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POINTWISE A POSTERIORI ERROR ESTIMATES FOR
ELLIPTIC PROBLEMS ON HIGHLY GRADED MESHES

RICARDO H. NOCHETTO

ABSTRACT. Pointwise a posteriori error estimates are derived for linear second-
order elliptic problems over general polygonal domains in 2D. The analysis car-
ries over regardless of convexity, accounting even for slit domains, and applies
to highly graded unstructured meshes as well. A key ingredient is a new asymp-
totic a priori estimate for regularized Green’s functions. The estimators lead
always to upper bounds for the error in the maximum norm, along with lower
bounds under very mild regularity and nondegeneracy assumptions. The effect
of both point and line singularities is examined. Three popular local estimators
for the energy norm are shown to be equivalent, when suitably interpreted, to
those introduced here.

1. INTRODUCTION

A posteriori error estimators are currently used in a variety of engineering and
scientific computations [4, 5, 19, 21]. They in fact provide the basis for adaptive
mesh refinement and quantitative error control. The ultimate goal is often to
equidistribute the local discretization error, typically in the energy norm, via
a proper use of information extracted from both the computed solution and
data. This can be rephrased in terms of optimizing the computational effort for
a given accuracy, which in turn corresponds to avoiding overrefinement. Since
the pioneering paper [3], a number of estimators have been proposed and tested
for various PDEs [2, 4, 5, 6, 13, 14, 19, 24, 25]. Their success has led to an
increasing interest in both applications of existing estimators and development
of new ones, possibly for problems of different type or norms other than the
energy norm. Pointwise error control, for instance, appears to be crucial for
certain nonlinear problems [21], and in any event extremely natural in many
practical situations.

Even though asymptotic exactness is a desirable property, it is known to re-
quire geometric mesh constraints related to superconvergence that are rarely
met in applications. Global equivalence between estimators and the true error
is instead a more realistic property to aim for. It guarantees reliability and ef-
ficiency of associated mesh refinement algorithms [19]. Equivalence has been
derived for the energy norm under the sole assumption of mesh regularity in [2,
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22, 24], and in [6] with an additional saturation assumption. In all these cases
the estimators are computable quantities at the element level, hence inexpen-
sive as compared with the solution process. The constants of equivalence can
sometimes be estimated in regard to their dependence on mesh geometry [1].
This provides some quantitative basis for feedback error control in the energy
norm. But the possibility of overrefinement is not yet excluded because of the
global nature of such a norm.

In this paper we view pointwise a posteriori error estimation in the spirit of
[2, 3, 6, 24], namely we fully exploit the residual equation. This enables us to
formulate a theory valid for polygonal domains Q c R? without restrictions
on the size of internal angles or type and strength of singularities. They play
indeed a secondary role in our analysis. We consider the following linear elliptic
problem:

(1.1) —div (A-Vu)= f+divg inQ, u=0 ondQ,

where both f and g may be discontinuous but bounded, and A is a smooth
coefficient ‘matrix; precise assumptions and further notation are given in §2.
Jump discontinuities (or rapid variations) of g may simulate line singulari-
ties such as free boundaries (or internal layers), whereas point singularities are
typically created by the corners of Q. We indicate with us the piecewise lin-
ear finite element solution defined over a highly graded unstructured mesh .9~
made of triangles 7 with sides S € . We denote by hr (hs) the size of
TeJ (Se€),and by hsy (ps) the biggest (smallest) 4. We only assume
that 5 satisfies the minimum angle condition and the geometric constraint
ps > Chl for some C >0, y > 1. Suppese for simplicity of exposition that
the singularities of f and g occur across interelement boundaries, and set

(1.2) & :=¥1€a}((h%||f+divA~Vuy +div g||o(r) +hI|||IA°Vu9’+g]l||Lw(aT)) ,

which is thus well defined. Hereafter divA indicates the vector whose entries are
the divergence of the corresponding columns of A, and [-]] stands for the jump
operator. It is worth noting that &5 is an inexpensive computable quantity at
the element level. In §4 we prove the existence of constants C;, C,, h* > 0
independent of u and 7 such that

(1.3) Ci&7 < |lu—ugl|L=@) < C|loghs*& ¥V hgy <h*,

provided the nondegeneracy condition ||u—ug || ) > Ch% holdsand f, Vg
possess a very weak modulus of continuity within each triangle. We also illus-
trate the important fact that no term in (1.2) can in general be removed. The
upper bound in (1.3) is global, and relies on a novel asymptotic a priori esti-
mate for second derivatives of regularized Green’s functions, which is derived
in §3. Constant C, is independent of the pole location. The lower bound,
which rules out the risk of overestimation, is local, instead, in that a generic
element indicator is shown to be bounded above by the pointwise error in the
given and certain adjacent triangles. Therefore (1.2) can be used as a basis
for an efficient mesh refinement strategy, because excessive overrefinement is
very unlikely [19]. We continue in §5 with the case of point singularities: for
f globally continuous and g = 0, we prove that £ can be substituted by
maxge > (hsl|[A - Vug 1l L=(s)) . We discuss line discontinuities in §6. We first
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show that maxge o (hs||[A - Vug + glll|L=(s)) is equivalent to |les || =(q) for
singularities aligned with .. We then study line singularities that may lie
within elements, derive an upper bound, and partially examine the issue of
overestimation. We finally conclude in §7 with a thorough discussion of three
equivalent error estimators. We demonstrate, for A =1 and g = 0, that the
estimators in [6, 24, 25], when properly interpreted, satisfy a relation similar to
(1.3) under the same nondegeneracy and regularity assumptions; no pointwise
saturation assumption is needed for [6]. We in fact show their equivalence with
maxge o (hs|[Vugls|) , which in turn asserts that all those local estimators ex-
tract the same relevant information from ugy .

We conclude this introduction with a brief discussion of existing literature
on pointwise a posteriori error estimation. The estimator of [10, 13], developed
for A=1 and g =0, hinges upon a seemingly different idea from those in [2,
3, 6, 24, 25]. It is based on formally replacing second derivatives of u, in the
usual a priori error estimates, by discrete second derivatives of ug : Diug =
|IVug1s|/hs. In determining the jumps of Vug, however, the underlying
elements are not adjacent but rather sufficiently far apart, at least for theoretical
purposes, whereas in practice those jumps are computed across element sides
S . This severe restriction was subsequently removed in [14], for the energy
norm, upon using the residual equation rather than the above approach. Similar
results in the maximum norm were announced in the conference report [12] for
A =1 and g =0. Precise assumptions on 2, indicating whether or not cracks
are allowed, along with a substitute for our crucial a priori estimate of §3 for
the Green’s function are however missing in [12]. The volumetric residual in
(1.2) is claimed to be of higher order than that involving [Vus], provided
f € W2:(Q) [12], which in turn resembles our weaker statement of Theorem
5.1. Since no a posteriori lower bound is discussed in [12, 14], efficiency is
assessed via a priori error analysis. This entails convexity of Q and mildly
graded meshes with mesh density function A(x) satisfying |VA(x)| < 1 for all
x € Q [11]. These conditions are rarely met in practice.

2. SETTING

We now state the precise assumptions on the data and introduce several dis-
crete spaces and local operators, along with the notation to be used throughout
the paper. We assume that Q is a bounded polygon in R2? without restrictions
on the size of the internal angles, that can even be 27z, and

(2.1) A = (a;;(x)) is positive definite, a;; € W' >°(Q);
(2.2) feL®(Q), gel[BV(Q)NL®Q).

Additional regularity on A, f, and g will be imposed later on. A typical g
will exhibit a jump discontinuity across a curve, and will be smooth elsewhere.
We will extensively use the notation osck¢ for the oscillation of ¢ in K and

2.3) (6, W)k = /K bv., (¢ a)= /L éang,

where K is a generic subset of Q and L is a Lipschitz curve in Q with a
unit normal vector ny ; (-, -) will stand for the integral over the entire Q. No
ambiguity will arise because of the orientation of ny,. We will also indicate
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with a(-, ) the bilinear form
(2.4) a(p, v) = (A-Vo, Vy) Vo, y e¥ = Hy(Q).

Let 7 be a regular partition of Q into triangles T with size A7, and set
hgy = maxres hr and pgy = minyes hr [8, p. 124]; x7 denotes the barycenter
of T. We assume the existence of y > 1 independent of .7~ such that

(2.5) ps > Chl,

and observe that (2.5) is valid in all practical situations. The mesh .7~ may be
highly graded but unstructured: triangles at comparable distance to a singularity
are not necessarily of comparable size, as in [10, 13, 23]. Let ¥ denote the
set of internal interelement boundaries S (or sides), and let xg indicate the
midpoint of S and hg its length. Let .#" := {x;} be the set of internal nodes
of 7 ,andset E;:={T €T :x;€T}, Ai:=U{SeF:x;€S}.

Let % (K) be the space of polynomials of degree < k restricted to K C Q.
Let Wy" C L*°(Q) denote the subspace of piecewise discontinuous polynomials
of degree < k, that is Z7k|r = P(T), and set #5 = 7} nZ . Global
continuity is then enforced in #% . The continuous and discrete solutions, u
and ugs respectively, satisfy

ue%: a(u,¢)=<f,¢)_<g,V¢> V¢€Z’,
ug €Zy:  alug,9)=(f,9)—(8, Vo) Veeis.

In view of (2.1) and (2.2), u is at least Holder continuous in Q [16, 18]. Given
aside S € .#, [allsns denotes the jump of the normal component of q across
S, computed in the direction given by ng. With this convention, [q]ls-ns is
independent of the orientation of ng, and it will always be abbreviated as

Ialls . An elementwise integration by parts shows that e = u —ug verifies the
following error or residual equation for all ¢ € # and ¢ € #Z7:

aler, )=y ((f+divA-Vus, $—p)r— (8, V(- 9))7)

TeT

(2.6)

2.7)
+ ) ([A-Vugls, ¢ — ¢)s.

ses
Let Py : L®°(Q) — 7}’ be the L2-projection operator, which is defined by
(2.8) Pyy|lr € RA(T): (Pry —y,v)r=0 VveRH(T), TeT.
Since Py is local, standard interpolation theory yields [8]
(2.9) 1Py — Wl < oylhr) VYTEeT,

where o, stands for the modulus of continuity of y within each 7. We also
designate with I5 the usual Lagrange interpolation operator on #5 , which is
known to satisfy (2.9) as well [8].

Set 7 = [BV(Q)NL®(Q)? and 5 = [ZZ). Let Us: W — #5
denote the local projection operator introduced in [7], which, for each q € 7~
and T € 9, is defined by

(2.10) Oyar €[AMP:  (Hya-q, x)s=0 VxeA(S),

and for all sides S ¢ 0T . Note that q may be discontinuous in 7 but its
trace is still well defined [17], and that I15-q may exhibit jump discontinuities



POINTWISE A POSTERIORI ERROR ESTIMATES 5

across interelement boundaries. The following well-known local interpolation
estimate will be used later [7, 15]:

(2.11) |lq—I1gqllL=(r) +Arldiv(a—I1gq)||Lo(r) < Chrovg(hr) VYT €T,
where oy stands for the modulus of continuity of Vq within each T .

As usual, C > 0 will denote a generic constant that may vary at the var-
ious occurrences, but will always be independent of u and .77 . The symbol
~ will be used to indicate equivalence, again with lower and upper constants
independent of u# and 9 .

3. REGULARIZED GREEN’S FUNCTIONS

The purpose of this section is to prove an asymptotic W?2-P-estimate for reg-
ularized Green’s functions for general polygonal domains. The a priori bound
is uniform with respect to the size of the internal angles of Q as p | 1, and is
thus valid irrespective of convexity. It is also independent of the pole location.

Let ¢ € C§°(R2) be a regularization of the Dirac mass satisfying

(3.1 suppd C B:={xe Q:|x—xq| < po/2},
(3.2) /5:1, 0<5<Cpy?,
Q

where pg := hg and xg € Q, B > 1 are to be chosen in §4. Such a function
clearly satisfies

(33) 160l < Coa" P forp | 1.
The corresponding regularized Green’s function is defined by
(3.4) GeX: a(G,d)=(0,9) VoeX.

The following a priori estimate proved in [18, pp. 206, 233, 266; 9] will be very
useful in the sequel:
(3.5) 1Gllw2.000) < C(Po> DS Lr0(@) 5

where 1 < pg < 4/3 is fixed. Note that the restriction py < 4/3 accounts for
the most singular case of slit domains, thereby showing the validity of (3.5) for
all bounded polygons. We intend to trace the dependence of C(p, Q) on p as
p | 1. A by-product of Calderén-Zygmund theory for smooth domains reads

(3.6) ID*Gllr @) < 55 11l0)-

It seems, however, that such an estimate is not available in the literature for
polygonal domains with reentrant corners. Note that coupling (3.3) and (3.6)
results in

~2-1)
ID*Gllg) < CB—  asp 1.

We now derive the following slightly weaker result for general polygonal do-
mains.

~4(p—1)
Theorem 3.1. There holds ||D*G| 1) < C%_—l);— aspll.

This estimate is crucial in that it leads to a quasi-optimal W?2:!-estimate. In
fact, on choosing p = 1 + |log po|~! and using po = hg , we get

(3.7) ID*G 1) < Clloghs [,
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Note that the power of the logarithm in (3.7) is one unit higher than expected.
This is probably due to the method of proof. Note also that C in (3.7) depends
on Q and B but not on x,. We first demonstrate an auxiliary result..

Lemma 3.1. The following asymptotic bound is valid for p | 1:

C C
Gl ore-v(@) < (p_—1)1/2"VG"L2(9) < ;jﬂfsﬂum) , aspll.
Proof. We first recall the following 2D Sobolev inequality [16, p. 155, 158]:

(3.8) 8lle@ < Ca' VPl VoeZ.
We then take ¢ = G € #Z in (3.4) and make use of Holder’s inequality in
conjunction with (3.8) for ¢ =p/(p — 1) to deduce
IVGI32q) < 160 o@ |Gl Loro-ne < =719l @IVGl 2)-
This, and a further application of (3.8), concludes the proof. O

Proof of Theorem 3.1. Let d; := 2/p, for j € N (d_; := 0) and consider the
following diadic decomposition of Q:

Aj = {XE Q: dj_l < |X—X0| < dj}, Bj = {'XG Q: dj_1/2 < |X—X0| < 2d]}
Let n; € C$°(B;) be a cutoff function such that #; =1 in 4; and |DFp;| <
Ca'j‘k . Then, since

ID>GllE @) = D ID*Gllyy ) < Z IDGH s s
J

we proceed to estimate each term on the nght-hand side separately. On using
Holder’s inequality, in conjunction with (3.5) for 7;G and A € [W!*(Q)]*,
we get

2 LN 2558
ID=(n;G) o)) < |Bjl ™ |D*(0;G)|roi) < Cd; ™ ||div(A-V(7;G))l| ro()
280=F 5
<Cd;™ (”'Ij5||LP0(B,~)+||D'Ij DG\ 1708, +11G D 'Ij”uow,))
= Ij+IIj+IIIj.
In view of (3.1), I; = 0 for all j > 1. In addition, (3.3) for p, yields
P i}
1100|708y < Cpy ° and thus
2l=p
L<Cpy*
For the remaining two terms we apply Holder’s inequality, together with |D¥7;|
< Cd;* to arrive at
21_-2
IIj < Cd j ’ IIDG”B(B,),
I
I11; < Cd; * |Gl oro-v,)-
Hence, invoking the finite overlappmg property of {B;}, Holder’s inequality
implies

—p\ =2 1=
S UL +11T) < CIDGI ) (T d) T + CUGle-ney (T4 )
J J

J

2-p
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Since
4(1—p) 4(1—-p)

45=5 4(1-p) _ ,4(1-p) -0} < & ’
Zdj2 "< Zdj =Py Z (16 p) < 2re= < O
j j j

as p | 1, the asserted estimate is a trivial consequence of (3.3) and Lemma
3.1. O

4. A POSTERIORI ERROR ANALYSIS

In this section we prove that a pointwise estimator slightly simpler than that
in §1 is equivalent to |les||L~(q), provided f and g are somewhat smooth
within each element. To do so, we first examine an estimator applicable even
for discontinuous f and g, and show the optimality of our results.

Let xo € Q satisfy |eg(xo)| = lleg ||z~ (@), and let 6 > 0 denote the regular-
ized Dirac mass of §3. Our first goal is to prove

(4.1) lesll=@) < C|{es, 6)|,

for all Ay < h* sufficiently small. Given B as in (3.1), let By denote the
enlarged set

(4.2) By =\ J{TeT : TnB +#a}.

Since 7 is regular, all triangles of Bs possess comparable size, say Ag. Select
now pg = hg in (3.1) with 8 > 2 to be determined, and let x; € B satisfy
(es, 0) = es(x1). We then resort to the Holder continuity of u, say with
exponent 0 < a <1 [9, 16, 18], to deduce
les(Xo) — e (x1)]
< |u(xo) — u(xy)| + Iz u(xo) — Igu(x1)| + |Izeg (xo) — Ires (x1)]
< Cpg + Cpo (|VIgullLo(s) + IVIzes||Lo(8))

<Cpg+C Z—z (Mg u — Igu(xo)ll L (B,) + | ses || L (85))
< Chg* + Chy ez =) »
because the oscillation of u is an upper bound for that of Igu, ||Iges | r~(T) <
les|lze(Ty, and Ba < B+ a— 1. Hence,
1 -
43)  gleslim@ < (1- CH™) lesllim@ < CH* + (e, )],

for hy < hg < h* sufficiently small. Unless u is globally linear (a trivial
case!), we can always assume the existence of an element 7 € J satisfying
lu = Igull poo(zy 2 Ch%: a sufficient condition is u, (x) > C > 0 for all

x € T'. With the aid of (2.5), we infer that
Ch} < Ch3 < Cliu— Iy ]| poo gy < lleg |l L=(0)-

On choosing B > 2y/a, the first term on the right-hand side of (4.3) can be
hidden into the left, thereby leading to (4.1). We stress that both C and 4* in
(4.1) depend on A, f, g, and Q but not on u nor on .7, except for (2.5).
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The error equation (2.7) can be written equivalently as follows:

ales, d)= Y (f+divA-Vus +divilyg, ¢ — 9)r

TeT
(4.4) - sz(g -lgg, V(o —9))r
€
+ ) (IA- Vug +Togls, 6 — 0)s,
Ses

for all ¢ € # and ¢ € #5 . This suggests considering the pointwise indicator
E}v = h%"f +divA . Vugs + div Hg'g”Loo(T)

(4.5)
+ hrllg — s gl o) + A7llIA - Vug + g gllliL=@o71)

and corresponding pointwise estimator &} := maxreg E}L.

Theorem 4.1. There exist constants Cy, Cy, C3, C4, h* > 0 independent of u
and I, such that for all hg < h* the following estimates are valid:
(4.6)

Cilloghs &} > lles =@

> (o8}~ Cymax (WIS — Pr M=)
+ K| div(A — I A)-Vidg||ge(r) + hrlg = Tl gllee(r))
-Cy max (th(A - IyA)'[[Vuy]]sllLoo(S))-

Note that the logarithmic factor can be considered bounded for practical
purposes. The following 1D examples illustrate the crucial fact that no term
in (4.5) can be dropped. Let Q := (-1, 1) and J be a uniform mesh with
an even number of subintervals of size 4, and let A = 1. The functions f,
g =g, and u are 2h-periodic in the first two examples.

Example 4.1. Let g = 0 and f be the odd function given by f(x) =1 for
0 < x < h. Then u turns out to be odd and given by u(x) = x(h — x)/2 for

0 < x < h,whereas ug = 0. Therefore ||e7||L=(q) = %llf]le(Q) = %g‘yl
Example 4.2. Let f = 0 and g be the even function defined by g(x) = 1
for 0 < x < /2 and g(x) = —1 for h/2 < x < h. Now u is odd and
reads u(x) =|x—h/2|—h/2 for 0 < x < h, whereas Il5g is continuous and
expressed by Ilsg(x) = 1 — 2|x|/h within (—A, h). This leads to ugy =0,
(Mgg) =+2/h, [Mygl =0, and |esllL=@) = 4l — s gllL=@) = 3&5 -
Example 4.3. Let u(x) = 1 — |x|, f(x) = 0, and g(x) =sgn(x). Then
uy = u,llyg = g, and |leg|lr=(@) = max;|[uy + gl(x:;)| = 0, whereas
max; |[us-1(x:)| = [[u51(0) = 2.

The following example demonstrates that the factor multiplying C3 cannot in
general be removed, and consequently that g’} may overestimate the pointwise
error.

Example 4.4. Consider f and g as in the first two examples but with period
2h/N , where N > 2 indicates an even integer. The error |es||L~() becomes
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@(h?/N?) (or &(h/N)), whereas Py f =0 (or [Iyg =1) and &} = h? (or
= h) does not change with N.

The proof of (4.6) will be split into two lemmas. We start out by showing
the above upper bound. To this end we use a global argument.
Lemma 4.1. There holds ||es ||~ q) < C|loghgs|?&L for all hg < h*.

Proof. Let ¢ = G € #Z be the test function in (4.4), where G stands for the reg-
ularized Green’s function of §3. Interpolation theory in L!(Q) [8], combined
with (3.7) and (4.4), yields

[(es, )| = |ales, G)| < CEHID*G||L1q) < Clloghs|*E}.

The assertion then follows from (4.1). O

The constant C in Lemma 4.1 is rather difficult to calculate because of its
relation with the Green’s function, but is independent of the location of the pole
xg. Despite the moderate size of C [10], its concrete quantification deserves
further investigation.

The following proof is in essence a modification of a local argument by
Verfiirth [24], which carries over regardless of the magnitude of the local er-
ror. For any Ty € , set hy := hr, and let T be the enlarged set

0= U{T €9 : T and T, have a common side}.
Lemma 4.2. The following lower bound holds for all hy < h* and Ty € T :

Ef, < Clleg |l o(ry)
+C max (W31l = Py flz(r) + B iV(A ~ I7A)-Vits|| o=
0

(4.7)
+hrllg— Hyg”Leo(T))

+C fnax (hs||(A - IyA)'[[Vuylls"Lw(S))-

Proof. In order to localize the analysis, we deal with a test function v €
W1.(Q) whose support is contained in T . The explicit construction of
v proceeds as follows. Set

gs = [I7A-Vug +Il7g]s - ng,
Fr := Py f|7 + div(I#A) - Vug|r + divllsg|r.

Note that gg is linear in S € ¥ whereas Fr is constant in 7 € 9 . We seek
a piecewise polynomial function v satisfying v =0 on 975 and

(4.8) {gs,v)s =hsllgsllL=s)y VS COTo,
(4.9) (Fr,v)r = hf||Frllt~y VTCT;.
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Let br € S5(T) be the canonical bubble function of T, i.e., the product of
the barycentric coordinates of 7. Let ¢gs be the canonical basis function of
P (T) that vanishes at all nodes of J~ and midpoints of & but xg € S C
0T, at which ¢g(xg) = 1. For each S C 87T, we still denote by g5 the
linear extension of gg to T that vanishes at the opposite vertices. Consider
v € W1:°°(T}) of the form

v=Y arbr+ Y Psdsos,

TCT; SCoTy

where {ar} and {fs} are determined as follows. With such a v, (4.8) reads

Bs((a?, ¢s)s = hslldsll=(s) »

which yields a unique fs. Moreover, since (g3, ¢s)s = hsllgsl|i(s) as a
consequence of gs being linear and ¢g > 0 and quadratic, we see that

(4.10) |BslligsllLe(s) < C.

Since Fr € %(T), (4.9) becomes

arFr(br, 1) = h}||FrlLo — Fr Y, Bs{ds, 9s)1
SCoTy

which in turn defines a7 uniquely. Since br > 0 is cubic, we have (b7, 1)1 =
h2., and thus

(4.11) lar| < C (1 + Z |ﬂs“|¢1s||L°°(T)||¢s||L°°(T)) <C

SCoT,

Extend v by zero outside 7 and use the fact that g5 = by = 0 outside T to
conclude that v € Wol *°(Q) . Invoking local inverse inequalities for v, which
is piecewise polynomial, and making use of (4.10) and (4.11), leads to the a
priori bound

1Dl 7y < Chp?|vllLiry < Cllvllzee(r) < C.

Since I7v = 0, we can write v = v — Isv and then use interpolation theory,
in conjunction with a standard trace inequality, to obtain

vl + Al VYl

(4.12)
+hrllvliper + h0v/0n| LT < ChFID* | L1y < ChE.

With ¢ = v in (4.4), and the aid of (4.8), (4.9), (4.12), (2.1), and integration
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by parts, we immediately get
> h3IFrlicen + Y hslldsllze(s)

TCTy SCoT,
= Z (FT, U>T+ Z «‘IS, v»S
TeT Se&
= a(es , v)
+ Y ((Prf = f, v)r+divirA = A)-Vuz , v)r+(& - Tl7g, Vo)7)
Teg
+ D (IUrA - A)-Vugls, v)s
Se&
=- Y (es, div(A-VO))r — Y (€7, [A-Vls)s
TeT Ses&
+ Y ((Prs - £, v)r+(@ivir A - A)-Vuz , )7+~ T8, Vo)7)
TeT
+ 3 (IUsA - A)-Vusls, v)s
Ses

< CllegllLee(ry)
+ € max (WS = Py flluescry + HFdiv(Ir A = A)- Vi 1=z
0

+hrlig — H.73"L°°(T))
+ C;g%) (hs"(A - IyA)'[[Vuy]]sHLM(S))-

Adding and subtracting f and divA - Vugy to Fr in the first term of the
previous expression, and [A-Vug [s-ns to gs in the second, one easily obtains
the assertion. 0O

Note that without additional regularity assumptions, the above construction
may produce a poor lower bound. In fact, 5 =0 and v = 0 for the Example
4.4 because either P-f =0 or I[Iyg=1, so

(4.13) Ep, ~ max (h%”f — P fllLo(r) + hrlig — nyg"Loo(T))-
CT;

This obviously gives no lower bound for e ||z~ and raises the question of
a possible overestimation, which is again confirmed by Example 4.4.

Our aim now is to show that overestimation cannot occur whenever f and Vg
are uniformly continuous and A € W2 >  both elementwise, and the following
nondegeneracy assumption is valid:

(4.14) ChY < lles |l =(@)-

It is worth stressing that discontinuities of f, g, and divA are still allowed
across interelement boundaries, and that (4.14) is quite reasonable in applica-
tions: it is sufficient to have *u,,,, > C > 0 in a triangle of size Ay . In this
setup, the simpler local indicator

(4.15)  E%:= h3|f +divA - Vug + divg|(xr) + hr||[A - Vug + gl L= (1)

makes sense, and gives rise to the pointwise estimator &2 := maxres E}.
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Theorem 4.2. Let A € [W2:°(T)])* forall T € I . Let both f and Vg be
uniformly continuous in each triangle T € J , and let their moduli of con-
tinuity satisfy a(t), ovg(t) = o(|logt|=2). If (4.14) holds, then there exist
Cy, Cy, h* > 0 independent of u and 9 such that

(4.16) C1&% < |lezllL=(q) < Co|loghs[*€2 VY hg < h*.
Proof. Let Ty € I satisfy E‘T0 = &L and set hy:= hg,, Xo := X7, . Since A

is globally W1!-> and locally W?-> , we deduce that A|s € W?2-(S) for all
S €.%. Hence,

(417) 07§C |diVA| < Cho, "A - IyA"L“(BTo) < Chg
0

Lemma 4.1, together with (4.14), (4.17), and
(4.18) NIxMl Loo1y) < 20Xl Leo ()
for y = g—Ilsg, leads to
Ch§ < Ch% < |leg|lL=@) < Cl|logho|*Ef,
< Chollog ho* (ho| £ +divA - Vg + div g (xo)+[[[A - Vit + ell|e(ory)
+ Cho|log ho|* (hollf = f(X0)llLoo(75) + 118 — TLr gl oo (1)
+ holldiv(g — Tl g) | o=(ry)
+ Chg|log ho*|| Vs || Lo (13-

We then use (2.9) and (2.11) to deduce that all terms in the third line are o(h3),
and thus asymptotically negligible. Since u € C*(Tg) for some 0 < o < 1
depending solely on Q, f and g [9, 16, 18], we see that

h3IVug|| oo (y) < Ch3 0sc Uz
0

(4.19) 2 2 2 2+a
< Chj osc e + Chg osc u < Chlles |-y + Chyte.
0 0

We realize that these two terms, multiplied by |log#g|?, are negligible with
respect t0 ||es || w(q). The fact that 4y > psy > Chl. thus yields the upper
bound in (4.16).

To prove the lower bound in (4.16), let Ty € J satisfy E7 = &2 . We again
argue as above, now using Lemma 4.2 in conjunction with (2.9), (2.11), (4.17),
(4.18) with xy = [Vug1, and (4.19) for T}, to obtain

&% = E}, < Ep, + h3|1og ho (| Vuugr || Loo (1) + 0(h%| log hs| )

< Clleg llL= @) + 0(h%|loghs|7%) < Clleg||L=@). O
The constant C; in (4.16) can be computed explicitly because it involves the
solution of local problems. We refer to [1] for an analysis in the energy norm.

Remark 4.1. We would like to stress the local character of the estimate (4.7).
In fact, if we knew that

(4.20) Ch < lles llLo=(ty) »
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we could then repeat the argument in Theorem 4.2 and obtain the following
local result:

(4.21) CiEZ, < |le || Lo (zy)-
Therefore, an adaptive strategy for mesh refinement could in principle be based
on (4.15) and it would be efficient in the sense of [19], that is, overrefinement
would be avoided in view of (4.21). The nondegeneracy assumption (4.20) is
guaranteed whenever xu,,, > C > 0 in T, but pathological situations arising
from numerical pollution cannot be excluded.

In the next two sections we will investigate the relative importance of the
Jjump residual in (4.15). We will prove in §5 that the local estimator

(4.22) £ = max (hsl[A- VugDlii=(s))

is equivalent to |les ||~ provided g = 0. Example 4.1 suggests that such
an undertaking would only be possible under global continuity of f. If g# 0
and exhibits jump discontinuities across element sides only, then Example 4.3
indicates that

(4.23) &} = max (hsllIA - Vug +gllli=)

may be equivalent to |leg||L(q), Which is in fact shown in §6. The case of
discontinuities not aligned with .7 , along with the possibility of overestimation,
will also be studied in §6.

5. CAse g = 0: POINT SINGULARITIES

We now assume g = 0 and intend to remove the residual term involving
f +divA : Vugs in (4.15). Even though f is bounded, and so u € C!*
locally for all 0 < a < 1 [16], the need for mesh refinements and a posteriori
error control may be due to the pollution effect created by corner (or point)
singularities [9, 10, 18, 23].
Theorem 5.1. Let A € [W2:-°(Q)]* and let the modulus of continuity of f in the
entire Q satisfy o4(t) = o(|logt|=2). If (4.14) holds, then there exist constants
Cy, Cy, h* > 0 independent of u and 9 such that

(5.1) Ci&2 < lleglie(@ < Colloghs 2€2 YV hgy < h*.
Proof. Let x; € ¥ be a generic node and @; be the canonical basis function
associated with it. Take ¢ = ¢; as a test function in (2.6) and integrate by
parts to arrive at
(5.2) (Ri, ¢i)z, + ([A-Vugsl, ¢i)a, = (Ri — R, 9i)z,,
where R := f + divA - Vug is the residual and R; := R(x7;) with T; C &;
fixed. Since (R;, ¢i)z, = R; [z 9i = Ch? R; with h; indicating the size of Z;,
(2.1) and (5.2) lead to '

IRi| < IR = RillL(z,) + Ch; A - Vg Tl Lo (a)-
With the aid of (2.1) and the fact that [Vugs]s is parallel to ng, we realize
that |ng-A-[VugsIs| > C|[Vus]s|. Since card A; < C is independent of .7,
we can write

(5.3) \Vug|r - Vug|r| < Y [[Vugls| < ClIIA - Vug T,
SCA,
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forall T c &;, and thus
”R - Ri”Loo(E’.) < O__?C f + 0=§C divA ||Vuy||Loo(3,.) + C”IIA . Vuy]]"Loo(Ai).

Therefore, invoking (4.19), we see that
max h7|R(xr)| < Ch}|R = Rillz=) + Chill[A+ Vug Dl|z=,
< Ch% (‘Tf(hy) +hg + |I€y||L°°(Q)) + C?&’f (thIIA'Vuy]]HLoo(S))-
In view of (4.14), Theorem 4.2 and the assumption on g, we end up with

Ch% < |les =@ < o(h%) + Chy|loghs’lles |lL=(@ + Clloghs *3

which yields the upper bound in (5.1). The lower bound follows from g} <
C&%. O

Remark 5.1. The rightmost term in (5.1) is very reminiscent of the usual a priori
error estimate in the maximum norm

(5.4) les llz=(@ < Clloghs[** max (W1 D*ull~(r))

valid for convex Q and mildly graded meshes, that is, those meshes satisfying
[VA(x)| < 1, h(x) being a mesh density function [11]. This result is used in
[12] as an alternative to a lower bound to assess efficiency. A pointwise analysis
of the pollution effect of reentrant corners was carried out in [23], where an
estimate slightly weaker than (5.4) was derived for meshes exhibiting radial
symmetry in the vicinity of corners.

Remark 5.2. The upper bound in (5.1) may be viewed as resulting from re-
placing formally D?u in (5.4) by the discrete second derivatives Dguy =
|[IVug1s|/hs. Such an interpretation was crucial in [10, 13] in studying an
adaptive procedure for radially symmetric singularities.

6. CASE g # 0: LINE SINGULARITIES

Our aim now is to study the effect of a line singularity I' of g. We first
discuss the case of a curve I' aligned with .77, which divides Q into two
disjoint polygons Q; and Q,.

Theorem 6.1. Let T be a polygonal made of sides of ¥ . Let A € [W?°(Q)]*,
and let the modulus of continuity of f in the entire Q, and that of Vg in Q,
and Q,, satisfy o4(t), ovg(t) = o(|logt|=2). If (4.14) holds, then there exist
constants Cy, Cy, h* > 0 independent of u and 9 such that

(6.1) Ci1&3 < llegllL=@ < Colloghs &3 VY hgy < h*.
Proof. We proceed as in Theorem 5.1 and use the same notation. Let divy

denote the elementwise divergence operator, and let the residual R be R :=
f+divg(A-Vug +g). Then

|Ri| < IR = RillL=(z) + Chi '[[A - Vg + gl oo (-
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On adding and subtracting /A and Ilsg, and using (2.11) for I and Ils,
we readily get

IR = RillL~)
< Clldiv(A — I7A)| Lo E)IVUg Loz, + Clldive (8 — Ilgg) | L~
+ osc f+diveg(I5A-Vug + I1sg) — diveg (I7A-Vugs + Hyg)ln”Loo(sl)

< o(|loghg|™2) + Chi||Vug || Loz + Ch A - Vug + gllllLo(z,)-

Here we have used an inverse inequality to eliminate divs in the second line,
and then reason as in (5.3) with I#A-Vug + I17g. The argument concludes
as in Theorem 5.1. O

We consider now a line discontinuity I" which is not necessarily aligned with
. Suppose in the sequel that f and A are as in Theorem 5.1, I' is a Lipschitz
curve that divides Q into two disjoint domains Q; and €, nr is the unit
normal to I' pointing toward Q,, and g satisfies

(6.2) ge who@Q)nwh>(Q,), 0<C*<|lglr| < Cllglr-nrl-

This nondegeneracy jump condition means that the line singularity possesses a
uniform strength, but it will only be used in the vicinity of a point where the
error attains the maximum norm. The best possible (classical) regularity result
is expressed by

(6.3) ue CH*Q)NCH»*(Qy),  A-[Vulr-nr = —[glr-nr #0.

Suppose 't :=T'NT # @ for some T € 9 ; I'r may contain part of 47 . In
the next two lemmas we compare the relative size of the various summands in
(4.5).

Lemma 6.1. The following estimate is valid provided I'r # @ :
g — 7 gllro(r) + ATl f +divA - Vug + divIlyg|| (1)
+ M7 gllliz~@r) < CllIglrllLeor,)-
Proof. By virtue of (2.10) and (6.2), we deduce that
18 — 17 8llze(r) < osc |8l < l[8lrllzry + Chr < C||Iglrllzery)-

On the other hand, since divIlyg e ) (T), we have
Ch} divIlyg = (divIlyg, 1)r = (Tl7g, 1)or
= (g, 1or = (divg, 1)m\r + (I&lr - nr, 1)r;.
In view of (6.1), we see that |(divg, 1)r\r| < Ch}, whence
hr|divIlgg| < Chr + C||Iglrllzerr) < ClII8Irllzery).-
Also

M7 gl o) < ClII&NILrnaT) >

as results from (2.10). Since hr| fl|lL~) < Chr is asymptotically negligi-
ble, as compared with ||[g]lr||z(ry) > it only remains to demonstrate that so is
hr||divA - Vug| 1) . To this end, we recall that u € H'+¢(Q) for some ¢ > 0
because f + divg € H~1*¢(Q) [9]. As a consequence of Sobolev’s imbedding
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theorem we also have u € W1:2(Q) for some p > 2. By virtue of standard a
priori error analysis in Hol (Q), and Holder’s inequality, we arrive at

hr||divA - Vug || Loy < CIVugllzr < ClIVes |2y + ClIVUll 2(ry

(6.4) _
< Ch |ull grieey + ChG ™|V ull @) = o(1).

This concludes the proof. 0O

Set I'; ;=T N E; and denote by 4, the size of Z;. Note that the nondegen-
eracy property
(6.5) dist (I';, 0E8;) > Ch;
for some 0 < C < 1/2 is equivalent to assuming that I" splits =; into two
comparable pieces.
Lemma 6.2. If (6.5) holds, then ||[glr - nr|lz=r,) < CII[A - Vug Lo, -
Proof. Let x;, € E; N Q be fixed and set g; := g|g, for £k = 1,2. Upon
integration by parts, we can write the discrete equation in (2.6) as follows:

(g(x1) — 8(x2), mroi)r, = —([A - Vug 1, 9:i)a, — (divA - Vug, 9;)z,

+ ((8(x1) — 81) — (g(x2) — 82), nro;))r, — (f +divg, ¢i)=\r-

By virtue of (2.2) and (6.2), the two rightmost terms of the right-hand side are

< Ch?. The second term on the right-hand side is, instead, of order o(hs)
because of (6.4). Hence, since (6.5) yields fr,- 0; > Ch; , we have

|(8(x1) — g(x2))+nr| < C|I[A - Vg Il oa,) + 0(1).
Therefore,

C < ||iglr * nrllzer,)
< CIMA - VuglliLeo(a,) + l(8(x1) — 81) — (8(x2) — &2)] - nr||zoo(r,) + 0(1)
< CIIA - Vuglizeoay +0(1) < CII[A - Vug Lo,y O

We are now in a position to derive an upper bound for the pointwise error.
To this end, we need another nondegeneracy assumption on I', namely that
I' does not intersect 9 tangentially. For each xy € I' N 8Q, this entails the
existence of a closed truncated cone %, of center xo and height r such that

(6.6) {xeT:|xp-x|<r}c %, cQ

Theorem 6.2. Let A € [W2:°(Q)]*, and let f and Vg be uniformly continuous
in Qi and Q, with moduli of continuity o¢(t), ovg(t) = o(|logt|=2). If both
(4.14) and (6.6) are valid, then there exist C, h* > 0 independent of u and
I such that

(6.7)  llesllz=a < Clloghs P max (hslIA - VusTlies) ¥ hy < b

Proof. Let Ty € I satisfy E 10 =&L.If I'nT = o for all adjacent elements
T to Tp, then we can argue as in Theorem 5.1 to arrive at E‘T0 < C&3.
Otherwise, there exists an adjacent element T;, possibly Tg itself, satisfying
T:NT # @. Let x; be a vertex of T} closest to 7y, NI". If x; is an interior
node, then E; satisfies (6.5). If x; € 8Q instead, then (6.6) yields the existence
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of a set Z; > x; satisfying also (6.5). In either case, Lemma 6.2 applies and,
together with (6.2), Lemma 6.1 and the fact that A7, ~ h; =~ h; imply

&4 = Et, < Chy,||lglllze,ur)) + Ar IIVug Tl o aun) < CEZ-
The assertion then follows from Lemma 4.1. 0O

The following result shows that overestimation is quite unlikely whenever the
interface I' splits T into two comparable pieces.

Lemma 6.3. If dist(I'r, 8T) > Chr, then |les||L(r) = Chr|/IglrllLry)-
Proof. With the aid of (6.3) and interpolation theory, we can write

llesllzeo(r) 2 Cllu — Igull L= ()
> Cdist(I'r, 0T)||Iglrllze ;) = Chr|lglrlizery). O

Remark 6.1. The most difficult situation, not covered by the above analysis,
is that of an interface I being almost parallel to a side and very close to it.
In such a case, the error might be much smaller than first order. This issue
warrants further research.

Remark 6.2. The-estimator 8}3 has been already used successfully for the adap-
tive solution of time-dependent frée boundary problems with A =1 [21].

7. EQUIVALENT ESTIMATORS

The purpose of this last section is to prove that other local a posteriori es-
timators, typically used in connection with the energy norm, provide also in-
formation to estimate the pointwise error [6, 24, 25]. We in fact show that
these estimators, when properly interpreted, are equivalent to ||es ||z~ ). The
estimators in [6, 24] are based on solving local problems, whereas that in [25]
consists of an averaging postprocessing or gradient recovery. For simplicity, we
assume A=1 and g=0.

7.1. Verfiirth’s estimator. Let 22)(T) denote the set of quadratic polynomials
in T € 9 that vanish at the vertices of 7. Let #Zr indicate the direct sum of
P(T) and the space of cubic bubbles. Let wr € Zr satisfy

(1) (Vor, Ve)r = (f(1), )1 + 5([VusTs, oo ¥ 9 € %,

Note that this is just a modification of the estimator introduced by Bank and °
Weiser [6], for which %7 = Z)(T). The presence of the extra bubble func-
tions enables us to prove the desired €équivalence result under least restrictive
regularity assumptions.

Corollary 7.1. Let the modulus of continuity of f satisfy o,(t) = o(|logt|~?)
within each finite element, and let ||es||L~(q) = Ch%-. Then there exist Cy, C,,
h* > 0 independent of u and J such that for all h# < h*

7.2 C: max |7l oo < llea|lrooron < Collog Ao |? max |7l 7o (7.
(7.2) 1Te.7“ Tllzo(r) < llegllL=(@) < Ca2|loghs| Teyx" 7l Lo (7)

Proof. We proceed now to show the equivalence of maxres ||@r||z=~(1) and
&2 . The first simple observation is that

(7.3) lollLe(ry = ArlIVOllLory = IVOl2ry Y 9 €%r,
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because ¢ is piecewise cubic and vanishes at the vertices of 7. Taking ¢ = w7t
in (7.1), and using (7.3) in conjunction with Theorem 4.2, yields

T Zor) < Cllva"%}(T)
(7.4) < C(h%|f(xT)| + hT|||IVuy]]||L°°(aT)) lor|| Lo (1)
= CE}||or|| 1) £ C&X|| 01| Lo (T)-

In order to prove the reverse inequality, we argue as in Lemma 4.2. Let b7 €
P5(T) be the canonical bubble function of T, and {¢s} be the canonical basis
of PYT). Let ¢ = arbr + Y gcor Bs¥s € #r be defined by

Bs(IVugls, ¢s)s = 2hs|IVus1sl|,
(7.5) ar(f(xr), br)r = B3 f(xr)| = Y Bs(f(x1), ps),
SCcoT

which leads to |ar|, |Bs| < C, because [Vuslls and f(xr) are constants.
Therefore, by virtue of (7.1) and (7.3), we see that

E} <IBIf(er)l+ Y hs|IVusls| = (£xr), o) + 5 (IVus s, oor

ScoT
= (Vor, Vo)r < Cllor|remll@ller < Clor|ier). O

We point out that this proof shows the equivalence of |wr||r~(r) and E?
at the element level, even for f with jump discontinuities across interelement
boundaries. Such equivalence might fail to hold if we suppress the bubbles as
in [6].

7.2. Bank-Weiser’s estimator. Let &r € %0(T) be the solution of (7.1) for
all ¢ € #Y(T) [6]. So we now have one fewer degree of freedom with respect
to %r . But to demonstrate equivalence, we compensate with global continuity

of f.

Corollary 7.2. Let the modulus of continuity of f in the entire Q satisfy o,(t) =
o(|logt|=2), and let |leg||L~@ > Ch% . Then there exist Cy, Cy, h* > 0
independent of u and  such that for all hy < h*

(7.6) G max ||5T||L°°m < llegllze(@) < Calloghs|? max ||5T||L°°(n-

Proof. Argumg as in Corollary 7.1, we get ||¢r||zo(r) < CET < Clleg|lze(q)
because of (4.16). To derive the reverse inequality, we cannot proceed element-
wise as before, but rather we have to deal with the set Z; associated with a
generic node x; as in Theorem 5.1. Consider the piecewise quadratic function
9 = Ysca, Bsps, with Bs defined as in (7.5); thus |¢||L~@E,) < C. We can
write

2" hsl[Vuglsl = (IVusl, o)a,

SCA;
= }: (O%XT),¢)T+'%«TV“?B,¢»6T)
TCE;

—(f(%), @)z, + I (S () = f(xr), 9)r = T+II+111,
TCE;
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and examine each term separately. In light of (7.3), we first have
1< 3 [(Vér, Vo)r| < € max (Krlizwenlollzmen) < Cmax|iériz=a)-
TCE;

Utilizing (5.2) and properties (¢;, 1)z, = |Zi|/3 and (@i, 1)s = hs/2, we
deduce that

Ol < opy| X IVuTsoi, Dhs| +150) = fllzecey

<¢‘ > Dz, SCA;

> hsIIVuy]]s| + oy (hi).
SCA;

2|E,-
Hence,

1| < 1S (x9Nl |Eil < Chiay(h) +C| 3 hsl[VuzTs|-
SCA;

Since |I1I| < Ch?as(h;), we are led to evaluate the contribution of the right-
most term in the preceding inequality. Note that, as compared with the original
expression, the absolute values are now outside the summation. This fact will
be exploited in the sequel.

To do so, we introduce the piecewise quadratic function { = 3 g A 9S-
Given S € %7, let Tg stand for the union of the adjacent triangles of 7~
sharing S, and let |Tg| denote its measure. We see that

(o), 0 = 3 ), 05) = 3 Tl sty = 2 gt = 2070, 00,
SCA; SCA;
because (¢s, 1) = |Ts|/3. Therefore, since (ps, 1)s = 3(¢i, 1))s, we get
Y (Vér, Vor= "3 (300VuT, Oor +(f(xr), O)r)
TCE; TCE;
= ([VugD, Oa, + (Fx), Oz, + Y (f(xr) = f(%i), {)r

TCE;

(IVus 1, pida, +2(f(x)), o)z + D (f(xr) = f(xi), O)r

TCE;

= ‘% Y hs[Vuglls +2(/(xi) = f, oz, + Y (f(xr) = f(x:), )

SCA, TCE;

Wl-h

where we have used (5.2) in the last passage. Consequently,

I > hSﬂvuy]]Sl <3 |(Vér, V1| + Ch} oscf

SCA; TCE;
< Cl}lca_} ||fT||Loo(T) + Ch,zaf(h,)

Upon combining the estimates for I, II, and III, we realize that

> hs|IVugls| < Cmax €7l Loy + Chias(hy).
SCA,
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The nondegeneracy assumption (4.14), together with (5.1), implies

Chy < Clloghy | max (hs|[Vuz Isl) < Clloghs | max [érllze=(r) + o(h).
This and (5.1) lead to the conclusion

-2 3 _
Clloghs |l |L=(c < &3 = max (hs|[VuzJsl) < € max [érll=n. D

The above proof of equivalence does not rely upon the saturation assumption
of [6], which implicitly entails some additional global regularity of D*u. In
this vein we mention that o, satisfies the Dini condition [, Z%th < o0,
which in turn guarantees the interior continuity of D?u; however, D?u blows
up at a corner. Consequently, quadratic functions do not provide in general
better global approximation than linear ones, thereby making the saturation
assumption of [6] fail.

Removing the saturation assumption in the energy norm is also of theoretical
importance. The above argument can be modified to achieve such a goal, as
shown in [20].

7.3. Zienkiewicz-Zhu’s estimator. Consider the following recovered gradient
Gug € [7;2 N C(Q)]* which, for each node x;, is defined by

T
(1.7 Fug(x;) =Y l'—_;—_'lwle.
TCE; =
Such a postprocessing is simply a weighted average of Vug over the triangles

containing x;. In [25] the computable quantity ([, |ugs — Vuylz)l/ % js used
to estimate the error in energy norm. The following local equivalence result has
been recently proved in [22]:

(7.8) Y T ug (x)) - Vuglr| = 8] 3 |[VusrTs|*.
TCE; SCA;

By virtue of (7.8) it is now easy to demonstrate that the information contained
in £ug can be used to estimate the pointwise error.

Corollary 7.3. Let the modulus of continuity of f in Q satisfy os(t) =
o(|logt|=2), and let Ch% < |esllL=). Then there exist Cy, Cy, h* > 0
independent of u and 9 such that for all hg < h*

- oo < oo
G rj{lea}i(hrllguy Vug|lL (T)) <lles |z (g
<G|l 2 hr|l€ug — Vug| L) )-
<Cilloghy [* max(hrl|€us - Vits |lL=n))
Proof. 1t is enough to observe that the minimum angle condition yields
By 2
Z |T||?uy(x,~) - Vulel ~ (rTnCagﬁhTI?uy(xi) - Vulel) .
TCE; =

_ 2 2
|~i|S§.|[[Vuy]ls| ~ (ISIIC%}!SI[[V“?]]SI) ,
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and that ||Zus — Vug||L=(7) is attained at a vertex of T', because the underly-
ing function is linear. The assertion finally follows from Theorem 5.1 together
with (7.8). O

1.
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