
MATHEMATICS OF COMPUTATION
VOLUME 63, NUMBER 208
OCTOBER 1994, PAGES 749-757

SYMMETRIC FUNCTIONS, M-SETS, AND GALOIS GROUPS

DAVID CASPERSON AND JOHN MCKAY

ABSTRACT. Given the elementary symmetric functions in {ri } (i = 1. n),
we describe algorithms to compute the elementary symmetric functions in the
products {ri,ri2 rimI} (1 < il < ... < im < n) and in the sums {ri, +

ri2 + - + rim} (1 < il < ... < im < n) . The computation is performed
over the coefficient ring generated by the elementary symmetric functions. We
apply FFT multiplication of series to reduce the complexity of the algorithm
for sums. An application to computing Galois groups is given.

1. INTRODUCTION

Let

(1) ~ k(r, , r2, .. . , r,) = E ri,ri2 r ik
1<il< ...<ik?<n

denote the elementary symmetric function of degree k in {ri}, i = 1, ..., n.
We compute the power sum functions 9(rj, r2, ...) = Ej ri from the ele-

mentary symmetric functions, and vice versa, using Newton's method consisting
of iteratively finding 91 (f), 92(f), ... from the identity

k-i

(2) 9Dk + k(l)kXk =-(-l)iXiyk-i,
i=l

and in the reverse direction j, 2, ... are derived from
k

(3) gk=k -)+i -.
i=1

We find the elementary symmetric functions of the sums {ri, + ri2 + + rim }
(1 < ii < ... < im < n) and the products {ri ri2 --}rim (1 < i < . <
im < n), given the elementary symmetric functions of the {ri} (i = 1, . .. , n) .
Equivalently, let f(x) E K[x] be a monic polynomial of degree n with roots
r, .. , rn E L, where K is a field of characteristic 0, and L an extension of K .
We are given the coefficients of f (x), and we wish to calculate the coefficients
of f +m(x), the monic polynomial in K[x] whose roots are ri, + ri2 + - + rim
(1 < il < i2 < ... < im < n), and of fxm(x), whose roots are riiri2 ..rim
(1 < i < i2 < .-- < im < n). Furthermore, our calculations are exact: the

Received by the editor October 7, 1992.
1991 Mathematics Subject Classification. Primary 05E05; Secondary 12F10, 12Y05.
Research supported by NSERC and FCAR grants.

(1994 American Mathematical Society
0025-5718/94 $1.00 + $.25 per page

749

750 DAVID CASPERSON AND JOHN MCKAY

arithmetic is performed entirely in K and does not involve estimating the roots
of f(x) (compare [20, 21]).

Newton's method may be applied to give algorithms for computing f +m(x)
and f Xm(x). A method for computing f +m(x) has appeared elsewhere [2],
but we believe our method for computing f +m(x) is new.

2. THE ALGORITHMS

We adopt the following notation and conventions throughout: the monic
polynomial f(x) = Z7Oaixn-i of degree n has roots {ri} (i = 1, ..., n)
denoted as a set by R(f). We let Rm(f) denote {A C R(f): cardA =m
gk(f) = 9k(R(f)) = (-1)kak, and 9k(f) = 9k(R(f)). We adopt the con-
ventions that j 0 = 0, Hl0 = 1, and that 00 = 1: thus for any noncon-
stant polynomial g(x), we have g+?(x) = x and gXO(x) = x - 1, so that
9t5k(g+0) = Jk, and ,k(gXO) = 1. We define IIf(x) Ik to be maxi Iai .

We obtain relations between 9k (f) and either 9k(f +m) or .9k(f xm).
Computing 9k(f) using (2), and Fk(f +m) using (3) provides fast algorithms
for computing f +m (x) or f xm (x) . To derive relations between g97(f) and
either gm(f +k) or 6Ym(f xk), we apply Newton's relations to a polynomial
F(X) = HrER(f)(X - q(r)) for some suitably chosen function q. The polyno-
mial F(X) serves as a convenient notational device.

2.1. Computing symmetric functions of sums of roots. For a E K (a field
of characteristic 0) define exp(as) = EZ?O(a /h!)sh E K[[s]] as a formal
power series; and for any monic polynomial g(x) E K[x] define the for-
mal power series Hg(s) E K[[s]] by Hg(s) = E*?sh=0 (g)/h!. Note that
Hg(s) = ZrER(g) exp(rs) .

For a given monic f(x)EK[x], let F(X)=H]rER(f)(X-exp(rs)) EK[[s]](X).
We have

(4) ?_'h(F) = Z (exp(rs))h
rER(f)

(5) = Z (exp(rhs)) = Hf(hs),
rER(f)

and

(6) 'm(F) = E (iexp(rs))

(7) = RER,,df) (sZr)
RER,(f) rER

(8) = E exp(sp) = Hf+m(s),
pER(f +m)

so, from (3), we have
m

(9) Hf+M(S=) (Zl)h+lHf(hs))H+(m-h)(s) for m> .
h=1

SYMMETRIC FUNCTIONS, m-SETS, AND GALOIS GROUPS 751

Noting that the coefficient of 5k in Hf(hs) is hk times the corresponding
coefficient of Hf (s), we can match coefficients of powers of s in (9) to obtain,
for m > 1, k > 0,

(10) +mk(f)
M I Z-i_1h+l E (h)hj9j(f)k (f +(m+h)).

h=1 j=

This equation can be used directly to give an efficient algorithm to compute
f+m(x) from f(x) when m and n are small, but for larger values, equation
(9) gives the more efficient

Algorithm S: Computation of f +m(x).
Input: The coefficients of f (X) = Xn + En=_ a,xn-i and an integer m,
1 <m<n.
Output: the coefficients of the polynomial f +m(x).

S-I Let N denote (n) = degf+m. Compute 9k(f) for k = 0, ..., N
using (2), giving

Hf(s) (modsN+l).

S-2 For i = 2, ... , m compute Hf +i(s) (modsN+l) using (9).
Note: Hf +o(s) = 1 and Hf +1 (s) = Hf (s).

S-3 From
N

(11) Hf+M(S) Z k(f+m)sk/k! (modsN+l)
k=O

find the values of ,9k(f +m) for k = 0, ..., N; and then compute f +m (x)
using (3).

End.

2.2. Computing symmetric functions of products of roots. Here we take F(X) E
K[X] to be the polynomial F(X) = IrER(f)(X - rk), for some fixed integer
k > 0. (Recall that 00 = 1.) We have

(12) -*h(F) E (rk)h =9Dkh(f)
rER(f)

and

(13) 9'm(F)= E (r) = E (Ur)
RERm(f)rER RERm(f) rER

(14) k Z pk =)(f xm)

pER(f xm)

so, using (3), we get

m

(15) 9~'k (fXrm) m -(-)h+ 9Kkh(f Pk (f x()) form> 1 k>0.
h=l

752 DAVID CASPERSON AND JOHN MCKAY

This gives the following algorithm for computing f X m(x) from f(x).

Algorithm P: Computation of f X m (X) .
Input: The coefficients of f(x) = Xn + En=I aiXn-i and an integer m,
1 <m<n.
Output: the coefficients of the polynomial f Xm(x).

P-l Compute 9k k(f) for k = 0, .. , m (n) using (2).
P-2 For i = 2, ...,m compute

I-Sk (f 'i) Ik =0, * (n)}

using (15).
Note: We have f XO(X) = x - 1 (i.e., 9'k(f xO) = 1 for all k), and
fXl(x) = f(x)-

P-3 Compute the coefficients of f xm(x) from {19k(f xm)} (k = 0,.

(n)) using (3)
End.

3. IMPLEMENTATION OF ALGORITHMS

We comment on the implementation of Algorithms S and P.
Exact results require an unlimited-precision integer arithmetic package.1 For

our applications we found that care was required in implementing the arithmetic
for two reasons: first, low-level implementation issues such as the allocation and
reclamation of storage were delicate because intermediate quantities in these
calculations were much larger than indicated by the max norm of the polynomial
computed; second, the coefficients in our applications were several thousand
digits long, making fast arithmetic important.

3.1. Implementation of Algorithm S. Step 2 of Algorithm S requires (m) se-
ries multiplications, each series having (m) terms. The use of conventional

technique for multiplying series would require 0((m) (n)2) rational arithmetic
operations. When (n) is large, it pays to use Fast Fourier Transforms (FFT)
to perform the series multiplications to reduce this to O((m) (n) log (n)) arith-
metic operations.

The FFT algorithm (see [12]) requires at least (n) roots of unity in the
coefficient ring. To meet this requirement, yet still have exact arithmetic, we
compute the canonical homomorphic image of f+m(x) in the finite field Ep,
where p is a prime chosen so that the FFT algorithm works. After computing
the image of f +m(x) in TFp[x] for sufficiently many primes p, we recover
f +m(x) using the Chinese Remainder Algorithm.

We choose the primes pi as follows: let no be an integer such that 2no > (n).
(Note that we may take no < n, as (n) < (Kn) < 2n) Let M be an
integer provably greater than lIf+m(x)lIK0. Then pick a sequence of primes
PI, P2, ..-, Pk such that

ISuch packages are provided by PARI [1], ALGEB [9], as well as many other commercial symbolic
computation packages.

SYMMETRIC FUNCTIONS, m-SETS, AND GALOIS GROUPS 753

k

(16) fipi>2M,
i=l

(17) pi >) for i= 1, ... k, and

(18) 20=-1 (modpi) for i= 1, ,k.

Condition (16) allows us to use the Chinese Remainder Algorithm to recover
f+M(x) from its modular images (see [6]). We require condition (17) so that
the homomorphic image of Hf +m (s) is well defined modulo SN+1, and so that
the Fk(f +m) is recoverable from 9k (f +m) using (3). Condition (18) allows
us to use FFT techniques to perform the series multiplications.

Combining this, gives Algorithm SI.

Algorithm SI: Implementation of Algorithm S.
Input: The coefficients of f(x) = xn + EZnI a,xn-' E Z[x] and an
integer m, l < m < n.
Output: the coefficients of the polynomial f +m(x) E Z[x].

SI-1 Let N denote (n) = deg f +m. Choose no to be an integer such
that 2no > N. Find an M provably greater than lIf +mI.
SI-2 Compute 9'k(f) for k = 0, ... , N using (2), giving

Hf(s) (modsN+l).

SI-3 Find a sequence of word-size primes PI, P2, ..., Pk such that
1. rlk= pi >2M,
2. Pi > (n) for i= 1, ...,k, and
3. 2no- 1 (modpi) for i= 1, ...,k.

Let - Z[x] -- Fp,[x] denote the canonical homomorphism. For

i = 1, ..., k perform the following two steps in Fpi:
SI-3(a) Compute Hf +j(s) (modsN+1) using (9) for j = 2, ...,m.

Use standard FFT techniques to perform the series multiplications in

O(N log N) arithmetic operations over Fp1 .

SI-3(b) From

N

(1 9) Hf +m (S) = Z, (f+m)/l!*s' (modsN+l)

1=0

read off the values of 91 (f +m) for / = 0, ... , N, and then compute

f+m(x) using (3).
SI-4 Compute f+m(x) from its images modulo Pi, i = 1, ..., k, using

the Chinese Remainder Algorithm.

End.

In addition to increasing the speed of series multiplication, doing the com-

putation in Fp has another advantage: the intermediate quantities in computa-

tions using (9) are bounded by p, which in practice we choose to be less than

the computer wordsize. A disadvantage is the need to find a provable upper

bound M > lif +m`Iloo before computing f +m.

754 DAVID CASPERSON AND JOHN MCKAY

Note that the coefficients of Hf (s) are rational, even when f(x) E Z[x], so
a direct implementation of Algorithm S for monic integer polynomials may be
speeded up by storing the coefficients of Hf +i(s) = E >O /l(f +)s' rather than
those of Hf +i(s), and making modifications so that the algorithm uses only
integer (rather than rational) arithmetic.

3.2. Implementation of Algorithm P. The equation (15) is a relation between
integers, so Algorithm P can be implemented directly using a multi-precision
integer package. Our greatest difficulty in using this algorithm was the very large
size of the coefficients generated. When computing a degree-924 polynomial
with coefficients of about 5000 digits (see ?5), we found it simplest to create
m temporary files, with the ith file containing the numbers 9k (f X i) (k =
0, ... , (m)). This gave us tight control over the internal storage required in
step 2 of Algorithm P at the expense of a few sequential file operations.

4. APPLICATIONS TO COMPUTATIONAL GALOIS THEORY

Let f(x) = Z[x] be monic and irreducible. A theoretical method for com-
puting G = GalQ(f), the Galois group of f(x) over the rationals, has long
been known [23], but, as it involves factoring a polynomial of total degree n!
in n + 1 variables, it is impracticable in cases of interest.

Practical techniques are much more recent. See [20, 21, 13, 19, 18]. A
package for computing GalQ (f) for degf < 7 is available in Maple [5],2 and
the transitive permutation groups of degree < 15 have been catalogued [3, 4,
16, 17], but much remains to be done in developing feasible computational
techniques for finding the Galois groups of polynomials of such a degree.

One invariant for distinguishing among potential candidates for the Galois
group, G, of a given polynomial is the orbit structure of m-sets of roots under
the Galois action. The lengths of the orbits of Rm (f) under the action of G
form a partition of (n) , which is a G-invariant and may be used to distinguish
between potential Galois groups.

Let F(X) be f+m(X) (or fxm(X)). We have F(X) E Z[X], and if
F(X) is squarefree, we can write F = F1F2 ... Fk, where the Fi are distinct
monic irreducible polynomials. Furthermore, these Fi correspond to orbits of
Rm(f) under G. That is, we can partition Rm(f) as Uk I W so that Fi =

HRE, (X - ER) (or HREM (X - H R)) . Assuming that F(X) is squarefree is
not a major restriction; for, if needed, we can apply a Tschirnhaus transforma-
tion to f in order to make this so. Thus, the degrees of the irreducible factors
of f +m(x) (or f Xm(x)) are Galois invariants.

In ?5 we see that it is generically faster to compute f +m(x) than f Xm(x) .
The following shows that computing f xm(x) may nevertheless uncover inter-
esting information (see [8, 11, 14]).

Let f(z, t, U) E Q(t, u)[z] be

(20) f(z, t, u) = (z - l)g3(z)h3(Z) - tZ3(Z+ 1),

where

(21) g3(z) = z3-(2u + 2)z2 - (4u + 2)z-2u,

2Now extended to GalK(f), K = Q(tI, t2, * * *, tk) -

SYMMETRIC FUNCTIONS, m-SETS, AND GALOIS GROUPS 755

with roots {zg}, and

(22) h3(z) = z3 - (u- l)z2 - uz - u'/2

with roots {Zh}- We find that

(23) u2z3g3(l/z) + 2h3(u(z + 1)) = 0,

so that l/zg = Zh/U - 1. Because GalQ(<t,u)f = PGL(3, 2), we know that
f X3(Z, t, u) has a unique irreducible degree-seven factor: u7f(z/u- 1, -t, U) .

For the same reason, f +3 (z, t, u) also has an irreducible factor of degree seven,
but in this case it is

zt 2- (2z + uz - u2)(3z2 - 6z + 1 - 6uz - u)t

(24) - (z - 2u - 2)(2z3 - 8uz2 + (lOu2 - 4u - 6)z - 4u3 + 3u2)

(2z3 - (6u + 8)z2 + (2 - 8u)z - 3U2 + 2u)/4,
which appears to have no such nice interpretation. Note that the computations
with (20) are more efficient after putting u = -2a, so that the coefficients are
integers.

5. PERFORMANCE

The examples in this section arose from computer verification that the
Mathieu groups M11 and M12 are Galois groups over Q. (Darmon and Ford's
verification of Matzat's result may be found in [7]. They used p-adic approxi-
mation to prove directly that a polynomial invariant (derived from the Steiner
system and evaluated on the roots) was integer-valued, rather than use symmet-
ric function methods to obtain their result. In this instance it appears that this
p-adic technique is faster.)

The algorithms discussed in ?2 and ?3 were implemented by one of the au-
thors (Casperson) in PARI. These algorithms were tested on the polynomials
shown in Tables 1 and 2. Similar polynomials, first given in [15] and also used

TABLE 1. Coefficients of fi 1(x)
The polynomial fI (x) = xll + Ell aixi-1

i 7 as 1 i ai ai
4 +85520 8 +105904640

1 +2 5 + 15392 9 +252830720
2 -484 6 -6191296 10 +27555840
3 -520 7 +3032192 11 +1753436160

TABLE 2. Coefficients of f12(x)
The polynomial f12(x) = x12 + X i=? a1x12-

7a1i ai a1
1 +4 $5 -208569 -5349260
2 -526 6 -9429444 10 -1475917191
3 -940 7 +14732616 11 -44569205004
4 +106095 8 +282523695 12 +137613183361

756 DAVID CASPERSON AND JOHN MCKAY

TABLE 3. Degrees, norms, and computation time (CPU-seconds
on a MIPS M-120/5) for the polynomials calculated

Polynomial F degF IIFIjI 0 time

f__I (X)+5 462 1.98 x 10487 3885 s

fil(x)x5 462 1.65 x 101941 5855 s
fl 2 (X)+6 924 7.83 x 10997 31185 s
fi2(x)x6 924 1.15 x 105146 80753 s

in [7], exhibit the Mathieu groups Ml, and M12 as Galois groups over Q.
Table 3 summarizes the results of these calculations. Note the ratio of the
norms of f1{5 and fI 5, and of f2+6 and f 26. In terms of the polynomials
given here, those given in [15, 7] are fi(x + 9) and fl2 (x + 8). We have shifted
the roots to reduce the norms.

5.1. Choosing between Algorithm S and Algorithm P. In applications where
f +m(x) and f Xm(x) provide essentially the same information, such as in ?4,
one is free to choose between Algorithm S and Algorithm P. The latter has
the practical advantage of taking less effort to implement and seems preferable
when the coefficient size is small throughout the computation. On the other
hand, in our experience Algorithm S is faster than Algorithm P when one has
lIf +mIIo << ? If xrmnII. We do not have a rigorous argument to prove that this is
so, but we note that the roots of f +m are homogeneous of weight 1 in the roots
of f(x), whereas the roots of f xm are homogeneous of weight m. Finally,
when If +m I ? If x m IIO , the cost of extracting further information from
either f +m(x) or f Xm(x) may lead one to favor Algorithm S. The ratio of
times for computing f +3(Z, t, U): f x 3(Z, t, U) in (20) is about 10:3.

5.2. Comparison with other techniques. Unlike Stauduhar's method [20, 21],
the symmetric function methods are largely independent of the coefficient ring,
and so apply directly to, say, coefficients in Q(tW, t2, ... , tk).

Algorithm SI is the fastest such algorithm for computing f +m(x) known to
us, and it seems to be significantly faster than the symmetric function algorithm
of [10] and [22].

For f in Q[x], it is possible to use approximations over C or Qp to the
roots of f to build f +m(x) or f X m(x), but a proof is needed that the coef-
ficients of these are the rounded values of the coefficients of the approximate
computed polynomials. Rigorous error bounds are, as usual, easier to find us-
ing a non-Archimedean valuation. Over Qp , the integer p should be a splitting
prime, but these have a density of only 1 / I GalQ (f) I ; however, implementation
of arithmetic with nonsplitting primes is much less efficient. The target poly-
nomial is built recursively by multiplying pairs of approximately equal-degree
polynomials. Over C we start with quadratic and linear factors over R.

ACKNOWLEDGMENTS

We thank Ian G. Macdonald for his perceptive comments, which have im-
proved this paper, and Gene Smith and Thomas Mattman for sharing their
computational experience with us.

SYMMETRIC FUNCTIONS, m-SETS, AND GALOIS GROUPS 757

BIBLIOGRAPHY

1. C. Batut, D. Bernardi, H. Cohen, and M. Olivier, User's guide to PARI-GP, April 1990.
2. David Boyd, Reciprocal algebraic integers whose Mahler measures are non-reciprocal, Canad.

Math. Bull. 30 (1987), 3-8.
3. G. Butler and J. McKay, The transitive groups of degree up to 11, Comm. Algebra 11

(1983), 863-911.
4. , The transitive groups of degree up to 15, Comm. Algebra, 1994 (to appear).
5. B. W. Char, K. 0. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and S. M. Watt,

Maple library reference manual, Springer-Verlag, New York, 1991.
6. Lindsay Childs, A concrete introduction to higher algebra, Graduate Texts in Math., Springer-

Verlag, New York, 1979.
7. Henri Darmon and David Ford, Computational verification of M,1 and of M12 as Galois

groups over Q, Comm. Algebra 17 (1989), 2941-2943.
8. D. W. Erbach, J. Fischer, and J. McKay, Polynomials with PSL(2, 7) as Galois group, J.

Number Theory 11 (1979), 69-75.
9. David Ford, On the computation of the maximal order in a Dedekind domain, Ph.D. thesis,

Ohio State University, 1978.
10. M. Guisti, D. Lazard, and A. Valibouze, Algebraic transformations of polynomial equations,

symmetric polynomials and elimination, Symbolic and Algebraic Computation: Interna-
tional Symposium ISSAC '88 (P. Gianni, ed.), Lecture Notes in Comput. Sci., vol. 358,
Springer-Verlag, 1988, pp. 309-314.

11. S. LaMacchia, Polynomials with Galois group PSL(2, 7), Comm. Algebra 8 (1980), 983-
992.

12. John Lipson, Elements of algebra and algebraic computing, Addison-Wesley, Reading, MA,
1981.

13. John McKay, Advances in computational Galois theory, Computers in Algebra (Martin C.
Tangora, ed.), Marcel Dekker, New York, 1988, pp. 99-101.

14. G. Malle and B. H. Matzat, Realisierung von PSL2(Fp) als Galoisgruppen uber Q, Math.
Ann. 272 (1985), 549-565.

15. B. H. Matzat and A. Zeh-Marschke, Realisierung der Mathieugruppen MI1 und MI2 als
Galoisgruppen uber Q, J. Number Theory 23 (1986), 195-202.

16. G. F. Royle, The transitive groups of degree 12, J. Symbolic Comput. 4 (1987), 255-268.
17. C. C. Sims, Computational methods in the study of permutation groups, Computational

Problems in Abstract Algebra (John Leech, ed.), Pergamon Press, Oxford, 1970, pp. 169-
183.

18. L. H. Soicher and J. McKay, Computing Galois groups over the rationals, J. Number Theory
20 (1985), 273-281.

19. Leonard Soicher, The computation of Galois groups, Master's thesis, Concordia University,
Montreal, Quebec, Canada, April 1981.

20. R. P. Stauduhar, The automatic determination of Galois groups, Ph.D. thesis, University of
California, Berkeley, 1969.

21. , The determination of Galois groups, Math. Comp. 27 (1973), 981-996.
22. A. Valibouze, Fonctions symetriques et changements de bases, Proc. European Conference

on Computer Algebra, EUROCAL 1987 (James H. Davenport, ed.), Springer-Verlag, New
York, 1989, pp. 323-332.

23. B. L. van der Waerden, Algebra, Vol. 1, Ungar. New York, 1970.

DEPARTMENT OF COMPUTER SCIENCES, CONCORDIA UNIVERSITY, MONTREAL, QUEBEC, CANADA

H3G 1M8
E-mail address: mckayQvax2. concordia. ca

