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POINTWISE A POSTERIORI ERROR ESTIMATES FOR 
ELLIPTIC PROBLEMS ON HIGHLY GRADED MESHES 

RICARDO H. NOCHETTO 

ABSTRACT. Pointwise a posteriori error estimates are derived for linear second- 
order elliptic problems over general polygonal domains in 2D. The analysis car- 
ries over regardless of convexity, accounting even for slit domains, and applies 
to highly graded unstructured meshes as well. A key ingredient is a new asymp- 
totic a priori estimate for regularized Green's functions. The estimators lead 
always to upper bounds for the error in the maximum norm, along with lower 
bounds under very mild regularity and nondegeneracy assumptions. The effect 
of both point and line singularities is examined. Three popular local estimators 
for the energy norm are shown to be equivalent, when suitably interpreted, to 
those introduced here. 

1. INTRODUCTION 

A posteriori error estimators are currently used in a variety of engineering and 
scientific computations [4, 5, 19, 21]. They in fact provide the basis for adaptive 
mesh refinement and quantitative error control. The ultimate goal is often to 
equidistribute the local discretization error, typically in the energy norm, via 
a proper use of information extracted from both the computed solution and 
data. This can be rephrased in terms of optimizing the computational effort for 
a given accuracy, which in turn corresponds to avoiding overrefinement. Since 
the pioneering paper [3], a number of estimators have been proposed and tested 
for various PDEs [2, 4, 5, 6, 13, 14, 19, 24, 25]. Their success has led to an 
increasing interest in both applications of existing estimators and development 
of new ones, possibly for problems of different type or norms other than the 
energy norm. Pointwise error control, for instance, appears to be crucial for 
certain nonlinear problems [21], and in any event extremely natural in many 
practical situations. 

Even though asymptotic exactness is a desirable property, it is known to re- 
quire geometric mesh constraints related to superconvergence that are rarely 
met in applications. Global equivalence between estimators and the true error 
is instead a more realistic property to aim for. It guarantees reliability and ef- 
ficiency of associated mesh refinement algorithms [19]. Equivalence has been 
derived for the energy norm under the sole assumption of mesh regularity in [2, 
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22, 24], and in [6] with an additional saturation assumption. In all these cases 
the estimators are computable quantities at the element level, hence inexpen- 
sive as compared with the solution process. The constants of equivalence can 
sometimes be estimated in regard to their dependence on mesh geometry [1]. 
This provides some quantitative basis for feedback error control in the energy 
norm. But the possibility of overrefinement is not yet excluded because of the 
global nature of such a norm. 

In this paper we view pointwise a posteriori error estimation in the spirit of 
[2, 3, 6, 24], namely we fully exploit the residual equation. This enables us to 
formulate a theory valid for polygonal domains Q c R2 without restrictions 
on the size of internal angles or type and strength of singularities. They play 
indeed a secondary role in our analysis. We consider the following linear elliptic 
problem: 

(1.1) -div (A.Vu) = f + div g in Q, u = O on aQ, 

where both f and g may be discontinuous but bounded, and A is a smooth 
coefficient -matrix; precise assumptions and further notation are given in ?2. 
Jump discontinuities (or rapid variations) of g may simulate line singulari- 
ties such as free boundaries (or internal layers), whereas point singularities are 
typically created by the corners of Q. We indicate with ugr the piecewise lin- 
ear finite element solution defined over a highly graded unstructured mesh 8' 
made of triangles T with sides S E 5R. We denote by hT (hs) the size of 
T E 8 (S E 5), and by h,9'- (pyr) the biggest (smallest) hT . We only assume 
that Y satisfies the minimum angle condition and the geometric constraint 
ps7- > Chy7 for some C > 0, y > 1 . Suppose for simplicity of exposition that 
the singularities of f and g occur across interelement boundaries, and set 

(1.2) F- :=max (h2 |If +divA. Vugr +div9g1L (T)+ hTIl[A.Vu.r+9gD1IL (aT)), 

which is thus well defined. Hereafter divA indicates the vector whose entries are 
the divergence of the corresponding columns of A, and 11.-1 stands for the jump 
operator. It is worth noting that Fg- is an inexpensive computable quantity at 
the element level. In ?4 we prove the existence of constants Ci, C2, h* > 0 
independent of u and 8' such that 

(1.3) C1' ? IIu - Us9jLoo(<) ? C21 log hr 12 V h- < h*, 

provided the nondegeneracy condition I I u - u9- I I L? (Q) > Ch72,- holds and f, Vg 
possess a very weak modulus of continuity within each triangle. We also illus- 
trate the important fact that no term in (1.2) can in general be removed. The 
upper bound in (1.3) is global, and relies on a novel asymptotic a priori esti- 
mate for second derivatives of regularized Green's functions, which is derived 
in ?3. Constant C2 is independent of the pole location. The lower bound, 
which rules out the risk of overestimation, is local, instead, in that a generic 
element indicator is shown to be bounded above by the pointwise error in the 
given and certain adjacent triangles. Therefore (1.2) can be used as a basis 
for an efficient mesh refinement strategy, because excessive overrefinement is 
very unlikely [19]. We continue in ?5 with the case of point singularities: for 
f globally continuous and g = 0, we prove that Fg- can be substituted by 
maxSE5 (hs11I A v Vu.91IILOO(s)). We discuss line discontinuities in ?6. We first 
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show that maxSe Y(hsI IA Vu9r + g IIL- (s)) is equivalent to IIe?9rIILOO(i) for 
singularities aligned with T. We then study line singularities that may lie 
within elements, derive an upper bound, and partially examine the issue of 
overestimation. We finally conclude in ?7 with a thorough discussion of three 
equivalent error estimators. We demonstrate, for A = I and g = 0, that the 
estimators in [6, 24, 25], when properly interpreted, satisfy a relation similar to 
(1.3) under the same nondegeneracy and regularity assumptions; no pointwise 
saturation assumption is needed for [6]. We in fact show their equivalence with 
maxSEY (hsIIVur,iIsI) , which in turn asserts that all those local estimators ex- 
tract the same relevant information from ug-. 

We conclude this introduction with a brief discussion of existing literature 
on pointwise a posteriori error estimation. The estimator of [10, 13], developed 
for A = I and g = 0, hinges upon a seemingly different idea from those in [2, 
3, 6, 24, 25]. It is based on formally replacing second derivatives of u, in the 
usual a priori error estimates, by discrete second derivatives of uCr: DSur := 
IILVu.r1IsI/hs. In determining the jumps of Vugr, however, the underlying 
elements are not adjacent but rather sufficiently far apart, at least for theoretical 
purposes, whereas in practice those jumps are computed across element sides 
S. This severe restriction was subsequently removed in [14], for the energy 
norm, upon using the residual equation rather than the above approach. Similar 
results in the maximum norm were announced in the conference report [ 12] for 
A = I and g = 0. Precise assumptions on Q, indicating whether or not cracks 
are allowed, along with a substitute for our crucial a priori estimate of ?3 for 
the Green's function are however missing in [12]. The volumetric residual in 
(1.2) is claimed to be of higher order than that involving aVugr1I, provided 
f E W2, (Q) [12], which in turn resembles our weaker statement of Theorem 
5.1. Since no a posteriori lower bound is discussed in [12, 14], efficiency is 
assessed via a priori error analysis. This entails convexity of Q and mildly 
graded meshes with mesh density function h(x) satisfying IVh(x)l <? 1 for all 
x E Q [11]. These conditions are rarely met in practice. 

2. SETTING 

We now state the precise assumptions on the data and introduce several dis- 
crete spaces and local operators, along with the notation to be used throughout 
the paper. We assume that Q is a bounded polygon in R2 without restrictions 
on the size of the internal angles, that can even be 27x, and 

(2.1) A = (aij(x)) is positive definite, aij E W (Q) 

(2.2) f E LO(Q), g E [BV(Q) n L (Q)]2. 

Additional regularity on A, f, and g will be imposed later on. A typical g 
will exhibit a jump discontinuity across a curve, and will be smooth elsewhere. 
We will extensively use the notation oscKq for the oscillation of X in K and 

(2.3) (q Y/)K 0 v, (( q.nL 

where K is a generic subset of Q and L is a Lipschitz curve in Q with a 
unit normal vector nL; (. , ) will stand for the integral over the entire Q. No 
ambiguity will arise because of the orientation of nL. We will also indicate 
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with a(., *) the bilinear form 

(2.4) a(0, yV) = (A.V0, VyV) V+, V E y := HoX(Q). 
Let 8 be a regular partition of Q into triangles T with size hT, and set 

h- = maxTE9- hT and pg- = minTE,9r hT [8, p. 124]; XT denotes the barycenter 
of T. We assume the existence of y > 1 independent of 7 such that 

(2.5) p? > Chyg-, 
and observe that (2.5) is valid in all practical situations. The mesh Y may be 
highly graded but unstructured: triangles at comparable distance to a singularity 
are not necessarily of comparable size, as in [10, 13, 23]. Let Y denote the 
set of internal interelement boundaries S (or sides), and let xs indicate the 
midpoint of S and hs its length. Let X := {xi} be the set of internal nodes 
of ,andset -i:=U{Te7T:xie T}, Ai:=U{Se5E9:xieS}. 

Let 9k (K) be the space of polynomials of degree < k restricted to K c Q. 
Let %'k c L? (Q) denote the subspace of piecewise discontinuous polynomials 
of degree < k, that is ykIT = 9k(T), and set Zg := %t n X. Global 
continuity is then enforced in r. The continuous and discrete solutions, u 
and ugr respectively, satisfy 

(2.6)u E X: a(u, O) = (f, O )- (g, VO) V 0E , 

(2.6) us E t : a(u,, ) =(f, ) - (g, V ) V ( E 2, 

In view of (2.1) and (2.2), u is at least Holder continuous in Q [16, 18]. Given 
a side S E 5, Jq]SJnS denotes the jump of the normal component of q across 
S, computed in the direction given by ns. With this convention, Bqlls. ns is 
independent of the orientation of ns, and it will always be abbreviated as 
BAqls . An elementwise integration by parts shows that es = u - us verifies the 
following error or residual equation for all X E Z and (0 E X-: 

a(ey- . ) = (f + divA * Vu,,7 X- P)T- (g, V (#))T) 

(2.7) TEY 

+ E (([A-Vuy]Js, 0 - (D))s. 
SE5 

Let P : L??(Q) - % be the L2-projection operator, which is defined by 

(2.8) PYVI T E 69o(T): (P-yI-yV, V)T =O VV E39(T), TE. 

Since P, is local, standard interpolation theory yields [8] 

(2.9) 11P7- V'IIL?(T) < ov(hT) V T E 9-, 

where o,, stands for the modulus of continuity of V within each T. We also 
designate with I,s the usual Lagrange interpolation operator on X7, which is 
known to satisfy (2.9) as well [8]. 

Set 7 := [BV(Q) n L`o(Q)]2 and 7 := [yl]2. Let H-: / - 1 

denote the local projection operator introduced in [7], which, for each q E 2f 
and T E 9', is defined by 

(2.10) HleqIT E [91(T)]2: ((Hrq- q, X))s = 0 V X E 1(S), 

and for all sides S c A T. Note that q may be discontinuous in T but its 
trace is still well defined [17], and that Hlgrq may exhibit jump discontinuities 
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across interelement boundaries. The following well-known local interpolation 
estimate will be used later [7, 15]: 

(2.11) llq-Hl.9qlL-(T) +hTlIdiv(q-Hlyq)IIL-(T) < ChTavq(hr) V T E ', 

where UVq stands for the modulus of continuity of Vq within each T. 
As usual, C > 0 will denote a generic constant that may vary at the var- 

ious occurrences, but will always be independent of u and S. The symbol 
e will be used to indicate equivalence, again with lower and upper constants 
independent of u and 9S. 

3. REGULARIZED GREEN'S FUNCTIONS 

The purpose of this section is to prove an asymptotic W2 P-estimate for reg- 
ularized Green's functions for general polygonal domains. The a priori bound 
is uniform with respect to the size of the internal angles of Q as p I 1, and is 
thus valid irrespective of convexity. It is also independent of the pole location. 

Let 3 E Co??(Q) be a regularization of the Dirac mass satisfying 

(3.1) supp scB:={xeQ:Ix-xol <po/2}, 

(3.2) =, 0 < < Cp-2, 

where po := h,8 and x0 E Q, , > 1 are to be chosen in ?4. Such a function 
clearly satisfies 

(3.3) 116SIILP(Q) < Cp2(1-p)lp for p I 1. 

The corresponding regularized Green's function is defined by 

(3.4) Gee: a(G,0)=(6,b) V0 E X. 

The following a priori estimate proved in [18, pp. 206, 233, 266; 9] will be very 
useful in the sequel: 

(3.5) ||G||W2,po(Q) < C(po, Q)IJI1ILP0 (Q) , 

where 1 < po < 4/3 is fixed. Note that the restriction p0 < 4/3 accounts for 
the most singular case of slit domains, thereby showing the validity of (3.5) for 
all bounded polygons. We intend to trace the dependence of C(p, Q) on p as 
p I 1 . A by-product of Calder6n-Zygmund theory for smooth domains reads 

(3.6) JID2GII,,P(a) < pc 11611(Q) 

It seems, however, that such an estimate is not available in the literature for 
polygonal domains with reentrant corners. Note that coupling (3.3) and (3.6) 
results in 

IID2GIIIlP(a) < CP-1- asp 11. 
We now derive the following slightly weaker result for general polygonal do- 
mains. 

-4(p- I) 

Theorem 3.1. There holds IID2GIIVP(a) < CPO 2 as p 1 1. 

This estimate is crucial in that it leads to a quasi-optimal W2, l-estimate. In 
fact, on choosing p = 1 + I logpoj1 and using po = h_ , we get 

(3.7)1 nI2GJIIQ 
r 

Cl loghg12 
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Note that the power of the logarithm in (3.7) is one unit higher than expected. 
This is probably due to the method of proof. Note also that C in (3.7) depends 
on Q and ,B but not on x0. We first demonstrate an auxiliary result. 

Lemma 3.1. The following asymptotic bound is valid for p 1 1: 

l Gllc -/( l)(a) < ( 1)1/2 jV GI L2(i) <p 1 [l aILP(Q), as p 11. 

Proof. We first recall the following 2D Sobolev inequality [16, p. 155, 158]: 

(3.8) 11/1ILq(Q) < Cq1/2jjV011L2() V E e 

We then take X = G E in (3.4) and make use of Holder's inequality in 
conjunction with (3.8) for q = p/(p - 1) to deduce 

IIVGI122(QJ) _< JJc5JJLP(ai)JJGJJLp1(p_,)(Q) < 1 (pC 11611| (Q, VGl2() 

This, and a further application of (3.8), concludes the proof. 0 

Proof of Theorem 3.1. Let dj := 21po for j E N (d- := 0) and consider the 
following diadic decomposition of Q: 

Aj := {x E Q: dj-l < Ix -xol < dj}, Bj :={x E Q: dj-_ /2 < Ix- xo1 < 2dj}. 
Let 7j E Co??(Bj) be a cutoff function such that tj = 1 in Aj and IDk .jI < 

Cdjk. Then, since 

IID2GII jI 2GIIPA) < IID2(GQj)IIPLP(BJ)X 
( J 

we proceed to estimate each term on the right-hand side separately. On using 
Holder's inequality, in conjunction with (3.5) for i7jG and A E [W1 oop)]4. 
we get 

ID2 (njG)||LP(Bj) < |Bjl POP lID (njG)llLPo (a) ? Cd1 POP Jldiv(A V(njG))lJLPo (a) 

< Cdj Pop I6i113LPo (Bj)+IlDtj DGllLPo(Bj)+IIG D2jIIGLPO(Bj) 

=:Ij + IIj + IIIj. 

In view of (3.1), Ij = 0 for all j > 1. In addition, (3.3) for po yields 

l1oIILPO(B0) < CPO P? and thus 
0 

PO and thus1 

Io < P - 

For the remaining two terms we apply Holder's inequality, together with IDk111I 
<Cdk to arrive at 

C2 1-P 
II) ? Cd1 P llDGJlL2(Bj)X 

III., < Cdj P IIGJLP1(p-1)(Bj). 

Hence, invoking the finite overlapping property of {By}, Holder's inequality 
implies 

Z (IIjP + IIIjP) < C|lDGll,2(a) (Zdj ) + CIGIpl(p dj ) 
J J J 
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Since 
4LA 4((41-) p(P 41-p) 

, ., 
< Ed4(1 -p) =p4(1 -p) E (6-P) <PO <c Ld2~~~P< d~~~~~' =p ~~1-161-P - p-i 

as p l 1, the asserted estimate is a trivial consequence of (3.3) and Lemma 
3.1. o 

4. A POSTERIORI ERROR ANALYSIS 

In this section we prove that a pointwise estimator slightly simpler than that 
in ?1 is equivalent to Ileg-ILoo(Q), provided f and g are somewhat smooth 
within each element. To do so, we first examine an estimator applicable even 
for discontinuous f and g, and show the optimality of our results. 

Let x0 E Q satisfy le_-(xo)I = Ileg-ILoo(Q), and let 3 > 0 denote the regular- 
ized Dirac mass of ?3. Our first goal is to prove 

(4.1) lleg-h-O(Q) < CI(ec?, 0), 

for all hS < h* sufficiently small. Given B as in (3.1), let Be- denote the 
enlarged set 

(4.2) B- :=U{TTE8: TfnB#o}. 

Since 9 is regular, all triangles of B51 possess comparable size, say ho. Select 
now po = hfl in (3.1) with f8 > 2 to be determined, and let xi E B satisfy 
(e,1, 3) = eg-(xj). We then resort to the Holder continuity of u, say with 
exponent 0 < a < 1 [9, 16, 18], to deduce 

e8- (xo) - ey(xI)I 
< Iu(xo) - u(xl)l + II#u(xo) - IU-u(xi)I 4- IIe_q-(xo) - Iq-e_r(xl)I 

< Cpo + Gpo (IIVI9-UIILoo(B) + IIVI&-e511L?(B)) 

< Cpa + CP (IIIu - I,U(X)IILoo(B.) + IIIe 
1IIL-(B,)) 

< Cha + Chf-'1es HILOO(n), 
because the oscillation of u is an upper bound for that of I- u, III-e9- llL- (T) < 
11e51ILOO(T) X and fia < 8 + a - 1. Hence, 

(4.3) 2jIe97iLO() < (1 - Ch-') Ile3-IIL(Q) < Ch' + (es-, 6) 

for ho < he- < h* sufficiently small. Unless u is globally linear (a trivial 
case!), we can always assume the existence of an element T E 9' satisfying 
IIU - I-UIILOO(t) > Ch : a sufficient condition is +ux, (x) > C > 0 for all 
x E T. With the aid of (2.5), we infer that 

ChS < Ch^ < CIIu - I-7UIIL-(t) < IIesIIL?(a). 

On choosing 8 > 2y/a, the first term on the right-hand side of (4.3) can be 
hidden into the left, thereby leading to (4.1). We stress that both C and h* in 
(4.1) depend on A, f, g, and Q but not on u nor on T, except for (2.5). 
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The error equation (2.7) can be written equivalently as follows: 

a(e-,qO)= (f + divA * Vu- +divflSTg, -)T 
TEST 

(4.4) - E(g-lS9g, V(5- p)) T 
TEST 

+ E ((1A * VuS + Sggis, X$ - ))s, 
SEY 

for all 0 E X and v E A . This suggests considering the pointwise indicator 

(45) ETE := h2|if + divA . Vua- + divflSTg(1Lx(T) 

+ hTrlg - fSTg1ItL-(T) + hTIIIA * VUST + flSTgI11L-(8T), 

and corresponding pointwise estimator tS := max T, ET. 

Theorem 4.1. There exist constants Cl, C2, C3, C4, h* > 0 independent of u 
and J, such that for all hST < h* the following estimates are valid: 
(4.6) 

C, I log h.7-2 r > |elL?a 

> C2 - - C3max (h2lif PSTfIIL-(T) 

+ h iIdiv(A-ISgA).VUSuIILx(T) + hT|ig - FSTg(1LO(T)) 

- C4max (hsjI(A- Ig-A).IIVu.Is11L (s)). 

Note that the logarithmic factor can be considered bounded for practical 
purposes. The following 1D examples illustrate the crucial fact that no term 
in (4.5) can be dropped. Let Q := (-1, 1) and .9 be a uniform mesh with 
an even number of subintervals of size h, and let A = 1. The functions f, 
g = g, and u are 2h-periodic in the first two examples. 

Example 4.1. Let g = 0 and f be the odd function given by f(x) = 1 for 
O < x < h . Then u turns out to be odd and given by u(x) = x(h - x)/2 for 
O < x < h, whereas uT- =0. Therefore I2eSLocLQ) = hI-IfLoo(a) = 8F. 

Example 4.2. Let f = 0 and g be the even function defined by g(x) = 1 
for 0 < x < h/2 and g(x) = -1 for h/2 < x < h. Now u is odd and 
reads u(x) = Ix - h/21 - h/2 for 0 < x < h, whereas fIlg is continuous and 
expressed by IlFg(x) = 1 - 21xi/h within (-h, h). This leads to usT = 0, 

(lIsI-g)' = ?2/h, I[ lSg] =0, and (leSAiILo(Q) = 'jig HygI5gILo-(Q) =IF. 

Example 4.3. Let u(x) = 1 - ixi, f(x) = 0, and g(x) =sgn(x). Then 
UST = U g= g, and IleSelILoo(Q) = maxilEu'- + gJ(xj)( = 0, whereas 
maxi i1u' J(xj)j = If1u'j(O)I = 2. 

The following example demonstrates that the factor multiplying C3 cannot in 
general be removed, and consequently that 8',- may overestimate the pointwise 
error. 

Example 4.4. Consider f and g as in the first two examples but with period 
2h/N, where N > 2 indicates an even integer. The error leST IILOO(a) becomes 
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6(h2/N2) (or &(h/N)), whereas Pgsf = 0 (or lI,-Hg = 1) and tF = h2 (or 
h ) does not change with N. 

The proof of (4.6) will be split into two lemmas. We start out by showing 
the above upper bound. To this end we use a global argument. 

Lemma 4.1. There holds IleyllLt(Q) ? Cl loghfj27_ for all hs < h*. 

Proof. Let q = G E * be the test function in (4.4), where G stands for the reg- 
ularized Green's function of ?3. Interpolation theory in L1 (Q) [8], combined 
with (3.7) and (4.4), yields 

I(ey-, 6)1 = Ia(ey-, G)I < C?jlD2GllL(Q) < Cllogh,j2r-. 

The assertion then follows from (4.1). o 

The constant C in Lemma 4.1 is rather difficult to calculate because of its 
relation with the Green's function, but is independent of the location of the pole 
xo. Despite the moderate size of C [10], its concrete quantification deserves 
further investigation. 

The following proof is in essence a modification of a local argument by 
Verfurth [24], which carries over regardless of the magnitude of the local er- 
ror. For any To E , set ho := hTo and let To* be the enlarged set 

TO*:= U{T E J-: T and To have a common side}. 

Lemma 4.2. The following lower bound holds for all ho < h* and To e T: 

ETO < CRAeSlL?(TO*) 

+ C max (hT If f-Pr fII L? (T) + h2iIdiv(A - Ig-A) A V ,uc?|ILO(T) 

(4.7) 1 
+ hTl|g - I571g9Loo(T)) 

+ C max (hs||(A-I1-A) *1VU,7iISIIL(S)) 

Proof. In order to localize the analysis, we deal with a test function v E 
WI 00(U) whose support is contained in To*. The explicit construction of 
v proceeds as follows. Set 

qs :Ic?-A. Vug- +rl-gJs *ns 
FT P3 f I T+ div(I&A) * VU9|T + div17lg-gIT. 

Note that qs is linear in S E Y whereas FT is constant in T E 8S. We seek 
a piecewise polynomial function v satisfying v = 0 on 0 To* and 

(4.8) ((qs, v))s = hsIIqsIIL??(S) V S c 0To, 

(4.9) (FT, V)T = h2IIFTIIL??(T) V T c To*. 
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Let bT E 93(T) be the canonical bubble function of T, i.e., the product of 
the barycentric coordinates of T. Let (ps be the canonical basis function of 
92 (T) that vanishes at all nodes of S9 and midpoints of 5 but Xs E S C 
AT, at which qps(xs) = 1. For each S c aTo, we still denote by qs the 
linear extension of qs to To* that vanishes at the opposite vertices. Consider 
v E W IIO(To*) of the form 

V= E aTbT + E flsqsps, 
TC TO* SCO9TO 

where {aT} and {13s} are determined as follows. With such a v, (4.8) reads 

fls ((qS, P s))s = hsJJqsI11L (S), 

which yields a unique 8s. Moreover, since ((qs, 'ps))s hsIIqsIlIj2(S) as a 
consequence of qs being linear and 'ps > 0 and quadratic, we see that 

(4.10) fliS111qSILOO(S) ? C. 

Since FT E .0(T), (4.9) becomes 

aTFT(bT, i)T = h2 11FTIIL?(T) -FT E fAS(qs, (PS)T, 
SCO9TO 

which in turn defines aT uniquely. Since bT > 0 is cubic, we have (bT, 1)OT 
h2 , and thus 

(4.11) aT| < C (1 + E 
1flSZIIIqSLo(T)IIPSIIL(Tj) 

< C 
SCO To 

Extend v by zero outside To* and use the fact that (ps = bT = 0 outside To* to 
conclude that v E Wol '? (Q). Invoking local inverse inequalities for v, which 
is piecewise polynomial, and making use of (4.10) and (4.11), leads to the a 
priori bound 

IID2V 1ILI(T) < Ch-211V IILI(T) < CIIVIIL?(T) < C. 

Since I,-v = 0, we can write v = v - If-v and then use interpolation theory, 
in conjunction with a standard trace inequality, to obtain 

(4.12) IIVIILI(T) + hTIIVV IIL1(T) 
+ hTIIVIILI(OT) + h42ll/anlILI(OT) < Ch2|D2VI1LI(T) < Ch. 

With q = v in (4.4), and the aid of (4.8), (4.9), (4.12), (2.1), and integration 
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by parts, we immediately get 

Z hIIFTIILO(T) + E hsllqsIIt(S) 
TC TO* SCO TO 

= ,(FT, V)T + E ((qs, V))S 
TEgJ SE5 

=a(ey- , v) 

+ E ((Pgrf-f, v)T+(div(I&A-A) Vu-, v)T+(g(l7Is rg, VV)T) 
TE3S 

+ E ((I1(I&A-A) .VugJs, v))s 
Se5 

= - Z (es-, div(A.VV))T - Z ((ear, [A.*VvIJs))s 
TEgJ SE5 

+ E ((P f-f, V)T+(div(I&A-A)Vu-, v)T+(g-lIg, VV)T) 
TEgJ 

+ E ((R(I(A-A) *.Vug-Js, v))s 
See 

<C ||eg ||L??(To ) 
? Cemaxh 2 
+Cma (4T1Tf- P,-f IIL(T) + hT|idiv(Ig-A - A).VUgILOO(T) 

+ hTi|g - I1T7gI9LOO(T)) 

+ C max (hs||(A-Ig-A)*IVusy]JsIILOO(S)) 

Adding and subtracting f and divA. Vug- to FT in the first term of the 
previous expression, and IA.Vug-Is.ns to qs in the second, one easily obtains 
the assertion. o 

Note that without additional regularity assumptions, the above construction 
may produce a poor lower bound. In fact, us- = 0 and v = 0 for the Example 
4.4 because either Py%f = 0 or Il-fg = 1, so 

(4.13) ETO - max (TCT4fT PgrfIIL-(T) + hT||g - I gilL-(T) 

This obviously gives no lower bound for Ileg-ILoo(Q) and raises the question of 
a possible overestimation, which is again confirmed by Example 4.4. 

Our aim now is to show that overestimation cannot occur whenever f and Vg 
are uniformly continuous and A E W2 ?, both elementwise, and the following 
nondegeneracy assumption is valid: 
(4.14) Ch2 < IIeSIILo(i). 

It is worth stressing that discontinuities of f, g, and divA are still allowed 
across interelement boundaries, and that (4.14) is quite reasonable in applica- 
tions: it is sufficient to have ?u,ixi > C > 0 in a triangle of size hg-. In this 
setup, the simpler local indicator 
(4.15) E2 h2If + divA * Vut + divgl(xT) + hTiiA .*Vu- + gIIILOO(OT) 

makes sense, and gives rise to the pointwise estimator _ := maxTj Eg . 
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Theorem 4.2. Let A E [W2'"O(T)]4 for all T E S. Let both f and Vg be 
uniformly continuous in each triangle T E 8', and let their moduli of con- 
tinuity satisfy af(t), avg(t) = o( logti-2). If (4.14) holds, then there exist 

Cl, C2, h* > 0 independent of u and S9 such that 

(4.16) C1? ?2 t<le9lLoo(Q) < C2Jloghg2g V hs- < h*. 

Proof. Let To E S9 satisfy ElO= - and set ho := hT0, x: XT. Since A 
is globally W1 o0 and locally W2 oo, we deduce that Als E W2,oo(S) for all 
S E Y . Hence, 

(4.17) osc idivAl <. Cho, IA - IgAILoo (8To) < Ch . 
TO 

Lemma 4.1, together with (4.14), (4.17), and 

(4.18) IIIIX]ILoo(8TO) < 211XIILo(TO*) 

for X = g- 1l-g, leads to 

ChJ2 < Ch2 < tIegiLoo(Q) < C| logho 12El 

< ChoI log ho12 (holf + divA * Vug- + divgl (xo)+ I [A * Vug- + gTIL00(aOTo)) 

+ ChoI log ho2 (holf - f(Xo)llL-(T) + lig- IF7g9ILO(TO) 

+ hol|div(g - rI1rg)llLoo(To)) 

+ Ch 31 log ho12 t 1VUg|ILoo(To)- 

We then use (2.9) and (2.1 1) to deduce that all terms in the third line are o(h2), 
and thus asymptotically negligible. Since u E C(To*) for some 0 < a < 1 
depending solely on Q, f and g [9, 16, 18], we see that 

h 311Vu.9r IL-(To) < Ch2 OSC U 

(4.19) < Cho osc eg- + Cho osc u < Ch2ttlegtLO(Q) + Ch2+a. 

We realize that these two terms, multiplied by I log hot2, are negligible with 
respect to lle9ttLO(Q). The fact that ho > py- > ChiT thus yields the upper 
bound in (4.16). 

To prove the lower bound in (4.16), let To E S satisfy ET 2= F . We again 
argue as above, now using Lemma 4.2 in conjunction with (2.9), (2.11), (4.17), 
(4.18) with X = [Vu9T]I, and (4.19) for To*, to obtain 

= ET < ET + ho| log hoI2II Vus |LOO(7*) + o(hSj log h9|T2 ) 

< CttesttL-(Q) + o(h2 loghsl-2) < C11e_q (a 0 

The constant C1 in (4.16) can be computed explicitly because it involves the 

solution of local problems. We refer to [1] for an analysis in the energy norm. 

Remark 4.1. We would like to stress the local character of the estimate (4.7). 
In fact, if we knew that 

(4.20) Cho < tte9ljLo(T<)X 
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we could then repeat the argument in Theorem 4.2 and obtain the following 
local result: 

(4.21) CI ET 2 
le.7 I L- (TO-)- 

Therefore, an adaptive strategy for mesh refinement could in principle be based 
on (4.15) and it would be efficient in the sense of [19], that is, overrefinement 
would be avoided in view of (4.21). The nondegeneracy assumption (4.20) is 
guaranteed whenever ?u,ixi > C > 0 in To, but pathological situations arising 
from numerical pollution cannot be excluded. 

In the next two sections we will investigate the relative importance of the 
jump residual in (4.15). We will prove in ?5 that the local estimator 

(4.22) :S = max (hsIIIlA .Vu-AIILoo(s))X 

is equivalent to legLOO(Q) provided g = 0. Example 4.1 suggests that such 
an undertaking would only be possible under global continuity of f . If g :$ 0 
and exhibits jump discontinuities across element sides only, then Example 4.3 
indicates that 

(4.23) q_ := max (hslIIlA *Vu- + g]UILOO(S)) 

may be equivalent to lley-ILoO(n), which is in fact shown in ?6. The case of 
discontinuities not aligned with 8', along with the possibility of overestimation, 
will also be studied in ?6. 

5. CASE g = 0: POINT SINGULARITIES 

We now assume g = 0 and intend to remove the residual term involving 
f + divA * Vuc- in (4.15). Even though f is bounded, and so u E C1,a 
locally for all 0 < a < 1 [16], the need for mesh refinements and a posteriori 
error control may be due to the pollution effect created by corner (or point) 
singularities [9, 10, 18, 23]. 

Theorem 5. 1. Let A E [ W2, oo (Q)]4 and let the modulus of continuity of f in the 
entire Q satisfy af(t) = o(I log t-2). If (4.14) holds, then there exist constants 
C1, C2, h* > 0 independent of u and 8' such that 

(5.1) ltS < lesllLO(a) <C21 log h_ -2g,3 V hq- < h*. 
Proof. Let xi E X be a generic node and (pi be the canonical basis function 
associated with it. Take (p = (i as a test function in (2.6) and integrate by 
parts to arrive at 

(5.2) (Ri, (pi).1 + ((lA.Vu-J, (i))A, = (Ri - R, (Pi)w,, 
where R := f + divA * Vu_- is the residual and Ri := R(xT1) with Ti c Ei 
fixed. Since (Ri, pi).= pi = Chi Ri with hi indicating the size of Ei, 

(2.1) and (5.2) lead to 

IRil < IR - RilIL-(w,) + Ch7' 1111A VuSrIIL(A1). 

With the aid of (2.1) and the fact that I1Vu-IJs is parallel to ns, we realize 
that ins * A.IVur4si > CI1VugrIsI . Since card Ai < C is independent of 8', 
we can write 

(5.3) IVU-TIT-VUSTITl <? Z J1Vu_qIJsI < CII|1A * VU-1IILOO(Ai) 
ScA, 
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for all T c ,and thus 

IR - RilL-(_.) < osc f + osc divA llVUJ-LOO(Si) + Chl[A VU9j1lLOO(AI). 

Therefore, invoking (4.19), we see that 

max h42R(XT) I < Ch2IlR - Ril|L?(i) + Chi 1[A* Vu2-IlL (A1) 
TcEiTI 11-A) 

< Ch 2(af(h-) + h} + ||e,llL00(Q)+ Cmax (hSllfA.Vuy-JllL (S)). 

In view of (4.14), Theorem 4.2 and the assumption on af, we end up with 

ChS- < hlel7lLoo(fi) < o(hg2) + Chk I loghg-l2 lerhlLO(a) + Cl logh 1l2 g, 

which yields the upper bound in (5.1). The lower bound follows fromg,3 < 
C?2. 0 

Remark 5.1. The rightmost term in (5.1) is very reminiscent of the usual a priori 
error estimate in the maximum norm 

(5.4) hlerlLOO(() < C| log h1225 max (h2ID2ULoo(T)), 

valid for convex Q and mildly graded meshes, that is, those meshes satisfying 
IVh(x) I < 1, h(x) being a mesh density function [1 1]. This result is used in 
[ 12] as an alternative to a lower bound to assess efficiency. A pointwise analysis 
of the pollution effect of reentrant corners was carried out in [23], where an 
estimate slightly weaker than (5.4) was derived for meshes exhibiting radial 
symmetry in the vicinity of corners. 

Remark 5.2. The upper bound in (5.1) may be viewed as resulting from re- 
placing formally D2u in (5.4) by the discrete second derivatives Dsr = 
IflVuywIsl/hs. Such an interpretation was crucial in [10, 13] in studying an 
adaptive procedure for radially symmetric singularities. 

6. CASE g $ 0: LINE SINGULARITIES 

Our aim now is to study the effect of a line singularity F of g. We first 
discuss the case of a curve F aligned with T9, which divides Q into two 
disjoint polygons i1 and U2 - 

Theorem 6.1. Let r be a polygonal made of sides of 5". Let A E [W2 (p ]4, 
and let the modulus of continuity of f in the entire Q2, and that of Vg in Q, 
and 2, satisfy af(t), Uvg(t) = o(1 log tl-2). If (4.14) holds, then there exist 
constants Cl, C2, h* > 0 independent of u and S9 such that 

(6.1) C1gF94 < llegllLO(Q) ? C21log h 'j2z V hs- < h*. 
Proof. We proceed as in Theorem 5.1 and use the same notation. Let divg- 
denote the elementwise divergence operator, and let the residual R be R 
f + divj-(A. Vuj + g) . Then 

Ril < IIR - RiIILoo-(i) + Chi1 It|A * VU3 + g]fltL(Ai)- 
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On adding and subtracting Is-A and FI-g, and using (2.11) for Ig- and FIg-, 
we readily get 

IR - RiIIL- (-i) 

< CIIdiv(A - I3rA) ILoo(wi) IVUg |ILoo(Wi) + Clldiv3r(g - lsg)IILoo(99 ) 
+ osc f + I Idiv w (I&A - Vua + Hrg) - diva (IrA . Vug + I9-9g)| Ti Lo( i) 

< o(I loghgr 2) + ChiI1VUrIILoo(Wi) + Ch lIII[A * Vu3r + gJllL(-i)- 

Here we have used an inverse inequality to eliminate divg3 in the second line, 
and then reason as in (5.3) with I3rA.Vu3r + FIrg. The argument concludes 
as in Theorem 5.1. o 

We consider now a line discontinuity F which is not necessarily aligned with 
.T. Suppose in the sequel that f and A are as in Theorem 5.1, F is a Lipschitz 
curve that divides Q into two disjoint domains 9i, and Q2, nr is the unit 
normal to F pointing toward Qi, and g satisfies 

(6.2) gE W1?(QK1)n W1'"(Q2), 0< C* < IigkI < CJI[gJJrnrl. 
This nondegeneracy jump condition means that the line singularity possesses a 
uniform strength, but it will only be used in the vicinity of a point where the 
error attains the maximum norm. The best possible (classical) regularity result 
is expressed by 

(6.3) uE CE ( nl) nCl,a (22), A * |VuJlr * nr = -I[gJJr nr O ?. 

Suppose FT:= F n T 5z 0 for some T E Y; FT may contain part of a T. In 
the next two lemmas we compare the relative size of the various summands in 
(4.5). 

Lemma 6.1. The following estimate is valid provided FT $ 0: 

11g - rI5rgI1Loo(T) + hTlIf+ divA * Vu3r + divJrI3rgIILc(T) 
+ 1I1rI,9gT9IL-(0T) < C11[g19r11L(rT)- 

Proof. By virtue of (2.10) and (6.2), we deduce that 

119 - HI l911Loo(T) < OSC It < I1[gl1rL-(rT) + ChT < C11I[g19r11L-(rT). 

On the other hand, since div IIg E p90(T), we have 

Ch4 divfl3rg = (divIIl3rg, 1)T = ((JI3rg, 0))OT 

= ((g, l))OT= (divg, 1)T\r + ((Jgkr * nr, l))rT. 

In view of (6.1), we see that I(divg, l)T\rl < Ch2, whence 

hTJdivFI35rgJ < ChT + C111gIIL| (rT) < C11 9gIr11IL?(rT)- 

Also 

11rI,9-9]1L-(0T) < C1119]11L-(rn0T), 

as results from (2.10). Since hTlIfIILoo(T) < ChT is asymptotically negligi- 
ble, as compared with lglir I ILOO(CT) ' it only remains to demonstrate that so is 
hTtIdivA. VU"9'-IILO(T) . To this end, we recall that u E HI+e(Q) for some e > 0 
because f + divg E H-l+e(Q) [9]. As a consequence of Sobolev's imbedding 
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theorem we also have u E W1 P(Q) for some p > 2. By virtue of standard a 
priori error analysis in Ho (Q), and H6lder's inequality, we arrive at 

hTIIdivA VuyilLoo(T) < CIIVUYIIL2(T) < CIIVe.jIL2(T) + CIIVUIIL2(T) 

(64) < Ch9,-IIUIIH1+e(Q) + Ch(p -2)pll = o(l). 

This concludes the proof. O 

Set Fi := r n -i and denote by hi the size of -E. Note that the nondegen- 
eracy property 

(6.5) dist (ri, ab.'i) > Chi 
for some 0 < C < 1/2 is equivalent to assuming that F splits Ei into two 
comparable pieces. 

Lemma 6.2. If (6.5) holds, then I I[gDr * nrIILoo(ri) < CllA * V U,9IIILO- (Ai) 
Proof. Let Xk e ui n flk be fixed anid set gk := gI1k for k = 1, 2. Upon 
integration by parts, we can write the discrete equation in (2.6) as follows: 

((g(xi) - g(x2), nr(0i))r, -((WA . VuA, X i))A, - (div A Vu, (oi)s, 
+ (((g(x1) - g1) - (g(x2) - g2), nrVi))r, - (f + divg, (Di)=1\F. 

By virtue of (2.2) and (6.2), the two rightmost terms of the right-hand side are 
< Chj2. The second term on the right-hand side is, instead, of order o(hg-) 
because of (6.4). Hence, since (6.5) yields frJ ji > Chi, we have 

(g(XI) - g(X2)).nrl < CIIIA * VU WIIILOO(A,) + o(l). 
Therefore, 

C < Illg1r nrlILoo (F,) 

? CIIIA * VU'y-IlLc*(A,) + II[(g(x1) - gi) - (g(X2) - g2)] * nrIIL(r,) + o(l) 
? CI|||A * Vu]IILoo(Ai) + o(l) < CIIIA * VUyKIIIILoo(A,). 0 

We are now in a position to derive an upper bound for the pointwise error. 
To this end, we need another nondegeneracy assumption on F, namely that 
F does not intersect 9M tangentially. For each x0 e F n AQ, this entails the 
existence of a closed truncated cone W0 of center xo and height r such that 

(6.6) {x E F: xo - xI < r} c x c n?. 

Theorem 6.2. Let A e [W2 oo(Q)]4, and let f and Vg be uniformly continuous 
in Qi, and Q2 with moduli of continuity af(t), avg(t) = o(1 log tj-2). If both 
(4.14) and (6.6) are valid, then there exist C, h* > 0 independent of u and 
9% such that 

(6.7) 11eyIIL7(Q) < C loghsr2 max (hsIllA Vu I1I1LOO(s)) V hT ? h*. 

Proof. Let To E 8- satisfy E = 9 . If F n T = 0 for all adjacent elements 
T to To, then we can argue as in Theorem 5.1 to arrive at E' < C_-. 
Otherwise, there exists an adjacent element T1, possibly To itself, satisfying 
T1 n F$ 0. Let xi be a vertex of T1 closest to T1 n F. If xi is an interior 
node, then Ei satisfies (6.5). If xi E O9? instead, then (6.6) yields the existence 
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of a set _j 3 xi satisfying also (6.5). In either case, Lemma 6.2 applies and, 
together with (6.2), Lemma 6.1 and the fact that hTo z hi hj imply 

Fg = E=l < ChTOII[gJIILOO(r,Urj) + hTOIII[VU`r]IlL00(AiUAj) < Cg. 

The assertion then follows from Lemma 4.1. 0 

The following result shows that overestimation is quite unlikely whenever the 
interface F splits T into two comparable pieces. 

Lemma 6.3. If dist(FT, a T) > ChT, then IleF97i1LO(T) > ChTIIIgIrjjLoO(r,). 
Proof. With the aid of (6.3) and interpolation theory, we can write 

lie llLo(T) ? CIIU -I9UllLOO(T) 

> Cdist(rT, OT)IJ1[g1r11LO(r,) > ChT|[g]rllL0(r,)- ? 

Remark 6.1. The most difficult situation, not covered by the above analysis, 
is that of an interface F being almost parallel to a side and very close to it. 
In such a case, the error might be much smaller than first order. This issue 
warrants further research. 

Remark 6.2. The-estimator F'3 has been already used successfully for the adap- 
tive solution of time-dependent free boundary problems with A = I [21]. 

7. EQUIVALENT ESTIMATORS 

The purpose of this last section is to prove that other local a posteriori es- 
timators, typically used in connection with the energy norm, provide also in- 
formation to estimate the pointwise error [6, 24, 25]. We in fact show that 
these estimators, when properly interpreted, are equivalent to IIeg- ILc(a) . The 
estimators in [6, 24] are based on solving local problems, whereas that in [25] 
consists of an averaging postprocessing or gradient recovery. For simplicity, we 
assume A = I and g = O. 

7.1. Verfiurth's estimator. Let 920 T) denote the set of quadratic polynomials 
in T E 9' that vanish at the vertices of T. Let Z/T indicate the direct sum of 
YA20(T) and the space of cubic bubbles. Let OJT E ZIT satisfy 

(7.1) (VOIT, V'P)T = (f(XT), ()T + I(I[VUyJ, D))OT V 0 E 2'T. 

Note that this is just a modification of the estimator introduced by Bank and 
Weiser [6], for which /T = Y20(T). The presence of the extra bubble func- 
tions enables us to prove the desired equivalence result under least restrictive 
regularity assumptions. 

Corollary 7.1. Let the modulus of continuity of f satisfy af(t) = o(j log tl-2) 
within each fnite element, and let IIey-IILOo(a) > Ch,2 . Then there exist Ci, C2 
h* > 0 independent of u and 9' such that for all hg- < h* 

(7.2) Cl max JIITILO(T) ? IIe9ILOO(Q) < C21 logh3r|2 maxJJIWTIIL-(T). 
TE9r TE,97r 

Proof. We proceed now to show the equivalence of maxTE9- II)TIlL(*(T) and 
e2. The first simple observation is that 

(7.3) 11?911LO(T) z hTrlV||ILO(T) Z 11VOL2(T) V (0 E /T, 



18 R. H. NOCHETTO 

because (0 is piecewise cubic and vanishes at the vertices of T. Taking (0= COT 
in (7.1), and using (7.3) in conjunction with Theorem 4.2, yields 

1IICTIILOO(T) < CIIVCOTIIL2(T) 

(7.4) < C(h2If(XTr) + hTIII[VU,r1ItILoo(OT)) IICWTIIL??(T) 

= CE 2IIOwTIIL-(T) < C2IIwTIIL-(T)- 

In order to prove the reverse inequality, we argue as in Lemma 4.2. Let bT E 

.93(T) be the canonical bubble function of T, and {q,s} be the canonical basis 
of gp20(T). Let p = aTbT + ESCOT 3SfS E ST be defined by 

fiS(([VugwS1S, (9s))s = 2hstI[Vug]sJ, 
(7.5) aT(f(XT), bT)T = h4If(XT)t- I Ps(f(XT), 's), 

SCOT 

which leads to laTI, IfisI < C, because IIVug-1s and f(xT) are constants. 
Therefore, by virtue of (7.1) and (7.3), we see that 

ET 
2 

4lf(XT)t + E hs I[VugIs = (f(XT), p)T + 2j((IVUrS , (P))OT 
SCO T 

= (VW)T, V(P)T < CIIOTIIL-(T)tt(9ttLo(T) < CIIO0TIIL(T)- 

We point out that this proof shows the equivalence of tt(OTIILOO(T) and E2 
at the element level, even for f with jump discontinuities across interelement 
boundaries. Such equivalence might fail to hold if we suppress the bubbles as 
in [6]. 

7.2. Bank-Weiser's estimator. Let &T E .920(T) be the solution of (7.1) for 
all O E 920(T) [6]. So we now have one fewer degree of freedom with respect 
to 2'T. But to demonstrate equivalence, we compensate with global continuity 
of f. 
Corollary 7.2. Let the modulus of continuity of f in the entire Q satisfy af (t) = 
o(IlogtI-2), and let IIerIIL- (n) > Ch2-. Then there exist C1, C2,h* > Q 
independent of u and 5 such that for all h9- < h* 

(7.6) C max IKTIILOO-(T) < tteg7-ttL??(Q) < C21 log h5r 12 max tT1ttLOO(T). TE3r TE3r 

Proof. Arguing as in Corollary 7.1, we get tt&ttIL-(T) < CET ? Ctte3ItL-(n) 
because of (4.16). To derive the reverse inequality, we cannot proceed element- 
wise as before, but rather we have to deal with the set -i associated with a 
generic node xi as in Theorem 5.1. Consider the piecewise quadratic function 
9 = ZSCA, PSfSto, with Ps defined as in (7.5); thus tt ItILo (ci) < C . We can 

write 

2 E hsl[Vur1Isl = (([VugI, o))Ai 
ScAi 

= Z 
((f(XT), )T + (([VuAI, ))9T) 

TCSi 

- (f(xi), (o)Si + E (f(xi) - f(XT), O)T =:I+II+III, 
TC_i 
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and examine each term separately. In light of (7.3), we first have 

II? < Z I(VWT V()TI < Cmax (IIkTIILo(T)IIjIILOo(T)) < CmaxIIkTIILo(Q)o 
TC_i 

Utilizing (5.2) and properties (qi, I)-, = JEil/3 and (((s, l))s = hs/2, we 
deduce that 

If(Xi) I E [Vu9'-IIs((q9i > IDS + jjf(Xi) -fIILO(Ti) 

- 21 ̂  | hs[Vu_JJs| + aff(hi). 
-2~IScA1 

Hence, 

lIIt < If(xi)llk llLo(.1i)IEil < ChOaf(hi) + Cl E hsfVu,rJs . 
SCAi 

Since IIII < Choaf (hi), we are led to evaluate the contribution of the right- 
most term in the preceding inequality. Note that, as compared with the original 
expression, the absolute values are now outside the summation. This fact will 
be exploited in the sequel. 

To do so, we introduce the piecewise quadratic function = ZSCAi VS0 
Given S E 9', let Ts stand for the union of the adjacent triangles of 8' 
sharing S, and let ITs I denote its measure. We see that 

(f(xi), )= (f(xi), ,S)= T 3If(xi) =f(xi)I"iI = 2(f(xi), f), 
SCAi SCAi 

because (VS, 1) = ITsI/3. Therefore, since (((s, l))s = 4((Vi, l))s, we get 

Z (VWT, VC)T = Z (2j(fV UAI, O))OT + (A(XT), ')T) 
TCT- TcE1 

= ((I[Vu3rJ 4Chi + (f(Xi), 4)Ei + E (f(XT) - f(xi), 4)T 
TCEJ 

_4 
- 3((IVU9J, Vi))A, + 2(f(xi), Vi)_, + (f(XT) - f(X), 4)T 

TC.i 

=-3 , hs[VuywJs + 2(f(xi) - f (Vi)B, + E (f(XT) -f(xi), )T, 
SCA, TC-i 

where we have used (5.2) in the last passage. Consequently, 

Z hs[VugIIs < 3 j I(VWT, VO)TJ + Ch? oscf 
SCA1 TCEi 

< C max IKTIILOO(T) + Ch?df (hi). 
TC-=i 

Upon combining the estimates for I, II, and III, we realize that 

E hsIIVug4JsI < Cmax II&TIILOO(T) + Chi? af(hi). 
SCA, 
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The nondegeneracy assumption (4.14), together with (5.1), implies 

Chg- < Cl logh3rl2max (hs[Vu3rIs) maxNTIILOO(T)+ o(hg_). 

This and (5.1) lead to the conclusion 

Cl logh_I-2IIe19IILO(Q) < &X = max (hSjI[Vu3SjI) < CmaxIjjTIILo(T) 0 
SEY 

~~~~TE3r 

The above proof of equivalence does not rely upon the saturation assumption 
of [6], which implicitly entails some additional global regularity of D2u. In 
this vein we mention that af satisfies the Dini condition f0+ t dt < oo, 
which in turn guarantees the interior continuity of D2u; however, D2u blows 
up at a corner. Consequently, quadratic functions do not provide in general 
better global approximation than linear ones, thereby making the saturation 
assumption of [6] fail. 

Removing the saturation assumption in the energy norm is also of theoretical 
importance. The above argument can be modified to achieye such a goal, as 
shown in [20]. 

7.3. Zienkiewicz-Zhu's estimator. Consider the following recovered gradient 
Vu,- E [E n C(Q)]2 which, for each node xi, is defined by 

TC: it i 

Such a postprocessing is simply a weighted average of Vus- over the triangles 
containing xi. In [25] the computable quantity (T I'Vu - VUr 12)1/2 is used 
to estimate the error in energy norm. The following local equivalence result has 
been recently proved in [22]: 

(7.8) Z lTlLSuS(xi) - VU3rTI t IiI Z II[VusIS 
TC Ei ScAi 

By virtue of (7.8) it is now easy to demonstrate that the information contained 
in gu?- can be used to estimate the pointwise error. 

Corollary 73. Let the modulus of continuity of f in Q satisfy af(t) = 

o(Ilogtl-2), and let Ch2 < lleg-(LOO(). Then there exist Ci, C2, h* > 0 
independent of u and S9 such that for all hg- < h* 

C1 max(hTI1|U9r - VU3rIIL??(T)) < HeI9IILO (Q) 

<C21 log hg 2 max (hT jVur-Vu3r||L??(T)). 

Proof. It is enough to observe that the minimum angle condition yields 

Z ITIL'u-(xi) - 2vuTI (max hTJUg(Xi) - vUITI), 

l-i l E I [VusXs 1 (max hs IAl 
ScAi 

SA 
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and that 11,'ugr - VugrIILO(T) is attained at a vertex of T, because the underly- 
ing function is linear. The assertion finally follows from Theorem 5.1 together 
with (7.8). o 
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