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STRONG CONVERGENCE OF NUMERICAL SOLUTIONS 
TO DEGENERATE VARIATIONAL PROBLEMS 

R. A. NICOLAIDES AND NOEL J. WALKINGTON 

ABSTRACT. Numerical approximations of strongly degenerate variational prob- 
lems of the form J(u) = fo F(u') + (u - f are considered, where F is 
assumed convex but may have intervals where F" = 0. It is shown that, 
in spite of the degeneracy, natural numerical approximations still converge in 
W1 P. Rates in weaker norms and the connection with nonconvex variational 
problems are also considered. 

1. INTRODUCTION 

We consider a one-dimensional variational problem of the form 
1 

J(u) =] F(u') + (u _ f)2 

where F is convex but vanishes on a finite interval. In this situation, mini- 
mizing sequences need not converge strongly in W ',P(O, 1). For example, if 
f = 0 and F is the convexification of the double-well potential shown in Fig- 
ure la, then the oscillatory sequence shown in Figure lb is minimizing. Clearly, 
the limit is zero; however, the derivatives only converge weakly to zero. While 
such undesirable behavior is possible in general, we show that the minimizing 
sequence, {Uh}h>O, obtained by minimizing over piecewise linear functions on 
a uniform mesh having N = 1 /h nodes does converge strongly, and we obtain a 
rate in a weighted norm. The only other results we know of concerning problems 
with such degeneracies are given in French [5]. The results in [5] give strong 
convergence of the derivatives away from the degenerate set in a weighted norm 
(cf. ?3 below), and, provided F' is nonzero on the degenerate set, it is shown 
that sgn(u') converges to sgn(u') on the degenerate set. 

The problem considered here is motivated from problems in materials sci- 
ence where the bulk energies are not convex [1, 6, 7]. In this situation, it is 
known that any minimizing sequence will oscillate, so that strong convergence 
is never achieved. However, such sequences have associated Young measures 
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FIGURE la. Double well energy FIGURE lb. A minimizing sequence 

and weak limits, and recently the authors have proposed algorithms to compute 
these quantities without having to represent highly oscillatory functions on dis- 
crete meshes. In one dimension the convergence of these algorithms reduces to 
the analysis of the degenerate problem stated above. In ?4 we briefly review 
our algorithm and discuss the implications of the results proved below. Note 
that it is necessary to include the low-order term in the functional J in order 
to get uniqueness. Moreover, without this term, minimizing sequences of the 
corresponding nonconvex problem would not necessarily develop fine-scale os- 
cillations. This contrasts with higher-dimensional problems, where boundary 
conditions may "compete" with the energy resulting in oscillatory minimizing 
sequences [1]. 

The techniques used in our analysis are applicable to quite arbitrary functions 
F. However, to reduce the technical detail, we consider only the (convexifica- 
tion of the) inhomogeneous Young problem, where F is the function shown in 
Figure 1a. The key step required to establish strong convergence is a "regular- 
ity" result, Theorem 2.1, which shows that the degenerate set is essentially an 
interval. In this situation, a detailed analysis of the numerical solutions on the 
degenerate set is possible. 

In the next section we introduce the discrete problem and show that the 
discrete solutions do converge strongly in the natural class of functions. In ?3 
we use Ekeland's lemma to establish a rate of convergence of the derivatives in 
a weighted norm, and finally in ?4 the connection with algorithms to calculate 
Young measures is brought out. We conclude this section with some notation. 
Wm P(O, 1) denotes the Sobolov space of functions whose mth derivative is 
p integrable, and Wom PP(O, 1) will denote the subspace whose traces vanish. 
Discrete solutions will be constructed on uniform meshes with N = 1/h nodes, 
h > 0, and the piecewise linear solutions constructed on such a mesh will be 
denoted by Uh, the continuous solution being denoted by u. By C and c we 
denote generic constants independent of h. 

2. STRONG CONVERGENCE OF THE NUMERICAL SCHEME 

2.1. Continuous problem. The variational problem we consider is 
I 

(1) ](u)= flu') + (U_f)2, U E U= W, o4 4(0 1),5 

where F is the convexification of F(p) = (p2 - 1)2, i.e., F(p) = F(p) if 
IPI > 1 and F(p) = 0 for IPI < 1. When f E L2(O, 1), strict convexity of the 
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low-order term guarantees that J is strictly convex. Indeed, for 0 < A < 1, 

J(Au + (1 -A)v) < AJ(u) + (1 -_A)J(v) _-(1 -i) I- V 11L2( 2 

Classical results from the calculus of variations then show that J has a unique 
minimizer. The following theorem characterizes the degenerate set where F(u') 
vanishes and establishes regularity of the solution on this set. 

Theorem 2.1 (Regularity). Let f E H1 (0, 1), and assume there is an interval 
[a, b] c [0, 1] (a < b) such that 

[a, b] = {x E [0, 1] I - 1 < f'(X) < 1}. 

Then there is a subinterval [a, ,B] c [a, b] such that [a, ,B] c E and IE\[a, fllI 
=0, where 

E = {x E (0, 1) I-1 < u'(x) < 1}. 

Moreover, u(x) = f(x) on [a, ,B]. 
Proof. The Euler-Lagrange equation for the variational problem (1) is 

-d F'(u') + 2(u - f) = 0 in W- l 4/13(0, 1), 

implying F'(u') E HI(0, 1). Clearly, F'(u'(x)) = 0 for x E E, so that 
(d/dx)F'(u'(x)) = 0 for a.e. x E E. The Euler-Lagrange equation then shows 
u(x) = f(x), and hence u'(x) = f'(x) for a.e. x E E. Since If'(x)l > 1 on 
(O, 1)\[a, b], it follows that IE\[a, b]l = 0. Define 

a =inf{x E [a, b]jf(x) = u(x)} and fi = sup{x E [a, b]jf(x) = u(x)}. 

Certainly IE\[a, /fl] = 0, so it suffices to show that u(x) = f(x) for a.e. 
X E [a, f]. This is easily deduced from the functional J itself. If u(x) does 
not equal f(x) on [a, JJ], one could lower the energy by making it so. o 

2.2. Discrete problem. We approximate the variational problem using a piece- 
wise linear approximation to u on (O, 1), and, for ease of exposition, assume 
that the mesh points are equally spaced a distance h = 1/N apart. Denote 
the associated space of piecewise linear functions that vanish at x = 0 and 
x = 1 by Uh, and for any continuous function f on [O, 1] denote by fh the 
piecewise constant function that takes on the values f, = f(ih) at the nodes 
xj=ih, i=0 ,..., N. We then approximate J by 

Jh(Uh) = F(uh)+ (uh-fh)2 

(2) N N-1 
= hF u h-u-) + E h(ui - f)2 + _(fo + fN) 

(ui = uh(ih) and fi = f(ih)) and minimize Jh over Uh. Analogous to the 
continuous problem, Jh is strictly convex in the discrete L2 norm, so that 
minima of these discrete variational problems exist and are unique. We begin 
by establishing that the sequence {Uh}h>O is a minimizing sequence for the 
original problem. 
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Lemma 2.2. (i) If f E C(O, 1), then J(Uh) -J(u). 
(ii) If f E H2 (0, 1), then 

J(Uh) - J(u) < Ch + iEn ||u Vh Wl, 4(0 1). 

Proof. Let Vh be the best projection of u onto Uh c U [2]. Then 

0 < J(Uh) - J(u) = J(Uh) - Jh(Uh) + Jh(Uh) - J(u) 
< J(Uh) - Jh(Uh) + Jh(Vh) - J(u) 

1 
? (uh_f) (Uh _ h)2 + (Vh f) -(Vh f)2 

+ J {F'(u')(v4 - u') + 2(u -f)(Vh - u)} 

+ J F"(c)(v4 - U')2 + (Vh-)2 

o 
? (Uh-)_ (Uih _ h)2 + (Vh-h -(Vh f)2 

+ a F"(4)(v_-U')2 + (Vh-u)2, 

where 4(x) E (u'(x), vI(x)) by Taylor's theorem, and the Euler-Lagrange equa- 

tion was used to derive the last line. The theorem now follows from the fact 

that integration of the piecewise constant functions f etc. is equivalent to the 

trapezoid quadrature rule, which converges for any continuous function and has 

quadrature errors of size Ch2 for both piecewise linear functions bounded in 

H1 (O, 1), and functions in H2(0, 1). o 

Lemma 2.3. Let Uh be the solution of the discrete problem and f E H2(O, 1); 
then 

IU - Uh IIL2(O, 1) < J(uh) - J(u). 

Proof. Direct computation shows 

1 

(Uh) - J(u) = J(Uh -u)2 + F"(c)(uh-u')2 

1 

+ j {F'(u')(u' - u') + 2(u -f)(uh - u)}. 

Note that F" > 0 since F is convex, and that the last line vanishes by the 

Euler-Lagrange equation. o 

2.3. Convergence of the discrete scheme. While strict convexity of J in the 

L2(0, 1) norm implies that a minimizing sequence will converge strongly in 
this norm, a less trivial observation is that the derivatives will converge on 

the set where F(u) is strictly convex, i.e., on (O, 1)\E. We show this using 

recent results of Kinderlehrer and Pedregal [8] who establish the existence of 

Young measures for minimizing sequences bounded in W1 ,p for finite p. The 

following theorem is a special case of their result and is true in much greater 

generality than stated here. 
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Theorem 2.4 (Kinderlehrer and Pedregal). Let {Vk} be a weakly convergent 
sequence in W1 '4(0, 1) with limit v satisfying 

t1 t1 

F(vl) F(v'). 

Then, for a suitable subsequence, there is a corresponding Young measure v = 
{lx}xE(O,1) such that V (v') - q in L1(O, 1) for any continuous function y 
satisfying IV(S)I < C(1 + Is14), where 

W(x) = (ig, vx) j- | (s) dvx(s.). 

Lemma 2.5. Let {uh}h>o denote the solutions of the discrete problems (2); then 

jO|1)\E Iu' - u'14 _ o 

(,1)\E 

Proof. We apply the above theorem to the minimizing sequence {Uh} obtained 
in ?2.2. Since J is lower semicontinuous, we obtain 

J(u) = lim J(uh), h--+O 

F(u') + (u _ f)2 = lim F(u)+ (Uh 
- f)2, 

F(u') = lim 1F(u;). 

Putting V = F, we conclude that F(u') = F. Next, Jensen's inequality gives 

F(u'(x)) = F (jsdvx(s)) < F(s)dvx(s) = F(x), 

and additionally, if F is strictly convex at u'(x) (i.e., F" > 0), then F(u'(x)) 
< F(x) unless vx = 3u'(x). Since F(u') = F, it follows that vx = 5u'(x) at 
points where Iu'(x)I > 1, i.e., on (0, 1)\E. 

We now choose V(s) = Is14 to obtain 

[ 

IU (X)14 dx -1 14, vx) dx = J IU'(X)14 dx. 
(0, 1)\E (0, 1)\E (0, 1)\E 

Since L4((O, 1)\E) is a uniformly convex space and u' converges weakly to 
u', the convergence of the norms implies strong convergence. O 

Theorem 2.6. Suppose the inhomogeneous term, f, in (1) is continuously differ- 
entiable and there is a pair of real numbers a < b such that 

(a, b) = {x E (O, 1)1 - 1 < f'(x) < 1}, {x E [0, l]I If'(x)j = 1} c {a, b}. 

Let {Uh}h>0 denote the solutions of the discrete problems (2); then 

U/ - u'14 __ 0. 

Proof. Observe that it is sufficient to show that the derivatives converge on the 
set [a , I?] given by Theorem 2.1. The proof proceeds in three steps. In the first 
step we show that if F'(u') = 0 on two elements (xi1I, xi) and (Xk_l, Xk) 
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in [a, ,6], then fj = uj for all i < j < k- 1 . We next show that for arbitrary 
e > 0, F'(uh) must be zero on at least one element in each of the intervals 
[a, a + e] and [,. - e, ,.], for h sufficiently small. Finally, we use Theorem 
2.4 to show that errors on intervals of size e are negligible. 

We begin by considering the Euler-Lagrange equation for the discrete problem 
(2), 

F (u)-F (ui+1) + 2h(ui-ffi)=, 1 ?i<N-1 

where u' = (ui - ui1 )/h is the derivative on the ith interval. Summing these 
equations from i to j - 1 gives 

j-i 
F'(ut) - F'(u',) + 2h Z(u, - f,) = 0. 

I=i 

Now suppose that F'(u9) = F'(u') = 0 for elements i and k contained in 
[la, ffl. We show that uj = fj for i < j < k - 1 . Suppose not. Then, without 
loss of generality, assume that F'(uti+) $ 0 and consider the situation where 
F'(ui+0 > 0. Then uW+, > 1, and the Euler-Lagrange equation gives 

ui - fi = F'(u+01)/2h > 0. 

Let j be the first index in {i+ 1, i+2, ... , k} where F'(uj) < 0. For each 
i+ <1 < j,we have u' > 1, so that ul+I - fi+ > ul - f, (recall If I < 1), 
i.e., 

Putting this into the summed Euler-Lagrange equation gives a sum of strictly 
positive quantities being zero, a contradiction. A similar argument for F'(u'+l) 
< 0 excludes this possibility too. 

We next show that, for h sufficiently small, there are always elements near 
a and ,6 where F' vanishes. 

Consider an arbitrary interval I = [x, x +6e] C (a , ,). Suppose that F'(u') 
does not vanish in I. We then claim that it must change sign. If it did not, 
suppose that it was positive (or negative), so that u' > 1 (or < -1) . Since, for 
some 3 > 0, jIf I < 1 - a on [x, x + e], it follows that Uh -f is monotone 
and 

vx+8 

(3) _ j -f)2 > 6332/12 = C(e). 

Since u = f on [a, I?], it follows that huh - UIIL2(o 1) > c(e), which cannot 
persist for small h since Uh -+ U in L2(0, 1) . 

We now show that the oscillations implied by the above argument are incom- 
patible with the discrete Euler-Lagrange equation. Again assume that F'(u') 
does not vanish on [x, x + e] c (a, p6), and assume that h is sufficiently small 
to guarantee F'(u') changes sign twice in this interval (repeating the above ar- 
gument with e/2 if necessary). Note that at nodes where F'(u') changes from 
positive to negative, the Euler-Lagrange equation gives ui < fi, and where it 
changes from negative to positive, ui > fi. This immediately leads to a contra- 
diction if we consider what happens between two consecutive sign changes in 
F'(u'), say at nodes xi and xj . Suppose for the sake of argument that F'(u') 
is positive for x < xi, negative for x E (xi, xj), and positive for x > xi. 
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Between xi and xj, u' < -1 while jf < 1, implying Uh - f is monotone 
decreasing. However, the Euler-Lagrange equation implies ui - fi < 0 and 
uj - fj, > 0, a contradiction. 

The above two paragraphs establish that if e > 0 and [x, x + e] c (a, /3), 
then F'(u') = 0 on at least one element in [x, x + e] for h sufficiently small. 
Applying this to intervals of the form [a + e, a + 2e] and [,. - 2e, ,. - e] shows 
that, for h sufficiently small, ui = fi = u(xi) for all nodes in [a + 2e, ,. - 2e], 
and hence u' -- u' on all such intervals. 

Finally, we establish that, for any x E (0, 1), X+e lu 14 -- 0 uniformly in 
h as e -O 0. This follows directly from the fact that IuhI4 converges weakly in 
L (0, 1), a consequence of Theorem 2.4. o 

3. RATES OF CONVERGENCE 

While the proof above provides insight into the behavior of the numerical 
scheme on the degenerate region, very little is known about the behavior on the 
complement, where the problem is "almost" degenerate, i.e., when Iu'l 1. To 
accommodate this, we introduce the following weighted norm on 140 (0, 1): 

~~~~~~~~~~~~~~~~~~1 
liv 12 J (U/2 - l)V2+ V/2+j v2 

(recall that E = {x: Iu'(x)I < 1}). Let M denotethecompletionof V01 4(O 1) 
under this norm, and extend the definition of J to all of M by 

J(v) = F(v') + (vf)2 if v E W ' 4(0,1 ), 
00 otherwise. 

This extension by infinity guarantees that J: M -* ]R u {oo} is lower semicon- 
tinuous, so that the following lemma, due to Ekeland, is applicable. 

Lemma 3.1 (Ekeland). Let M be a conmplete metric space with metric d, and 
let J: M -* ]R u {oo} be lower semicontinuous, bounded from below, and not 
identically infinite. Then for any e, 3 > 0 and any u E M with 

J(u) < inf J +e,2, 

there is an element v E M strictly minimizing the functional 
,2 

Jv(w) = J(w) + - d(v, w). 

Moreover, 
J(v) < J(u), d(u, v) < . 

A proof of this lemma may be found in [4]. With uh denoting the solution 
of (2), Lemma 2.3 gives 

J(uh) < J(u) + c(h)2 = inf J + c(h)2, 

where c(h) < Ch if the minimizer u e W2'4(O, 1). Application of Ekeland's 
lemma with e = 6 = c(h) gives Vh E M such that hluh - Vhll < c(h) and 
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J(Vh) < J(Uh) < 0, implying Vh E J ls4(O 1) . Also, since Vh is a minimizer 
of the modified problem, we obtain 

J(Vh) < J(Vh + w) + c(h)IIwI|, w E M, 

or, replacing w by ew for w E JTl 4(O, 1) and letting e - 0 gives an Euler- 
Lagrange inequality 

I 

jF'(v)w'+ 2(vh-f)w < c(h)IIwII, w E V0 ,4(O, 1). 
h 

Subtracting this from the Euler-Lagrange equation for the original problem gives 
I 

j[F'(u') - F'(v')]w' + 2(u -Vh)W ? c(h)IIwII, w E W 'l(O, 1). 

In particular, putting w = U - Vh gives 
1 

(4) |[F'(u')- F'(v') ] (u- v) + 2 (u-V)2 < c(h)IJu-|. 

This estimate will yield a rate of convergence of Vh and hence of Uh in the given 
norm II * II . The following two inequalities pertaining to F will be required in 
the theorem below. If IbI > 1 and lal > 1, then 

[F'(b) - F'(a)](b - a) = 2[(b + a)2 + (b2 + a2 - 2)](b - a)2 

> 2(b2- 1)(b - a)2, 

and if Ibl > 1, lal < 1, 

[F'(b) - F'(a)](b - a) = 4(b2 - 1)b(b - a) 

= 2(b2- 1)[(b - a)2 + b2 -a2] 
> 2(b2 -1)(b - a)2. 

Theorem 3.2. Let 11 * 11 be the norm defined above, and let E [a, /3] denote 
the degenerate set as in Theorem 2.1. If the inhomogeneous term f E H2(0, 1) 
satisfies f'(x) < 1 - 3 in neighborhoods of a and /3, then 

IIu - UhII < Cc(h)113. 

Otherwise, if If'(a)l = 1 and/or If'(fl)I = 1, and 0 < c < f" or f" < -c < 0 
in a neighborhood of a and/or ,B, then 

IIu - UhII < Cc(h)1/5, 

where c(h)2 = J(uh) - J(u) < Ch2 + infwhEuh IIwh - UII2j. 

Proof. We begin by first estimating the error on the nondegenerate set (0, 1)\E 
where lu'l > 1 . The inequalities satisfied by F show that 

j l]\E[F'(u') - F'(vh)](u' - v/) > 2 (U2 - 1)(U' - )2 
1O]l\E [, 1]\E 

We next estimate the error on the degenerate set E = [a, /3] where lu'l < 1. 
The proof of Theorem 2.6 showed that there exists e(h) > 0 such that the 
discrete nodal values of Uh exactly interpolated u on E, = [a + 2e(h), ,B - 
2e(h)], and in this instance standard approximation theory shows that 

IIU'- Ui IIL2(E,) = lf' - U4IIL2(Ee) ? Ilf"IIL2(Ee)h < Ch. 
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The triangle inequality and Lemma 3.1 then give 

IIU'- VhIIL2(Ee) < IIU' - + E IIU - V|IIL2(E) < Ch + c(h). 
The error on the intervals of size 2e is estimated by dividing them into two 
pieces, E+ where IvlI > X/2 and E- where IvIl < v/2. Since lu'l < 1, it 
follows that 

IIU V, 1II 2(E-) < Ce (h), 
and 

L[F'(u') - F' (v)](u ) = j(v.2 - 1)v, (v - u') > IIU' - V, 112(E+). 

Combining the above estimates with equation (4) gives 

I 

IIu - vhII2 < (1/2) j{[F'(u') - (vh)](u - v) + 2(u- vh)2} 

+ IIU' -VIhL2(Ec) + IIU - hVIL2(E-) 

? (1/2)c(h)1ju - vhll + [Ch + c(h)]2 + Ce(h) 
? C[c(h)2 + h2 + e(h)]. 

Finally we estimate e(h). Equation (3) gives 

-332 < CIIU - Uh IIL2(o 1) 
? Cc(h)2. 

If If'l < 1 - 3 on neighborhoods of a and f,, this gives an estimate 

e < Cc(h)2/13; 

otherwise, if If'(a)I = 1 or If'(fl)I = 1, the proof of Theorem 1 shows that 
it is necessary to estimate f' on intervals of the form [a + , a + 2e] and 
[,B - 2e, f, - e]. The assumption on the second derivative of f will then show 
that If' I < 1 - ce on these intervals, giving 

e < Cc(h)2/5. 0 

4. APPLICATION TO CALCULATION OF YOUNG MEASURES 

Recently, the authors have proposed an algorithm to calculate generalized 
solutions of nonconvex variational problems. A generalized solution is a pair 
(u, v), where u is the weak limit of a minimizing sequence and v is the as- 
sociated Young measure. In general, u will be a slowly varying function, and 
v characterizes the fine oscillations that develop in the minimizing sequence. 
This motivates the development of algorithms to calculate these quantities, since 
they can be well represented on finite meshes in contrast with the minimizing 
sequences, which develop infinitely many oscillations. Consider the inhomoge- 
neous Young problem given by 
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where F is the double-well potential shown in Figure la. If (u, v) is the 
generalized solution, then u solves the convexified problem (1) and' 

I={ u'(x) if Iu'(x)I> 1, 
Vx A (x)3+i + ( - A(x)) Li if Iu'(x)I < 1, 

where A(x) = (1 + u'(x))/2. Collins, Kinderlehrer, and Luskin [3] consider the 
numerical approximations obtained by directly minimizing J and show that 
infinitely many oscillations will develop as the mesh is refined; moreover, if the 
oscillations are suitably averaged, it is possible to estimate A. 

For this particular problem, the algorithm proposed by the authors in [9] 
reduces to approximating minima of 

1~~~~~~~~~~~~~~~~~ I(u, A, b) = F[u'-(l-A)b + (l-A)F[u' +Ab] +(U-_f )2 

where u E W1 4(0, 1), b E L4(0, 1), and A E LO(O, 1) is subject to the 
constraint 0 < A < 1. The corresponding discrete problem is to minimize 

1~~~~~~~~~~~~~~~~~~~~ 
I(Uh, Ah, bh) = j AhF[Uh -(1 -Ah)bh] + (1 -Ah)F[Uh +ahbh] + (Uh-fh) 

over the space of piecewise linear functions for Uh and piecewise constant 
functions for Ah and bh, 0 <_ Ah < 1. It is elementary to show, by first 
minimizing over A and b (resp. Ah and bh), that u (resp. Uh) must solve the 
convexified problem (1) (resp. (2)). It then follows that the strong convergence 
and rates given by Theorems 2.6 and 3.2 for the convexified problem are enjoyed 
by {Uh}h>O, the solutions of the approximate generalized problem. 

The Young measure implied by this algorithm is 

V = iu'-(1-A)b + ( - A)u'+AbA 

Note that the representation of this measure is not unique. Indeed, we can 
change the sign of b if we interchange A with 1 - A, and with b = 0, A 
arbitrary, or A = 0 or 1 and b arbitrary, the measure reduces to 3u, These 
ambiguities are eliminated if we agree to select b > 0 and 0 < A < 1, and 
consider A undefined when b = 0. In this situation, b(x), bh(x) E {0, 2}, so 
that 

b = 2XIu,I<I, bh = 2XIuhI<1, 

and 

= -(1 + U')Xiu1i<i, 'h = O(1 + U )XIu/1<1, 

where X(.) is the characteristic function of the indicated set. Since Uh converges 
strongly in W1 4(0, 1) to u, it follows that Ah and bh converge almost every- 
where to A and b (for a suitable subsequence). Since they are also bounded 
in L??(O, 1), it follows that they converge strongly in LP(0, 1), 1 < p < xc, 
and weakly star in L??(0, 1). Convergence of Ah and bh then implies {vh} 
converges weakly star to v . 

1 3(.) is the Dirac measure concentrated at the indicated point. 
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