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ABSTRACT. In a plane polygonal domain, consider a Poisson problem -Au = 

f with homogeneous Dirichlet boundary condition and the p-version finite 
element solutions of this. We give various upper and lower bounds for the error 
measured in L2 . In the case of a single element (i.e., a convex domain), we 
reduce the question of sharpness of these estimates to the behavior of a certain 
inf-sup constant, which is numerically determined, and a likely sharp estimate 
is then conjectured. This is confirmed during a series of numerical experiments 
also for the case of a reentrant corner. For a one-dimensional analogue problem 
(of rotational symmetry), sharp L2-error estimates are proven directly and via 
an extension of the classical duality argument. Here, we give sharp LOO-error 
estimates in some weighted and unweighted norms also. 

1. INTRODUCTION 

The purpose of the paper is to study the influence of corner singularities 
on the accuracy of p-version finite element solutions, and the sharpness of 
L2-norm error estimates. We note that in the context of the h-version finite 
element method for a corner problem, the sharpness of L2-norm error esti- 
mates, and more generally of error estimates in negative-order Sobolev norms, 
has been fully studied in [17]. Some attempts have also been made regarding 
the p-version of the finite element method. In [13], error estimates in L2 and 
H-s (s > 0) are derived, using the traditional duality technique. However, 
the question of the sharpness of L2-norm error estimates is unanswered. This 
paper is a further attempt to answer the question. In ?2, we give an L2-norm 
error bound. In ?3, we derive a lower bound for the L2-norm error. By con- 
necting to the optimality constant, the stability constant and inf-sup constants, 
we conjecture a likely optimal L2-norm error estimate. The conjectured opti- 
mal L2-norm error estimate is proved in ?4 in a one-dimensional setting which 
mimics the two-dimensional corner singularities. The one-dimensional singular 
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model problem we study is in some sense closer to two-dimensional corner prob- 
lems than the one considered in [8]. In ?5, we prove various sharp L??0-norm 
error estimates for the one-dimensional model problem. In the last section, 
we present numerical results on corner domains with various internal angles to 
confirm the likely optimal L2-norm error estimate. 

Let Q be a bounded, simply connected polygonal domain in the plane. Con- 
sider the Dirichlet boundary value problem 

I-Au =f inQK, 
(1.1) j-tu=O on QA 

with f EHs-l(K2) forsome s > 0. Let wl < 02 < ... < OM-1 < cM denote 
the interior angles at the corners Aj of Q2, 1I < j < M. Let 

(1.2) a-i= ,o E I2 o), 1 j<M. 
(Oj 2/ 

The regularity of the solution u, in the presence of corners, is the subject 
of some classical treatments, cf. Dauge et al. [5], Grisvard [10], Kellogg [14] 
and Kondrat'ev [15]. Following Dauge et al., we introduce singular functions, 
written in terms of polar coordinates, centered at the vertex of a cone r. Within 
a neighborhood of a corner Aj, the domain Q2 coincides with a cone Fj = 
{(rj, Oj): 0 < r < 00, 0 < Oj < coj}. Then, the singular functions are 

Sj, 1 = tljaj,, I E Z+, 

where iy E Coo is a cutoff function, iy = 1 near Aj, and ij = 0 outside some 
neighborhood of Aj, 

_ frA "sin(Aj,11j) if j,1 Z+, 

J ri' (sin(Aj, 16) logrj + Oj cos(Aj, 1?)) if Aj,l E Z+ 

and 

Aj,l = Ilaj =-. 

Then we can write the solution to the problem (1.1) as follows: supposing 
f E Hs-l (Q2), s E R+\Z, we have 

M 
(1.3) U=Uo+Z E ymsm 

j=1 Aj,1<s 

with 

(1.4) Uo E HS+l(Q) and IIuoIIs+1 + E lIY,il < c(IIfll_l + Ilulli). 
j,1 

The singular expansion coefficients yj, 1 are exhibited as linear functionals of 
f in [5, ?5]. The leading singularity in (1.3) is SM,1 E HI+aM-e(Q) , V > 0 
We denote 

def 
LK = aM. 
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2. UPPER L2-ERROR BOUNDS 

Partition Q into E elements Q2 = U 9=1 Qe, where Qi are parallelograms or 
triangles with ni n Qj = 0 for i #A j and Qi n Qj is either empty, a vertex 
or a common side of both ni and Q,. Each vertex of Q is assumed to be a 
vertex of some Qi . We denote by ID the set of parallelograms and by .9 the 
set of triangles in the Euclidean plane. 

Let R = (-1, 1)2 and T = {(x, y) -1 < y < x, Ixi < 1} denote the 
standard square and triangle, respectively. Let F1 be an affine, orientation 
preserving (i.e., det (DFi) > 0) mapping which maps Qi onto R if Qi is a 
parallelogram, and onto T if Qi is a triangle. Then we define the space of 
piecewise polynomials 

{ oifPp(T) if Q E 

where Qp and Pp denote the spaces of polynomials of separate degree, respec- 
tively total degree, less than or equal to p. 

The Galerkin solution up E SP, characterized by varying p (and fixed par- 
tition), is then defined by 

(2.2) VupVv dx fv dx, Vv E Sp, 

or we may write up = FIpu, where FIp is the HO-projection onto SP (defined 
by the Dirichlet form in (2.2)). 

It is well known, cf. [3], that, denoting by ep = u - up, one has 

(2.3) Ileplll < c p-min(2a, s) 

and that, in general, one cannot expect a better convergence rate than that in the 
estimate (2.3). In this paper, we are interested in the L2-norm error estimate. 

Proposition 2.1 (as in [13, Theorem 2]). Let f E Hs-l(K2), s E R+\Z. As- 
sume a = aM ? Z. Let up = IIpu be defined as above. Then 

(2.4) Ilepl|lo < CP-min(s+I, 2a+I). 

Proof. Define an auxiliary function wp E Ho' (Q) by 

(2.5) -Awp= ep in Q, 
wp =0 onaQ. 

In the case of a convex Q (where the shift theorem II wp 112 < c IIep lb holds), 

epllg= (ep, -Awp) = (Vep, Vwp) 
= (Vep, V(wp - zp)) < Ilep IIIIV(wp - zp)Ilo 

< c Ilep 1IIP-iIlYWp112 < C Ilepl1 IP-'lepIIo 

holds for some zp E Sp . So, 

Ilep llo < c p-'l |eplll 
and (2.4) follows. (Cf. [12, Prop. 3.2] for a similar argument for higher-order 
problems.) In the case of a nonconvex Q partitioned with multiple elements, 
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we split wp-as done in [13]-according to (cf. (1.3)) 

M 

Wp=W-p + 1 11yj, iSj, i 
j=1 Aj,1<l 

with wp E H2(Q), and 

II Wp 12 + E bYj,11 ? C (IleplIo + IlWplll) < C IlePI10I 
Aj ,1<1 

Thus, for some zp E SP, 

IIV(wp - ZP)IIo < C (P-lIIop112 + I lIP'J) ' pI Iello. 
Aj,,<l 

So, again, IIepIIo < cp'IIeplII and (2.4) follows. o 

3. THE L2-DISTANCE OF THE H1,_PROJECTION FROM THE EXACT SOLUTION 
BOUNDED IN TERMS OF A STABILITY CONSTANT 

Let up be the Galerkin solution (i.e., Hoj-projection onto SP). We shall 
derive some lower bounds on the error u - up measured in L2, which are of 
lesser convergence rate than those of the L2-projection. We recall that, cf. [3], 
for a problem like ( 1.1 ) with leading singularity ra sin aG0, 

(3.1) inf lIu - vilo < cp-(2a+2). 
VESP 

Following an idea of Wahlbin [17], one may easily prove 

Proposition 3.1. Let u and up be the exact and discrete solutions to (1.1) as 
defined before. Let Q have reentrant corners. Then, if the coefficient of the 
leading term ra sin ac in the singular expansion of u is nonzero, there exists a 
c > 0 such that 

(3.2) lIu - up1IIo > cp-4a 

Proof. A mere transcription of the main idea in [17]. Like in [17], it is enough 
to prove the result for a particular solution uo = aora sin a60 + *, ao :$ 0 . Let 
K be an element in the triangulation of Q2 with a vertex in common with a 
vertex of Q (AM, say) that supports the leading singularity. Let xo EK and 
let Bo cc B1 cc K be disks centered at xo so that X0 = B1\Bo is an annulus. 
Let w E C??(Q) be such that 

1 outside B1, 
0 inside Bo, 

and G(x; xo) be the Green's function for (1.1). Now let 

u?(x) = co)(x) G(x; xo). 

Then, uO has a singularity at the vertex of the type ra sin a0, as was shown 
in [17]. Let the HO-projection of uo onto SP be denoted by uo, and let 
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eo= u? - uO . Then, noticing that supp (Au0) c K, we have 

cP ?-11I < JVep?V(uo - up) dx 

= j2 Vep?Vuo dx = jeAuo dx 

< ||eP?0,K1 AK IU ||O K, 

yielding (3.2). n 

Remark 3.1. The estimate (3.2) yields a stricter lower bound than (3.1) for 
a < 1, i.e., the case of a reentrant corner. Based on the lower bound (3.2), we 
see that the estimate (2.4) is optimal in rate for the case of a crack domain. For 
other corner domains, the estimate (2.4) is generally not sharp, as will be seen 
from the consideration below and numerical results later. n 

We next look at the convex domain case and assume for simplicity that Q is 
a single parallelogram. We will then look at the situation where there is only one 
element, namely, Q itself. Let SP = Qp(F(Q2)) n Ho' (Q), where F is affine, 
det (F) > 0, F(Q) = (-1, 1)2 . Then we may integrate (2.2) by parts to get 

(3.3) JupAvdxj= fvdx, Vv eSp. 

We may alternatively formulate (3.3) as our finite element method with an asym- 
metric bilinear form. In this setting, an L2-norm error estimate is the "natural" 
one for ep , and this is intimately connected with the inf-sup or stability constant 
for the bilinear form in (3.3). 

Denote, for convenience, the bilinear form by 

(3.4) B(u,v)=- uAvdx, uEL2, v EH2fnHo. 

We introduce two constants, 

C(u) = Ilu - UPt[? , the optimality constant at u, 
(3.5) 

if Iu-vIIo' 
D(u) = sup lu +Q o, the stability constant at u, 

where u is given by (1.1), up by (3.3) and (u + v)p E SP by 

B((u+v)p,w)=B(u+v,w), VwESP, 

i.e., the projection of u + v onto SP given by the inner product defined in 
(3.4). It was shown in [2] that C and D are interconnected, 

(3.6) D(u) - 1 < C(u) < D(u) + 1. 
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(1 +cosco, sin) (1,c1) 

\@ F R 

c0 

(0,0 ) (1,0 ) (-1,-i) (1,-i) 

FIGURE 3.1. Affine map F with pre-image and image depicted 

The constant D turns out to be connected to the inf-sup constant. We introduce 
two new constants, 

u = inf sup IB(u,.v)I1 
(3.7) 8 UEL2 VEH2nH1 IIUIIOIIV I12 

P7 = sinfup 
I B(u, v)I 

From the Buniakowsky-Cauchy-Schwarz inequality, we get 

(3.8) IB(u, v)I < '2IIuIIoIIvII2, 

so that, via [2], the following relations hold, 

(3.9) - < supD(u) < -. 

lp U lip 

We note that for any u E L2(Q) there is a unique v E H2(Q) n Ho'(Q) such 
that Av = u, and since Q is convex, we have the estimate 11v112 < cnIluI1o. 
With (3.8), we easily get 

(3.10) ? ,< < 

Remark 3.2. Since Q2 is convex, lv112 is equivalent to IlAvllo on H2(Q) n 
Hol(Q). If we replace IvI 112 by IAvy ho in the definition of ,u, then we have 
u= 1. o 

Clearly, the existence of quasi-optimal error estimates is linked with the inf- 
sup constant upp. We will show that in some sense to be made more clear in 
the next lemma, it is enough to consider upp for a square. 

Let P. be the parallelogram in Figure 3.1. 
The affine mapping which maps P. onto R = (-1, 1)2 is 

F(x) = 2 
1 - 

coCt co C? X-( 

Let S,, ={=v oF :v ESP(R)} with 

SP(R) = Qp (R) = (1-X12) (1-x2)Q_2(R) 
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Define, as in (3.7), 

(3.11) ues vEinf sup IB(i,iv 1 )I 

Lemma 3.2. Let ,up = ,p,/2 be as defined in (3.1 1) with respect to P,2 = R 
and ,up,,, as in (3.11). Then, given a oo E (0, r/2), there exist c and C, 
depending on (oo, so that 

(3. 12) cY,p <Y,p,c,)< CY,p, V(0sE [coo, 7f-0oo]. 

Proof. We prove the equivalence between the respective inner products in (3.1 1). 
Let x z y denote an equivalence in the sense that there exist positive constants 
c and C independent of x and y, so that cx < y < Cx. First we see that 

jim dx = uv IJK-1dx / uvdx, 

where J = DF is the Jacobian of F and IJI = 4 csc w, provided we require 
coo < co < 7t - c0o for some w0o E (0, 7r/2). Secondly, one may prove that 

jVTiVPJ dx = Vu JTJ Vv IJIKldx / VuVvdx 

by verifying that the eigenvalues of jTj lie in a positive interval for oo < co < 
7f - coo. This gives the equivalence of the bilinear forms. Thirdly, 

UH2(p= j (D u) HD2u IJI1dx H |UIH2(R), 

where H = E?i,j=1 IfiJfi with f;j = (J1iJj , JliJ21 + J2iJlj, J2jJ2j) and D2U - 

(ull, u12, u22). Through a lengthy calculation, it can be shown that the eigen- 
values of H are in some positive interval for coo < co < 7f - coo. We proved 
UHk(p) Hk(R) for k = 0, 1 earlier. Thus, IIiUI22(p ) t IIUII2R and (3.12) 
follows from the definition (3.1 1). n 
Remark 3.3. We may equally well handle a reduction from an (oblique) triangle 
to a right-angled one. 

Remark 3.4. If Q E 9, then ,up > cp-1 for some constant c independent 
of p, by the equivalence in the above lemma and the lower bound in (3.9). 
For certain special cases involving Cl-elements, one will not be able to obtain 
a better inequality, up > cp->', for v E (0, 1) . Specifically, consider solving 
-Au = f in the V-shaped domain of Figure 6.1, with smooth f and zero 
Dirichlet boundary conditions, using p-version Cl-elements. Collecting several 
earlier results, we have 

c(a) p4a < IIu - Uplo < C(a) ( + 1p -2a-2 . 

Now select a = (1 + e)/2 for small E > 0; then isolating up and contracting 
the above inequalities, one finds 

,p ? C()pl+. 
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Remark 3.5. Lemma 3.2 is significant in the sense that in the guaranteed upper 
estimate C(u) < v/,up,, + 1 < c/Iup, ,/2 + 1 , one will observe the same degree 
of suboptimality for all angles in any compact subinterval of (0, 7r). o 

The inf-sup constant up ,,/2, which by Lemma 3.2 characterizes the behavior 
of all convex, single-element cases, can be computed numerically for a given 
choice of finite element space, via a generalized eigenvalue problem. This was 

done for Qp in [13] with an emerging behavior of 

(3.13) Cp-1/2 < Up, i/2 < Cp-112, 

indicating the loss of a half power of p relative to the L2-distance (3. 1). It is an 
open problem to prove (3.13) theoretically. If one were able to show (3.13), it 
would follow that Ilep 11 < cp-2a-3/2. We shall further justify this for a purely 
radial version of the problem in the next section and further demonstrate that 
the classical duality argument can be extended to obtain the optimal convergence 
estimate lleplIo < cp-2a-3/2, in contrast to (2.4). 

4. A ONE-DIMENSIONAL ANALOGUE 

It is well known that the singularities of (1.1) supported at the vertices of 
Q are essentially radial and of the form rag(r, 0) in local polar coordinates. 
We shall investigate a purely radial model problem with such a singularity and 
g _ 1 for simplicity. 

The purely radial singular function u = ra, a > 0, is the unique solution to 

(4.1) f (ru') =a 2r2 in (0, 1), 
1lu(O)l < oo, u(l) = 1. 

Let 

(4.2) ..9N = {v: v is a polynomial of degree < N, v(1) = 0}. 

Then, for N > 1, the Galerkin solution UN E r + N satisfies 

1 

(4.3) j(U - u') v'r dr = 0, VV E NX 

which is then our simple one-dimensional problem. 

Remark 4.1. An indication of how (4.1), then (4.3), could arise naturally fol- 
lows. Let Q be the intersection of a cone with opening 7r/a ( a 0 Z+), a > 1/2, 
and the open unit ball centered at the apex of the cone whose right leg is as- 
sumed to coincide with the positive x-axis. Let ui = ra sin &a be the exact 
solution to 

(-Au=O inQ={(r, 0):re(O, 1), 0E(O,7r/a)}, 
(4.4) < u= 0 on OQl n {(r, 0): 0 = O or 0 = 7r/a}, 

J i=sin a& onQa n {(r,0):r=1}. 

The purely radial part of ui is u. Suppose we used finite elements of the type 
UN(r) sin a&6, where UN(r) were a polynomial of degree at most N, equal to 1 
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at r = 1 (vanishing at 1 for the test functions). Then the Galerkin equation 
would read 

0 = j V[(UN - U) sin a6] V[v sin aO] r dr dO 

= 2r j {(UN - U ')v' + - (UN - u)V} rdr. 

If we now drop the zeroth-order term, we get (4.3). o 

Let us define the weighted inner product 

(4.6) (u, v) uvrdr 

2~~~~~~~~ 
for u, v E Lo, (0, 1), subscripts corresponding to our weight (1 - r)0rl at the 
endpoints of (0, 1). Then (4.3) implies: 

Lemma 4.1. The derivative uN is the L21 (0, 1) projection of u' onto 5N-1' 

Proof. A constant is the derivative of a function in SN: 1 = d(r - 1)/dr. The 
remaining monomials of .9N-I also belong to d (,9N)/dr. o 

Note that we may translate all statements to the interval (-1, 1) by the affine 
transformation 

(4.7) (0, 1) 3 r i-4 x = t(r) = 2r - 1 E (-1, 1). 

We recall that on the standard interval [-1, 1] the Jacobi polynomials 
Pna 'fl) (x), n > 0, are orthogonal with respect to the weight w (x) = 
(1- x)a(l + x)fl, a > -1, ,B > -1 . The value of Pa 4fl)(X) at x = 1 is 
(n+-) and 

WX Ip(a,fl X 1 2a+fl+l F(n +&a+1) F(n + fi+1) 
]w(x IP) a(x)n dx = 

2n+a+13+1 n!F(n+a+13+1) 

Also recall Rodrigues' formula 

(-fl () 1)n 1 dn 21n 
Pn( n( ) 2nn! w(x) dxn [W(X) (1 - 

We will use in particular the Jacobi polynomials {P(?,' 1)}n=, which are or- 
thogonal in L 1(-1, 1), cf. [6] or [16]. Let {f}in = {p(Osl) o t}n= be the 
corresponding orthogonal sequence in L2, (0, 1) obtained via the transforma- 
tion (4.7). Then, we have 

Theorem 4.2. The following estimate holds for u =ra: 

(4.8) IIUUNIILo1(UN 1) <cN , 

and the estimate is sharp. 

Proof. This follows from Lemma 4.1, the form of u' = ara-l and standard 
approximation results for polynomials, see [ 1 1], [8] or later [4]: using Rodrigues' 
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and Stirling's formulas, one gets 
00 N-1 

(4.9) U/ =Zbnjn, u =Z bnjn, 
n=O n=O 

where 

(4.10) bn= u,fi;) 1)nl+12n ( 1) F(a +1)F(n + 1 -) (4.10) bn=(in in (1nln+1)IF(-a) rF(n 2 + ) 

- (-1)n+1co(a) n2a(1 + (1 + 2a)/n + O(n2)) 

in which co(a) = F(a + 1)/F(-a), and lima,k co(a) = 0 for k > 0 integer. 
We shall have occasion to use (4.10) again. o 

The same argument yields: 

Proposition 4.3. The following N-distance holds for u = ra in L21 (0, 1) with 
respect to the subspace 9N: 

(4.11) inf lIu-V ||L2 (O 1) = C(a) N-(2a+2)(1 + O(N )). 

Remark 4.2. The results (4.8) and (4.11) give the "correct" rates also for the 
two-dimensional problems with dominant corner singularity ui; this follows 
from the analysis in [3] and [7]. o 

Let us calculate the Lo1 (0, 1) error estimate directly and show to what extent 
this in turn is provable via the usual duality technique. Define 

r 
(4.12) jA-1)(r) = ji (s)ds n E Z+ U {0}. 

Then, using (4.9), we get 
00 

(4.13) U-UN Zbnjni ) 
n=N 

and it becomes beneficial to have a formula relating j(-') to a linear combina- 
tion of jk . 

Lemma 4.4. Let n > 2. Then the following formulas hold: 

(4.14) jn(1) = Cn,n+ljn+i + Cn,nin + Cn,n-ljn-1 

where 
n+2 -1 

(4.15) n,n+l (2n + 3) (2n + 2) Cn,n (2n + 3) (2n + 1)' (4.15) ~~~~-n 
Cn,n-I = 

(2n+2)(2n+1) 

and 

(4.16) 
x 

Pn(o )(u) du = C-n n+ 1 P(0+") (X) + C-n , n Pn(o 1) (X) + C-n , n -Iip( Pn-l) (X) 

where, C-n,k =2cn,k, k = n + 1, n, n - 1. 
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Proof. By the substitution u = 2s - 1, 

j- (r) j, (s) ds = j '1) (2s l) ds 

2r-1 

= 2f /; Pn?l(0 ) du, 

and we need only verify (4.16). Clearly, 

(4.17) Ix n+1 

m=0 

and we may integrate by parts to get with 

(u, v) uv (1 +x)dx 

that 

n+1 
_ p(0,l) p(O,1) _) pO,)pOl ~n,m(P~?'1 m P,Cn1) Z (4'1 p, P(0)) Cn,m m m J-(Pm k 

k=O 

= 11 (j (X )(u)d) Pm? '1)(x) (1 + x)dx 

(4.18) = [(JX( 1) ) (jXP(?1)(u)(1 +u)du)] 

-|Pn?)(X (u|d Pms) (1m )d)d 

L-|Pn?(1) (L Pm?0 ?)(u)(1 +u)du) dx 

= lPn (x)x (Pm(? 1(u) (1 +u)du) dx 

for m E Z+ u {O}, by orthogonality. Here, we may factor 

x 

P (u) (1 + u) du = (1 + x) qm+l (x) 

for some qm+i E g9m+1 . Thus, 

(4.19) Cn,m=O forO<m<n-2. 

Identity (4.16) in [16] specializes to 

(2 n+2) Pn(? ')(x) = (n + 2) Pn(', ) (x) -(n + 1) Pn (x) 

and identity (4.14) in [16] gives 

dp (, - (n + 1) 
(" 

dX n(,?(x) = 
2n 1)n-' )(x), 

so that, with in (x) = Pn( 0) (x) , the Legendre polynomial of degree n, 

(4.20) Pn(' )(x) = 1 (n+(x) - ln(x)) 
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Identity (4.16) in [16] also yields 

(4.21) (1 + u) Pn ,1(U) ( Pn0'0?) (U) + P,(?' ?) (U) 

so that 
x rx rx 

(4.22) JP,(? 1)(u)(I +u)du = nm(u) du + + nm+1(u) du. 

But, for j > I, 

(x) (l j(u)du) dx 

(4.23) = [li(x) (j lj(u) du)j -/ li(x)lj(x)dx 

2 
2i+ 1 

Substituting (4.20) and (4.22) into (4.18), using (4.23) and the fact that 
(PO, ?1) , Pm, 1)) = 2/(m + 1), we have 

Cn, n+ 
n +2 

Cf n+1 = (2n + 3)(n + 1) 
2 

(4.24) Cnn= (2n + 3)(2n + 1) 
n 

Cn,n -i = (2n + l)(n + 1)' 

Combining (4.17), (4.19), and (4.24) yields (4.16). o 

Inserting (4.14) into (4.13) gives 
00 

U -UN= E bn(Cn,n+ljn+l + Cn,nin + Cn,n-lin-1) 
n=N 

(4.25) = > (Ck-1, klbk-I + Ck,kbk + Ck+1, kbk+l) ik 

k=N+1 

+ (CN, NbN + CN+ 1, NbN+ 1)iN + CN, N-1 bNiN-1 I 

Since lCk,kI = 1/(4k2) + O(k-3) and -Ck+l,k and Ck_l,k are both equal to 
1/(4k) + O(k-2), we get 

00 

IIU - UNLL2 =C k 4ak 3k1 + N 4N 2N 1 + O(N-1) 

= cN-4a-3 (1 + O(N-1)) 

so that 

(4.26) IIU - UNIIL2 = cN-2a-3/2 (1 + O(N-1)). 
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This is half a power off the N-distance in (4.11). We will now show that the 
usual duality argument can be extended to recover (4.26) and not just one power 
better than the H1 estimate (4.8). 

Remark 4.3. One notes that the last two terms in (4.25) dominate asymptoti- 
cally, cf. Lemma 5.2. 

Theorem 4.5. Let u = ra and UN be determined by (4.3). Then there exist 
positive constants independent of N so that 

cN(2a+3/2) < ||U-UNIIL2 ? CN(2a+3/2). 

Proof. This is a restatement of (4.26). We will prove the second inequality 
once more, now via an extension of the usual duality argument, in the hope of 
providing a possible approach to deal with higher-dimensional problems. Let 
eN = u - UN. Then, defining WN by 

{jl(rw/0'/eN in(0, 1), 

|WN(O)1 < oo, WN(l) = O, 

we get for any ZN E 9'NX 

(4.27) 

(eN, eN) = j eN (-- (rwr)') rdr-= -[eN(rw')]O + J elw rdr 

= (eN X W ZN) =eN, X r(r (w -Z) z ) 

- (eN, eN + - (rz') ? e eN+ - (rz)' 

by repeated integration by parts and the Ho-projection nature of UN. An 
immediate corollary is 

(4.28) |leN llL2 = inf eN + - (rz') (4.28) 01 ZN6?Ag r~~~~~~~~~~~~~~~~~~0 

One gets a similar result for a single element in two dimensions. Now ..9N-2 

is contained in the image of -5No under the map z -* (l /r) (rz')', and we get 
from (4.9) and (4.1 1), and by using Lemma 4.4, that 

eN + 1 (rzN)' < inf ||u - ~N-21lL2 + inf hiUN - CN-21lL2 r N 
N- 2 E-'N-2 01 CN - 2 E N2 01 

01 

N-1 

<c N -2a2 + inf |E bn j,') -CN-2 
CN -2 E _,N - 2 nL 

n=o 01 

< cN -2a2 + llbN-ICN-1,NINllL2 

+ 11(bN-2CN-2,N-1 + bN-I CN-1, N- )ijN-1 IILO1 
<c N-(2a+312). o 
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Remark 4.4. These results do not follow automatically from [2] or [8], since 
we are dealing with an entirely different inner product geared towards the two- 
dimensional setting. They could, on the other hand, be used to establish insta- 
bility results like the ones in [2], now for the nonconstant coefficient operator 

1 d (r dA 
r dr kdr J 

Remark 4.5. It is not difficult to extend the results to a three-dimensional model 
scenario with the operator - I (r2 ), or model d-dimensional problems 
with symmetry group Sd-I . 

Remark 4.6. It is interesting that the Green's function no longer has the ra 
singularity used to prove (3.2) in Proposition 3.1, but that we may still prove a 
Wahlbin-like lower bound along the same lines (with uo = ra) to obtain 

IIeNIIL2 > c 
a 

N -4a 

which is valid only for a > 1 (i.e. corresponding to the convex case). 

5. SHARP L??-ERROR ESTIMATES FOR THE ONE-DIMENSIONAL MODEL 

To better understand how far one can go with error estimates for the p- 
version method, we derive various LOO-norm error estimates for p-version finite 
element solutions for the one-dimensional model problem considered in the 
previous section. We need asymptotic expansions of the various coefficients 
that appeared. 

Lemma 5.1. For the coefficients defined in (4.15), we have 

c 1 1 
0(n 3), 

Cn,n-l -4 +8 2+ (- 

Clf+4n 8n2 
1 3 

Cf,l= 4n2 
1 3 + 0(n-3), Cnn- -1 = il- 

4n 

1 53. Cn+ln -4n + 2 + O(n-3) 

The proof of the lemma is elementary, and hence is omitted. 
Now let us define 

(5.1) dN,k =Ck-l,kbk-l +Ck,kbk +Ck+l,kbk+l k > N+ 1, 
(5.2) d,N =cN,NbN + CN+1,NbN+1X 

(5.3) dN,N-1 = CN,N-lbN. 

Then, the error expression (4.25) can be rewritten as 
00 

(5.4) U-UN= E dN,kik +dN,NjN +dN,N-1jN-1. 

k=N+ 1 
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For the asymptotic behavior of {dN,k}, we have 

Lemma 5.2. There holds 

dN, (-i)k(1 + a)co(a)k-2a-2(1 +O(k1)), k > N+1 

dN,N ( 1)N+1 co (a) N-2al- (I + O(N-1)) 4 

dN, ( 1)NC(a) N-2 (1 + O(N-1)). 

The proof of Lemma 5.2 can be made by combining the results from Lemma 
5.1 and (4.10). 

Now, we are ready to give LOO-norm error estimates on u - UN. 

Theorem 5.3. Let a ? Z+. Then there exists a positive c so that 

(5.5) |U - UN1Loo(0, ) < cN , 

and the estimate is sharp. 
Proof. From [1, Formula 22.14.1], we have 

lPn? l)(x)l < n + 1, x E [1 ] 

Thus, 
ljj(r)j < n + 1, r E [0, 1]. 

Then, from (5.4) and Lemma 5.2, we get 
00 

Iu - UNI < E co(a)(1 + a) k-2a- 1 (1 + O(k-1)) 
k=N+1 

+ O() N-2a( + O(N-))) ) co(a) N-2a(1 + O(N-1)) 

< c(a) N-2a. 

To show that the estimate is sharp, we compute the error at r = 0. We have 

in(? = P? 1)-1)= (_-1)n In + 1). 
Hence, 

00 

U(O) UN(O) = E (-_l)k (l + a) co(a)k -2a2(1 + 0(k - 1)) (_-1)k (k + 1 ) 
k=N+l 

+ (-l)N+I COWa N -2at-I (I + O(N- 1 )) (- I)N (N + 1 ) 4 

+ (-l)NC0(a) N-2a-1(I + O(N-1)) (-1)N" N 
4 

00 

=-(I + a)co(a) E k-2a-I(l + O(k-1)) 
k=N+1 

_ co(a) N-2a(l + O(N-')) 
2 

= y co(a) N- +(N 
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where we have used the fact that 
00 

V k-2a-1 - 1 N-2a(1 +O(N- 2a 
k=N+l1 

which is evident from the following inequalities: 
00 00 0 

J r2a- dt < E k-2a-I < t-2a- dt. 
N+1 k=N+l N 

Thus, as long as a ? Z+ (which excludes the trivial cases of smooth monomial 
solutions), the estimate (5.5) is sharp. o 

It is a well-known phenomenon in error estimations of finite element solutions 
that usually the order of an LOO-norm error estimate is almost the same as that 
of an L2-norm error estimate. Comparing the above result with Theorem 4.5, 
we expect we can get higher-order error estimates in an LO?-like norm which is 
compatible with the Lo1 norm. Let us introduce a weighted LOO space, 

L' (O, 1) = {u measurable: U I IL (o, 1) = ess SUPrE (O, 1) I r u (r) I < oo}. 

Theorem 5.4. Let a 0 Z+. Then there exists a positive constant c such that 

(5.6) IIU - UN11L-(O, 1) < cN 

and the estimate is sharp. As a consequence, we have a superconvergence result 

max lu(r) - uN(r)l < c(I) N-2a-3/2 
rEI 

for any closed interval I c (0, 1]. 
Proof. From (4.21), we get 

r jn (r) = (ln (2r - 1) + ln+1 (2r - 1)) /2. 

Thus, by using (5.4), we find 
00 

r(u(r)-UN(r))= z dN,krjk(r)+dN,NriN(r)+dN,N-lriN-l(r)=E1 +E2, 

k=N+1 

where 

E l E (dN,k + dN,k-1) lk(2r-1) 
k=N+2 

+dN,N+llN+1(2r- l)+(dN,N+dN,N-1)lN(2r-1) 

E2= {dN,NlN+1(2r- 1) + dN,N-1lN-1(2r- 1)}. 

From Lemma 5.2, we find 

dN,k+dN,k-1 = O(k 2a-3), k>N+2, 

dN,N+1 = O(N ), 

dN,N + dN,N1 =O(N 2a-2). 
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Thus, 

[Eu ? <CN-2a-2. 

To deal with the term E2, we use the following two identities (cf. [1]): 

(5.7) ln(x) -ln+I(x) = (1 -X)Pn"'0)(X), 

(5.8) P-' ?)(x) + PI, )(x) +3/2 (1 + x) P( (x)( n+1 n + 
From (5.7) and (5.8), we find that 

n +3/2 
(5.9) ln(X) - ln+2(X) = n+ (1 -x) (1 + x) P( )(x). 

From Formula 8.965 in [9, page 1037], we have 

(1 - x)3/4(1 + X)314Pn1 1) (x) = g(x) n- 1/2 + 0(n-3/2) 

for some bounded, nonzero function g(x). Using (5.9), we then have 

ln(X) - ln+2(X) =n +3/2 (1 - x)1/4(1 + x)1/4g(x) n 1/2 +O(n ). 

Therefore, we have, again using Lemma 5.2, 

E2 = (_1)NCO N-2a-1 (lNI1(2r - 1) - lN+1(2r - 1)) + O(N2 ) 8 
= g(r) N-2a-3/2 + -2-2) 

where g is a bounded, nonzero function. Thus, the theorem is proved. o 

Similarly, from the expansion for the error u' - U/N, we have the following 
results. We omit the proofs of these results. 

Theorem 5.5. If a > 1, we have the error estimate 

IIU - UNIILOO(O, 1) < cN-22, 

and the estimate is sharp. When a < 1, there is no convergence of u/ -+ u' in 
L??(O, 1). 

Remark5.1. It follows that the W1 ?'-stability holds: IIUNIIW1OO(o,1) < 
C IujwI,Ioo(0O 1), if a > 1 . 

Theorem 5.6. There holds 

IIU - UNNIIL-(O, 1) < C N2a /2, 

and the estimate is sharp. As a consequence, for any closed interval I c (0, 1], 
we have 

max Iu'(r) - u' (r)I < c(I) N-2a- 1/2 
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6. NUMERICAL EXPERIMENTS 

We report the numerical results of a two-dimensional problem related to 
(1. 1), with the same sort of majorizing singularity, but with Neumann boundary 
conditions imposed weakly in order to guarantee a simple numerical implemen- 
tation of the boundary conditions for an exact solution 

u = ra sin(aO). 

Consider the V-shaped domain, Q, depicted in Figure 6.1. 
In our figure, a = 2/3, but we will vary a in the interval ( ,1). We then 

use the p-version of the Galerkin method with merely one element (= UQ) 
to compute numerical solutions to the problem indicated in Figure 6.2. 

If we let aQ+ denote the union of those three line segments bounding IQ 
on which we do not have u = 0 imposed, then we may define the numerical 
solution, UN E VN, to be 

JVUN.VvdX=j gvdy, VV E VN, 

where VN = WN o F. Here, F is the affine mapping defined in Figure 3.1 and 

WN= span {Li(s)Lj(t)}. 
i=o..,p 
j=l..,p 

We use here integrals of the Legendre polynomials, Li (k) = P(? '0) di, 
for i > 1 and Lo() = 1 , in order to have convenient analytical expressions for 
the Dirichlet forms and L2 inner products acting on pairs of basis functions 
(leading to sparse stiffness and mass matrices). The load (the boundary integrals 
involving gi) and the errors are computed using Simpson quadrature with 600 
nodes. 

Cl) = 2w 

a = 7r/(2w) 

FIGURE 6.1. V-shaped domain Q with reentrant corner of angle 2w 
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(9 uu= 

An- = 9 2 

a-X= Au = O \ an 1 

u = O 

FIGURE 6.2. Elliptic boundary value problem posed over 2 

We have computed up to p = 20; the observed rates of convergence in the 
L2 norm are depicted below: 

3.5 - 

3- 

2.5 

+: computed @ p=20 

line: 2*alpha+3/2 
2 + 

dots: 4*alpha & 2*alpha+1 

1.5 , I . . I . . 
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 

alpha 

FIGURE 6.3. Numerically observed L2 rate of convergence as 
dependent on a 

The rates of convergence in H1 all confirm the known rate of -2a. Al- 
though the numerical results for L2 are somewhat inconclusive, there is some 
indication that a conjectured rate of - min{4a, 2a + 3/2}, when the corner 
singularity is predominant, would be worth a proof. 
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