decay off its diagonal. O

Let ﬁN be the square root of Ay . That is, ﬁ]%, = Ay. Denote Py =
Iy oPI ]‘v’oo . We need to estimate PyPy — PyPy. We have

Lemma 4. Let R = (ri)_n<i k<n = PyPy — PyPy . Then ry = O(rN/4D) for
k=-N/4+1,...,N/4—1 and i =—N, ..., N, where b is the bandwidth
of A and r is as defined in Lemma 3.

Proof. It is known that P and 4 commute. Let us write

ar B a B a B
B' Py (' and A= |a' Ay c'|.
a; C a4 Bs ¢ PBa
We have B'a + PyAy + C'c = a'B + APy + ¢!C. Thus, PyAy — AyPy =
a'B-B'a+c'C—C'c. Let E=a'B—B'a+c'C—C'c and Iy := ILhy1, 2841 -
We have Py(Ay — Iny) = (Ay — Iy)Py + E and

n—1

Py(An —In)" = (Ay — IN)"Py + »_(An — IN)*E(An — Iy)"™*!

k=0

P =

by using induction. Then, we have

PyPy = Z(-l) ——3)—PN(AN - In)"

2!
—Z( N ),,) (Ay — In)"P

+Z( 1)" (2 ),, Z(AN IN*E(Ay — Iy)"™*!

= PyPy + Z(‘l)"((zﬁ Z(AN — IN*E(Ay — In)" 1.
n=0

To estimate R = PNfN — I3NPN which is the summation above, we break R
into two parts and estimate the first by

T (2 Z(AN—IN)"E(AN—IN)" k-

n=N1+1 (2n)"

2

2n—-3)!'n
< S R By — Il < Killa — IvIE.
n=N1+1
Thus, this part has the desired property if we choose N1 appropriately. Next,
we note that 4y —Iy is banded and its bandwidth is . Thus, for 0 <n < N1,
(Ay — Iy)™ is also banded and has bandwidth nb < bN1.
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Note also E = (ejx)-n<i,k<n has the following property:

. _{0 for — N+b<k<N-b, -N+b<i<N-b,

k=1 o@N-ky for —-N<i<-N+band N-b<i<N, —-N<k<N.

It follows that (Ay — Iy)'E has a similar property as E:

0 for —-N+b<k<N-b,
—N+kb+b<i<N-Ib-b,

O(rN-Ikl) for —-N<i<-N+1b+b,
N-Ilb-b<i<N, and —N<k<N.

Choose N1 such that N/(4b) < N1 < N/(4b) + 1. Then (Ay — I)™! has
bandwidth bN1 < N/4 + b and hence

O(r3N/4=b=Ikl) if |k| < N/4and — N<i<N,
o(1) otherwise

(Ay = IN)'E) iy =

(Ay—D)E(dy-1)""")y = {

for /=1, ..., N1. Putting these two parts together, we have established that
R has the desired property. 0O

We are now ready to prove the following.

Theorem 1. Suppose that A is a positive operator and ||A — I||2 < 1. Suppose
that A is a banded matrix. Let P be the unique square root of A and y the
solution of Py = 6. Let Py be a square root matrix such that P2 = Ay and
Y~ the solution of ﬁNifN =0J0n. Then

IIv, 00y — Inll2 < KAN
for some A€ (0, 1) and a constant K > 0.
Proof. Let P = (pi)i kez and Py = (Di)—n<i k<n - By Lemma 2, the matrix
P is of exponential decay off its diagonal. By Lemma 3, we know that Py is
of exponential decay off its diagonal uniformly with respect to N because of
lAn — In+1,28+1l2 < 1, which follows from ||4—1I]|; < 1. The invertibility of
A implies that P is invertible. From ||4—1||; < 1 it follows that the inverse of
P is bounded. Let §5 be the solution of Pyynx = dx . Thus, we apply Lemma
1 to conclude that
1IN, o0y — ¥nll2 < Ky
for some r € (0, 1).
We now proceed to estimate ||[§x — ¥n]l2 -
Note that P2 = 4 implies Ay = P} + B'B+ C'C or P} — P} = B'B+C'C.
Thus, we have

(Py + Py)(Py — Py) = P — P2 + PyPy — PyPy = B'B+ C'C +R,
where R was defined in Lemma 4. Hence,
(Py — Py) = (Py + Py) "' (B'B+ C'C +R).

Note that the entries of B’B + C'C have the exponential decay property:
(B'B+C'C); = O(rV~I%) . By Lemma 4, we know that each entry of the mid-
dle section (N/2 columns) of the columns of B'B + C'C + R has exponential
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decay O(rN/(4b)) Both Py and Py are positive and ||(Py + Py)~!||2 < |Py|l2
is bounded. Recall that Py ! is of exponential decay off its diagonal. We have

I§5 = ¥wll2 < 1Py 12110n — Py Py 'dnlla
<Py 2Py = Pn)(Py'ow)ll2
<123 21l (Py + Pw) U121l (B'B + C'C + R) Py 'on|
< KAV

for some A € (r, 1). This completes the proof. O

In the proof above, an essential step is to show that each entry of the middle
section of the columns of ﬁN — Py is of exponential decay. This indeed fol-
lows from (ﬁN — Py) = (Pv + ﬁN)‘l(B’B + C'C + R), the boundedness of
(Py + Py)~!, and the fact that each entry of the middle section of the columns
of B'B+ C'C + R is of exponential decay. This has its own interest. Thus, we
have the following

Theorem 2. Suppose that A is a positive operator and ||A — I||; < 1. Suppose
that A is a banded matrix. Let P be the unique square root of A and Py =
IN oP(IN.)'. Let Py be a square root matrix such that P3 = Ay . Then

| PnON — ﬁNJNllz < KAV

for some A € (0, 1) and a constant K .

Finally, we remark that if ||4—1I|], = 1, then each entry of the middle section
of the columns of R is convergent to 0 with speed 7{,— . The exponential decay
in the above has to be replaced by

|Pnén — Pronllz <

Sile

3. COMPUTATION OF BATTLE-LEMARIE’S WAVELETS

Fix a positive integer m. Let A = B,, be the bi-infinite matrix whose
symbol is >, By (k)e=/k@  Clearly, A is a banded Toeplitz matrix. To see
that A is a positive operator on /2, we show that 4 > cI for some ¢ > 0 as
follows: For any x € /2, we have

Xt Ax = 21; " FR@)F (4)(0)F (%)(@) do

= FAQ)5 [ IF@)Pdo

—-n

> min F (4)()||x]}3 -

With ¢ = min, F(A4)(w) > 0, we have 4 > cI. Similarly, we can show that
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|4 —1I|; < 1. Indeed,
1 n
ll(4 - Dx|)} = o |F (4 - I)(o)]|F(x)(w)? do

—n

= 5= [ 11 - F@)PIF0 @) do

2
< max|1 - F() @)l < (1 - min F(4)(@)) IxI3.
Thus, we have
4= Dxlz < (1 - min FA)(@) ) Il

and hence, ||4 —I||; < 1. Thus, B,,, satisfies all the conditions of Theorem 1.
By (1), we have

. 1 sinw/2
9(w) = : 3
\/Zkez Bym(k)e—ike \ @/
Thus, ¢(t) = >, axBn(t — k) with x = (ax)kez satisfying

Comx=4d and C3, =By,.

Using our Theorem 1, we conclude that our numerical method is valid to com-
pute the a;’s.
By (2), the transfer function is

\/EkezBM(k)e —Jj%ke
V/Zkez Bam(k)e=ike

Note that when m is even, then cos™(w/2) = (1 — (e/? 4+ e=7®)/2)"/2 | which
is a finite series. However, when m is odd, cos”™(w/2) is no longer a finite
series. In order to compute H(w), let S;, be the Toeplitz matrix whose symbol
is cos?™(w/2) = (1 — (e/® +ei®)/2)™ . Let Z be a zero insertion operator on
12 defined by

Hw) = cos™(w/2).

xi2 if iis even,
0 if i is odd.

Thus, H(w) = Y ez Bee %@ with x = (Bi)kez satisfying

Zx = Z(xi)iez = (Zi)iez With z; = {

X=W*xY*Z,
where * denotes the convolution operator of two vectors in /2 and
y=Cné, z=2ZC,'6, w=T6

with C2, = By,,, T2, = S, . Using our Theorems 1 and 2, we know that our
numerical method gives a good approximation to y and z. For m even, our
numerical method produces an xy which converges pointwise to X exponen-
tially. When m 'is odd, the remark after Theorem 2 has to be applied, and the
wy produced by this procedure does no longer converge to w exponentially.
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By (3), the wavelet y associated with ¢ is given by
V(2w) = e '°H(w + n)j(w).

Once {ax}lrez and {Br}rez are computed, {yx}rez can be obtained by con-

volution.

We have implemented this method to compute Battle-Lemarié’s wavelets in
MATLAB. The graphs of Battle-Lemarié’s wavelets are shown in the following

figures. :

-1 T T L 1
8 6 -4 -2 0 2 4 6 8 -10 -8 6 -4 -2 0 2 4 8 10
Battle-Lemarié’s scaling function and wavelet of degree 1
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1 L ] 1 1 Il 1 —_—l 1
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Battle-Lemarié’s scaling function and wavelet of degree 3
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Battle-Lemarié’s scaling function and wavelet of degree 5
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Battle-Lemarié’s scaling function and wavelet of degree 7
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Battle-Lemarié’s scaling function and wavelet of degree 9
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