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QUADRATURE OVER CURVED SURFACES BY EXTRAPOLATION 

J. N. LYNESS 

ABSTRACT. In this paper we describe and justify a method for integrating over 
curved surfaces. This method does not require that the Jacobian be known 
explicitly. This is a natural extension of extrapolation (or Romberg integration) 
for planar squares or triangles. 

1. INTRODUCTION 

We treat the numerical integration over a curvilinear quadrilateral, a, and 
over a curvilinear triangle, r. These are embedded in a curved surface, which 
may be parameterized in the form 

(1.1) x = (x, y, z) = 1(u) = F(u, v), 

x = 0q(u, v); y = g(u, v); z = x(u, v). 

The region a (or r) is that part of the curved surface that is mapped from 
the unit square S (or from the unit triangle T) . That is, v: (I(u E S) and 
r: (I(u E T), where S and T are, respectively, 

(1.2) S:ue[O, 1)2, T:u+-v< 1 u>O,v>O. 

The method is designed for a situation in which a triangularization (see below) 
based on the mapping (I is readily available; the functions q$, iv, and x and 
the Jacobian J (see below) need not be known explicitly. However, all these 
functions, known or unknown, are well behaved, and the surface in which a 
and r are embedded is smooth. 

A situation in which this may occur is one in which the surface is defined 
implicitly: 

H(x, y, z) = 0, 

and VH is available. In some such cases, one may obtain accurate values of x 
iteratively, without having to know 1D explicitly. Georg [3] discusses problems 
of this sort in the context of the boundary element method. He conjectures 
the existence of an asymptotic expansion, on which a convenient extrapolation 

Received by the editor June 2, 1993 and, in revised form, December 3, 1993. 
1991 Mathematics Subject Classification. Primary 65D32, 65B05, 65B1 5. 
Key words and phrases. Cubature, curvilinear triangle, Euler-Maclaurin expansion, extrapola- 

tion, Romberg integration. 
This work was supported by the Office of Scientific Computing, U.S. Department of Energy, 

under Contract W-31-109-Eng-38. 

( 1994 American Mathematical Society 
0025-5718/94 $1.00 + $.25 per page 

727 



728 J. N. LYNESS 

scheme may be based. In this paper, we have been able to establish this expan- 
sion. This puts on a sound theoretical footing some of his innovative but partly 
heuristic work in this area. 

We now describe a simple conventional method based on triangularization. 
Throughout this paper, m is a positive integer. The m-triangularization of the 
planar square [0, 112 comprises a partition into 2m2 distinct triangles, using 
the lines 

(1.3) U = j/m, v = j/m, u+v =j/rm for all j. 
The vertices of these triangles comprise a set of (m + 1)2 points (t1, tk), where 
j, k e [0, m] and 

(1.4) t. = tj(m) = j/m. 
We shall suppress the dependence on m in cases where no confusion is likely 
to arise. 

The mapping function x = 4(u) induces an m-triangularization of the curvi- 
linear quadrilateral a. The lines (1.3) are mapped into curves embedded in the 
curved surface, forming a set of 2M2 curvilinear triangles. The integral Iaf 
may be approximated using as abscissas the (m + 1)2 distinct points that are 
vertices of these triangles. Let T. ji = 1, 2, ... , 2rm2, represent these curvi- 
linear triangles; let f1, 1 , f,2, fju, 3 represent the function values of f at the 
three vertices of T; and let Au be the area of the planar triangle having these 
vertices. Then it is evident that 

2m2 

j=1 (1.5) Q(M) f = i 1 EA(fju I + fy, 2 + fM, 3) 

is an approximation to I, f . 
The principal result in this paper is that Q(m)f has an h2-error expansion. 

That is, setting h = 1/m, when f E C(2P)(a) and 4I(u) is sufficiently well 
behaved, we have 
(1.6) Q(m)f= If + B2h2 + B4h4 +... + B2ph2P +0(h2p+ I) 

where the coefficients B2q are independent of h. In the course of obtaining 
this result, we uncover several other results of the same nature. Finally, we 
obtain the result, given in Theorem 5.6 below, which is analogous to (1.6) when 
the region a is replaced by the curvilinear triangle r. 

This theorem is in fact Conjecture 5.1 of Georg [3], which is itself part of 
Conjecture 1 of Georg and Tausch [4]. This expansion may be used as a basis 
for h2-extrapolation; see, for example, Bauer, Rutishauser, and Stiefel [1]. One 
evaluates successively Q(m)f for a sequence of values of m and, either by 
means of a Neville-Romberg T-table or by some other simple technique, one 
obtains a sophisticated result based on this sequence of possibly individually 
inadequate results. Some advantages and other features of this approach form 
part of the paper by Georg. The present paper is confined to one significant 
task: to establish the asymptotic expansion on which the underlying theory of 
his work may be based. 

The author recently became aware that this same conjecture was established 
by Verlinden and Cools [9] simultaneously and independently. Their paper 
appears in this issue of this journal. 
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As a preliminary, in ?2, we describe a method based on extrapolation that one 
might use if the Jacobian function J in (2.2) below were readily available. The 
subsequent three sections are devoted to modifying this method so as to avoid 
the explicit evaluation of J. Section 3 is devoted to the surface, delineating the 
relation between A, and J in some detail. Section 4 provides results for the 
curvilinear quadrilateral, and ?5 widens these results to the curvilinear triangle. 
Details of some Euler-Maclaurin-type expansions for the triangle are provided 
in an Appendix. 

2. BACKGROUND THEORY 

In a recent article, Schwab and Wendland [7] provide a broad survey and 
analysis of integration over curved surfaces required in the boundary element 
method. For the benefit of a wider audience, in this paper we start directly from 
the classical theory. The general theory of analytic integration over surfaces 
is treated in Courant [2, pp. 273 et seq.]. We follow, as far as possible, the 
framework introduced there. We set 

(2.1) f(x, Y, z)dS=Jj f((u, v), v(u, v), x(u, v))J(u, v)dudv, 

where 

(2.2) J2 = (qU V- _UOV?)2 + (V'UXV - Xu Vv)2 + (Xuqv -_ UXV)2. 

In this case, the problem reduces to that of evaluating 

Ig= J J g(u, v)du dv, 

where 

(2.3) g(u, v) = f(q(u, v), ig(u, v), x(u, V))J(u, V). 

There are many ways of integrating over a square. The classical approach (see, 
for example, Stroud [8]) is by means of Gaussian formulas. A marginally less 
efficient but occasionally more convenient approach is by extrapolation (also 
known as Romberg integration), one version of which we now describe. Let 

(2.4) Rg = E wig(ui, Vi) 
i=l 

be any quadrature rule for S that integrates a constant function correctly. We 
define the m2-copy of this rule R as 

v m-lm-1 
(2.5) R(mg = E E E W U +J v + 

i=1 j=O k=O 

When g E CP(S), the following minor generalization of the Euler-Maclaurin 
summation formula is valid: 

p-i 

(2.6) R(m)g - Ig = E B,(R; g) + O(m-P). 

s= 1 
Note that the coefficients Bs are independent of m, the mesh ratio. Note also 
that, in general, this is a full expansion containing all inverse integer powers 
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of m. However, when the rule R is symmetric about the point (1/2, 1/2), 
all terms B, with odd s vanish. Further, when R is of polynomial degree 
d, we have also that B, = 0 for all s E [1, d]. Thus, in a context in which 
J(u, v) is readily available, an attractive way to carry out integration over a 
curvilinear quadrilateral is by transformation to a plane square and the use of 
extrapolation. A conventional rule to use in this context might be the product 
m-panel trapezoidal rule 

m m 
(2.7) R(m)g = r2 Z Z g(tj, tk). 

j=O k=O 

Here, we can identify the positive integer m as the reciprocal of a step length 
h and define 

(2.8) t1 = tj(m) = jh = j/m. 

This is, of course, the mr2-copy of a four-point rule, which applies equal 
weight to each of the four vertices. This rule has an even error expansion and 
is used on occasion in the context of two-dimensional Romberg integration. 

The rules with which we shall be concerned are more primitive than this. 
One of these is a rectangle rule defined by 

(2.9) R g = g(O, 0). 

Neither this nor its m-copy (given in (3.1 1) below) is symmetric, and the expan- 
sion (2.6) above is full. Such a rule would be rarely used in practice. However, 
it turns out to be convenient to develop the theory in terms of such primitive 
rules. We shall return to this rule and several variants in ?3. 

In the rest of this paper we deal with a context in which J(u, v) is not 
readily available. We describe how the simple approach given above can be 
modified to deal with this less transparent situation. 

3. THE M-TRIANGULARIZATION 

In this section we are concerned with the relation between individual points 
of the m-triangularization of a and the points that are the vertices of these 
triangles. 

Definition 3.1. Let A be a four-integer index (a, f8, y, (). Let ti = i/m and 

x1,k = (I(t1, tk). Then, depending on context, / (m) either denotes the tri- 
angle having vertices (t1, tk), (tj+(, tk+fi), (tj+y,, tk+J), or denotes the area 
of this triangle; and A (mi) either denotes the planar triangle having vertices 
Xj k, Xj+a, k+,8 Xj+y, k+a, or denotes the area of that triangle. 

Definition 3.2. In the above context, 

det)A = a5 -fly, -) = (-a , -fl, -y, -(). 

When detA = 0, the triangle /A(M ) has zero area. Moreover, (a , ,B, y, () 
and (y, 5, a, ,8) refer to identical triangles. So, without any compromise, we 
may consider only indices A for which det)A is a positive integer. 

In this paper we shall use only six distinct indices A., though much of the 
theory would allow a general assignment. These six refer to the distinct triangles 
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of the triangularization that have xi, k as a vertex. These indices are those that 
appear in Definition 3.6 below. 

In this section we shall prove various results that are valid for all A . We shall 
confine the details of the proofs to the case A = (1, 0, 0, 1), so that A (en) j, k, A 
is the area of a planar triangle having vertices at Xj,k, xj+l,k, x1,k+l (the 
northeast elementary triangle). 

Theorem 3.3. Let ?I(u) (defined in (1.1)) be C(P)(S), and det) A= 1. Then 

(3.1) 2AJ. 
m =h2(6o + h3l + + hP 'p1p_) + 0(hP+2), 

where Jo.= J(t1, tk) and 3, = s, A(ti, tk); here 5s,(u, v) is a function of u 
and v having continuous partial derivatives of order p - 1 - s. 

Proof. We treat only the case A = (1, 0, 0, 1), and within this proof we abbre- 
viate 2/ (ml to A . The area of this triangle is one half of the absolute value 
of the triple vector product 
(3.2) 

el e2 e3 

+(tj+ I, tk) - 0(tj , tk) V(tj+lI, tk) - V(tj , tk) X (tj+ I, tk) -%X(tj , tk). 
0(tj, tk+?) - (tj, tk) V(tj, tk+1) - (t1, tk) X(tj, tk+) - X(t1, tk) 

We may expand this in the form 

elDM) + e2D2 + e3D 
giving 

4Aj2 = D- )2 + D(2)2 + D(3)2 

Since q(u, v) and the other components of P are well behaved, we may use 
the expansion 

(3.3) 0(tj+l 5 tk) - 0(tj,~ tk) = hou + h2 
0uu+ 

and similar expansions for the other elements of D(3) . This gives 

D(3) = 2 |O4u + hOuu + Y/u + 
h 

Vuu +***| 
Xv + hovv +* / v + hovv +* 

D~3~-h2 
I~+IU2+2 

= h2(D(3) + hD(3) + ... + hP-'D 3)1) + 0(hP+2) 

where 
D (3)= | Uu a = ((0, ) 0 I+v $v 

- a(u,v) 

and Ds3) the coefficient of hs+2 in this expansion, is a sum of analogously 
constructed products of partial derivatives. It follows that 4A has an expansion 
in powers of h of the form 

p-1 

4Aj2 = h4 J2 + E hsCs + 0(hP+4) 

Finally, for sufficiently small h, we may take the square root of this to obtain 
p-i 

2A = h2J + Z 3shs + 0(hP+2) 
s=l 
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The series manipulation is elementary; to establish the theorem, we need 
information about the continuity of the functions J,, (u, v). 

Since the derivatives of q, iV, and X of order p are continuous functions 
of u and v, it follows that so are the derivatives of Ds3) of order p - 1 - s; 
similarly, those of D(') and D 2) have the same order of continuity. Then Cs 
has this order. Finally, so long as J(u, v) is bounded away from zero in the 
region S, we find that 3s also has this order of continuity. 5 

It is relatively straightforward to show that the effect of replacing A by -) 
in the above proof is the same as that of reversing the sign of h; this gives 

(3.4) 35,,(u, v) = (-1)ss,_(u, V). 

It is no surprise that the first term in expansion (3.1) is h2J. This is needed 
for the classical theory to survive. An expansion in powers of h is not unex- 
pected. What is critical is that the coefficients 3s,A(u, v) are smooth functions 
of u and v. Although they occur in the form 5, A (t1, tk) and t1, tk depend 
on m, the functions 5s, A(u, v) do not depend on m . Like J = Jo(u, v), they 
depend on 0, iV, and X only. This circumstance is exploited later. 

The condition det)A = 1 results in JO ,, (u, v) = J(u, v). If this were relaxed, 
the same theorem would hold with Jo, A(u, v) = J(u, v) detA . 

We now discuss the connection between the m-triangularization and the in- 
dices iA. The following definition is a first step in clarifying a somewhat involved 
situation. 

Definition 3.4. Let B denote the square S or the triangle T defined in (1.2). 
Then 7(m) ,(B) = 1 or 0 depending on whether or not the triangle A7(m 
forms part of the m-triangularization (1.3) of B. 

By inspection, one can verify that there are only six distinct values of index A 
for which it is possible for any such triangle to be part of the triangularization. 
We refer to these six (which are precisely those that appear in Definition 3.6 
below) as the triangularization-compatible (TC) indices. 

We now return to the construction of quadrature rules. 

Definition 3.5. Let B denote S or T. We denote by R(m) (B) the rule that 
assigns a weight m-2 to all points (tj, tk) of the m-triangularization of B for 
which the triangle A(m) lies in B and is a member of the triangularization. 

Definitions 3.4 and 3.5 will be applied in ?5 in a context where B is the 
triangle T. In this section and in ?4 we shall suppress the argument (S). We 
find that, for the six TC indices, the definition is satisfied as follows. 

Definition 3.6. R(m) is the m2-copy of RA given by 

(3.5) R(j, o, 0, ,)g = g(0 , ?) 0 

(3.6) R(o, 1,-1, 1)g = g(l, 0), 

(3.7) R(_ , 1,- ,o)g = g(l 0), 
(3.8) R(-1,0,0,-1)g = g(l , 1), 

(3.9) R(O, - l1, 1, - )g = g(O, 1) , 
(3.10) R(1, -.1,1,o)g=g(O, 1). 
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Clearly, for no index A is R(m) the product trapezoidal rule (which is sym- 
metric). It is the m2-copy of a one-point rule that assigns full weight to one 
corner of the unit square. Specifically, in accordance with Definition 3.4, 

1m m 

(3.11) R(M)g = E1 ,(m) 'g(tj, tk) S 
j=O k=O 

where (5(m) - 1 for only m2 of the (m + 1)2 specified abscissas in (3.11), j, k,) A 
and is zero otherwise. For example, 

(3.12) R(lm)01)g= i2 g(t}, tk). 

j=O k=O 

However, since it is a copy rule, the full Euler-Maclaurin expansion (2.6) applies 
to this rule. 

Corresponding to each R(m) we now define a quadrature rule for the curvi- 
linear quadrilateral a. This is obtained by first transforming the rule onto the 
curved surface and then replacing the Jacobian-dependent term by the area of 
an elementary triangle. The transformation gives 

m m 

(3.13) R(m)g = ZZ7(m h2J(tj, tk)f(Xj, k) 

j=O k=O 

and the arbitrary replacement leads to the following definition. 

Definition 3.7. We let 
m m 

(3.14) Q(m)f = ZZ 3@U (m2A,n) 2 

j=0 k=O 

Although this appears to contain (m + 1)2 abscissas, in fact only m2 have 
nonzero weights. For example, in the case A = (1, 0, 0, 1), abscissas with 
j = m and with k = m have zero weights. 

Note carefully that, in spite of the notation, the rule in (3.14) is not an m2- 
copy rule. It is obtained by modifying a term in a rule that is an m2-copy rule 
in a different space. The expansion of Theorem 3.3 allows us to establish the 
following. 

Theorem 3.8. Let ?(u) (defined in (1.1)) be C(P) (S), and let Q(m) f and R(m)g 
be given by (3.14) and (3.1 1), respectively. Then 

p-l 

(3.15) Q(m)f h s R(m)g, + O(hF), 
s=0 

where 

(3.16) gsA(u, v) = f(x(u, v))3Ss,A(u, v) 

and the functions 5s, are defined in Theorem 3.3. 

Proof. This is simply a matter of subsituting for A (m) , in (3.14) the expression 
given in (3.1) and simplifying by using (3.1 1). El 
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Note that go,(u, v) coincides with g(u, v). Note also that (3.15) is not 
an h-expansion, since Rimgs,, depends on h through m. 

We have, as yet, made no commitment about the properties of f or g. To 
proceed, we need to be specific about the form of g, A (u, v) . In the rest of this 
paper we treat the case in which f(x), and consequently gs,,(u, v), are well 
behaved. 

4. RULES FOR THE CURVILINEAR QUADRILATERAL 

Theorem 3.8 expresses Q(m)f, a rule over the curved surface a, in an ex- 
pansion, each term of which involves a product rectangle rule evaluation over 
the planar square S. As mentioned above, this is not an h-expansion. 

We now restrict ourselves to an integrand g E C(P).(S) In this case we may 
make use of the Euler-Maclaurin expansion (2.6) applied to each rule RA in 
this expansion. This expansion is of the form 

p-l 

(4.1) R(m) g = ZhBj(RA; g) + O(m-P). 
j=O 

Here, we have set h = 1/rm; bearing in mind that 

(4.2) Bo(R; g) = I(g) _j j g(u, v)dudv 

and that B1(R; g) is independent of m, we may substitute (4.1) into (3.15) to 
establish the following theorem. 

Theorem 4.1. When ?(u) (defined in (1.1)) and f(x(u, v)) are C(P)(S), the 
quadrature rule Q(m)f of Definition 3.7 has an h-error expansion, namely, 

p-i - 

(4.3) AQ(m)fIf Z B ( f) + O(hP), 
w=1 

where 
w 

(4.4) BwQ(; f) = ZBj(R, ; gw_,). 
j=0 

When A is one of the six TC indices, the rule described by this theorem has 
the property that the points for function evaluation lie in the completion of a. 

Any one of these rules alone seems quite reasonable, but a little "lop-sided". 
In the context of extrapolation, a rule having an h2-error expansion would be 
preferable. 

The rest of this section is devoted to deriving such a rule. It turns out (see 
Theorem 4.4 below) that the average of the six rules mentioned above has an 
h2-error expansion. 

Lemma 4.2. The coefficients in the Euler-Maclaurin expansion (4.1) satisfy 

(4.5) Bj(RA; g) = (-1)IBj(R_A; g). 
Proof. The result may be established by direct evaluation of the coefficients in 
terms of Bernoulli functions. A more elegant approach is based on the circum- 
stance that a symmetric rule has an m2-error expansion (and an antisymmetric 
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rule operator has an expansion involving only odd powers of m) . It is readily 
verified that 

(4.6) Rg = -RAg + 2R_g 

is symmetric. When j is odd, Bj(R; g) vanishes, leaving 

Bj(R_, g) = -Bj(RA, g) for all odd j. 
A corresponding argument provides a corresponding result for even j, thus 
establishing (4.5). n 

Another simple proof using an integral representation of Bj(RA; g) is out- 
lined in the appendix. 

A feature of the foregoing theory, which has been specially built in, is that 
in many h-expansions involving A, the effect of reversing the sign of h is the 
same as that of reversing the sign of Ai. In particular, in view of (3.4), the 
functions defined in (3.16) satisfy 

(4.7) gs,'(u, v) = (-l)Sg5,_A(u, v). 

We are now ready to consider the rule defined in (4.8) below. This rule 
applies to each fully interior point xi,j a weight equal to the sum of the areas 
of two opposite triangles. (For example, when A = (1, 0, 0, 1), these are the 
one to the northeast and the one to the southwest.) In general, points on edges 
have weights involving only one of these triangles, the interior one. Two of the 
vertices have zero weight. 

Theorem 4.3. Under the hypotheses of Theorem 4.1 the quadrature rule 

(4.8) Q(M)f= Q(m)f + I Q(m)f 

has an h2-error expansion. 
Proof. The proof relies entirely on equations (4.5) and (4.7). These are used in 
(4.4) to show 

w 

Bw (i; f) = Z Bj (R; gw_j, A) 

(4.9) 1=0 w 

= Z(-1)i(-1)w-iBj(R_A; gw-j ,-) = (-1)wBw(-A; f). 
j=0 

The error expansion for Q(m)f in (4.8) is the average of two asymptotic 
series of the form (4.3), the second differing from the first only in that A 
is replaced by -i. Thus, the coefficient of m-w in this expansion 
is '(Bw(A; f) + Bw(-A; f)). In view of (4.9), this coefficient vanishes when 
w is odd. This establishes the theorem. 5 

Our final result for the curvilinear quadrilateral is as follows. 

Theorem 4.4. Under the hypotheses of Theorem 4.1 the quadrature rule 

Q(m)f = 1 4(M) + (m) 1 )f + + Q(KllO)f) 
(4.10) a h6 (1,0,0,1)fr(0r1,-1, (-e,a, 

+ Q(-l ,oo-I)f + Q(o,-l l-I)f + Q(M,l lo) 

has an h2-error expansion. 
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Proof. The proof is a simple corollary of Theorem 4.3. The quadrature rule 
here is obtained by taking the mean of three rules, each being of form (4.8); 
specifically, the three values of ) involved are those in the first three assignments 
in (4.10). Naturally, the mean of three h2-error expansions is itself an h2-error 
expansion. 5 

This rule applies to each point xi, k a contribution from each of the triangles 
inside a of which it is a vertex. This contribution is one-third of the planar 
area of the triangle in question. Thus, it could be reexpressed in terms of 
contributions from triangles. Doing this, reveals the expression in (1.5). Thus, 
this theorem is one of the principal results of this paper, foreshadowed in the 
introduction. 

5. RULES FOR THE CURVILINEAR TRIANGLE 

In this section we treat the numerical integration over the curvilinear triangle 
T, which, we recall from ?1, is embedded in the same curved surface (1.1) as 
is a. Thus, much of the theory in ?? 1-3 applies with only minor modification. 
The region T is that part of the curved surface that is mapped from the unit 
triangle. That is, T: 1(U e T), where T is 

(5.1) T: u+v < 1, u>0,v >0. 

The same triangularization (1.3) is used, and so is the same notation intro- 
duced in ?3 to describe individual triangles: m2 of the triangles in the m- 
triangularization of S form the m-triangularization of T. 

We may construct a rule for T using the technique of ?3. We use Definition 
3.4 for 3(m) (T) and then define R(m)(T) in accordance with Definition 3.5. 
This gives 

m m 
(5.2) R(m)(T)g = ,42 E3(m ,(T)g(tf , tk)- 

j=O k=O 

Following the same steps as in ?3, we are led to the correspondent of Definition 
3.7. 

Definition 5.1. We let 
m m 

(5.3) Q(m)(T)f = ZZ 5(m) (T)2A(m f(xk 

j=O k=O 

One may verify that, when ) is one of the six TC indices, this employs either 
m(m + l)/2 or m(m - 1)/2 function values. The result of Theorem 3.8 in this 
context is simply 

p-1 

(5.4) Q(m) (z)f hsR(m) (T)gs, A + O(hP), 
s=0 

where, as before, 

(5.5) gsA(U v) = f(x(u, v))3S,A(u, v) 

and the functions 3s5, are defined in Theorem 3.3. 
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In ?4 we proceeded by invoking the two-dimensional Euler-Maclaurin ex- 
pansion for the square. Less well known is the corresponding formula for the 
triangle. Besides the overall formula, we shall also require some details about 
the structure of the coefficients. The following theorem is a specialization of 
one given in Lyness and Puri [6]. 

Theorem 5.2. When g E C(P)(T), then 
p-i 

(5.6) R(m)(T)g= Z hBj(RA; T; g) + O(m-P), 
j=O 

where 

(5.7) Bo(RA; T; g) = I(T; g) JJg(u, v)du dv. 

An integral representation for Bj(RA; T; g) is given in the appendix. We 
now substitute (5.6) into (5.4) to obtain the following theorem. 

Theorem 5.3. Under the hypotheses of Theorem 4.1 the quadrature rule Q(m) (r) f 
of Definition 5.1 has an h-error expansion, namely, 

(5.8) Q(M)r)f - f = (A;;)+ O(hP), 
w=1 

where 
w 

(5.9) hw(A; r; f) = ZBj(RA; T; gw-j,) 
j=0 

It remains to establish quadrature rules having h2-error expansions. We 
follow precisely the same approach as in the preceding section for the square. 
We need the following result, which corresponds to Lemma 4.2 and relates 
coefficients in different Euler-Maclaurin expansions. 

Lemma 5.4. The coefficients in the Euler-Maclaurin expansion (5.6) satisfy 

(5.10) Bj(RA; T; g) = (-1)jBj(R-A; T; g). 

This is significantly more difficult to prove than the corresponding result for 
the square, and we defer this to the appendix. However, once this is estab- 
lished, the rest of the theory follows in a relatively straightforward manner. 
Corresponding to Theorem 4.3, we have the following theorem. 

Theorem 5.5. Under the hypotheses of Theorem 4.1 the quadrature rule 

(5.11) Q(M)(T)f = !Q(M)(T)f + !Q(M)(T) T 

has an h2-error expansion. 
Proof. Exactly as in the proof of Theorem 4.3 we use (5.9), (5.10), and (4.7) 
to show that I(Bw(Z; r; f) + Bw(-A; r; f)) vanishes when w is odd. Since 
this is the coefficient of m-w in the error expansion of Q(m)(r)f, the theorem 
is established. 5 

Our final result for the curvilinear triangle is as follows. 
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Theorem 5.6. Under the hypotheses of Theorem 4.1 the quadrature rule 
(5.12) 

Q M(T) f = !(Q(M,o o ) (r) f + Q(o,l,-l,l (r) f + Q(M- l,, - , ) (I)ff 

+ Q(0) 4,)(T)f + Q(o-l, l-l)(r)f + Q(lO l)(T)f) 

has an h2-error expansion. 

This rule is simply the mean of three examples of the rule in Theorem 5.5. 
These three have the indices A coinciding with the first three occurring in (5.12). 
The mean of three rules each of which has an h2-error expansion also has an 
h2-error expansion. As mentioned in ? 1, this theorem coincides with Conjecture 
5.1 of Georg [3] and with part of Conjecture 1 of Georg and Tausch [4]. 

APPENDIX: NOTES ON EULER-MACLAURIN EXPANSIONS 
FOR PLANAR REGIONS 

The coefficients in the Euler-Maclaurin expansion (2.6) for the square, S, 
for any rule (2.5) (weights wi, abscissas (ui, vi)) have the following simple 
integral representation: 

(A. 1) Bj (R ; g) = E cjI, i2 (R) Jg(it, i2) (U, V) du dv, 
il +i2=i 

1>0 

where 
V 

B1l1(Ui)B12 (Vi) (A.2) c11,j2(R) = Ewi j, 12! 

is essentially the result of applying the rule R to the product of two Bernoulli 
polynomials. 

For the rules RA, defined in Definition 3.6, the coefficients Bj(R ; g) in 
(4.1) are of the same form. Using the properties of the Bernoulli polynomials, 
we find 

(A.3) Cl ,i2 (RA) = Bil (C)B12 (i) 
11!1j2! 

where ', q are individually 0 or 1 and (4, i) occurs as an argument of g 
in equations (3.5) to (3.10). 

Lemma 4.2 follows from (A. 1) and (A.3) as a consequence of the symmetry 
properties of the Bernoulli polynomials, namely, Bj(0) = (-1 )iBj (1) . 

The Euler-Maclaurin expansion for the triangle, T, is less known and is 
dealt with at length in Lyness and Puri [6] and in Lyness [5]. In this case the 
coefficients have a more complicated structure than that in (A.1). However, 
in the special case of these trapezoidal-type rules RA, a simpler formula is 
available. For example, when A = (1, 0, 0, 1), 

aJ" r1-U O1h 
(A.4) B (RA; T; g) = , cj,12(RA) Oua j10 {1 t gdvJ du 

ii >0 

with Cj ,,2(RA) given by (A.3) above. When j, = 0, the il, j2-term in the sum 
reduces to an integral over T, in direct analogy to (A. 1) above. But otherwise 
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the effect of differentiation with respect to the limit of an integral is to introduce 
additional terms. 

In ?5 the derivation of curvilinear rules Q(,r)f having h2-error expansions 
rested on Lemma 5.4. We shall establish this lemma by showing two lemmas. 

Lemma A.1. The operator (null rule) defined by 

(A. 5) R(m) (T)g = 2{4R(m) (T)g -R(m) (T)g} 

has an error expansion involving only odd powers of h = 1/m . 

Lemma A.2. The rule defined by 

(A.6) R(m) (T)g= g {R(m) (T)g + R(m) (T)g} 

has an h2-error expansion. 
Proof. We treat only the case A = (1, 0, 0, 1). We recall that both R(m) and 
R(m)) apply a weight 1/M2 to every strictly interior point. In addition, R(m) 
applies this weight to all points on edges x = 0 and y = 0, except for points 
(1, 0) and (0, 1). On the other hand, R(m) applies the same weight only to 
all points on the edge x + y = 1, except for the endpoints. Applying these 
assignments to the operators in (A.5) and (A.6), we find 

A,+g=M2 E g( m 

j+k<m 
j>k>O 

(A.7) 
I 

9 E (gJ +g 0, J+g( m-]) 

+ 2g(O, 0), 

while 

(A.8) RA- g=2i2E(gQ(m')+ g(0 J)_gQ Jm- J)) 

+ 2g(O, 0), 

which can be reexpressed in the form 

Im 
(A.9) 2rR(r) g =? m (gQ(J=)+g(?J) - g(2 m ' )) 

j=O 

The right-hand side comprises three one-dimensional trapezoidal rule operators; 
since these are symmetric, each has an h2-error expansion. Thus, the expansion 
for R(m)g involves only odd inverse powers of m, establishing Lemma A. 1. 

In Lyness and Puri [6, ?7], rules for the triangle of the same general nature 
as (A.7) are discussed in detail. In particular, a rule denoted there by R(m)g 
is defined that has an even expansion. This rule differs from R(m) (T)g above 
only in that the, weights attached to vertices are different. Specifically, 

R(m) R(m) (T) g + 12 (g(1, 0) + g(0, 1 )-2g(0, 0)). 
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These variant weights simply modify the coefficient of 1/rm2 in the expansion; 
its even nature is, of course, not compromised. This establishes Lemma A.2 
above. o 

As a convenience to the reader, we note that equations (3.5) through (3.10) 
may be abbreviated to 

R(a,fi,y,c5)g = g(, n), 

where, so long as det)A = 1 , we have 

C = 1 or 0 according as > a or < a, 
i = I or 0 according as y > a or y < 6. 

Notethat ,B+y=0, ac 5,B, y 5 , 4- i = a+,f-y- . 
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