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THE FABER POLYNOMIALS FOR ANNULAR SECTORS 

JOHN P. COLEMAN AND NICK J. MYERS 

ABSTRACT. A conformal mapping of the exterior of the unit circle to the exterior 
of a region of the complex plane determines the Faber polynomials for that 
region. These polynomials are of interest in providing near-optimal polynomial 
approximations in a variety of contexts, including the construction of semi- 
iterative methods for linear equations. The relevant conformal map for an 
annular sector {z: R < IzI < 1, 0 < Iargzl < rI}, with 0 < 0 < 7r, is 
derived here and a recurrence relation is established for the coefficients of its 
Laurent expansion about the point at infinity. The recursive evaluation of scaled 
Faber polynomials is formulated in such a way that an algebraic manipulation 
package may be used to generate explicit expressions for their coefficients, in 
terms of two parameters which are determined by the interior angle of the 
annular sector and the ratio of its radii. Properties of the coefficients of the 
scaled Faber polynomials are established, and those for polynomials of degree 
< 15 are tabulated in a Supplement at the end of this issue. A simple closed 
form is obtained for the coefficients of the Faber series for I /z . Known results 
for an interval, a circular arc, and a circular sector are reproduced as special 
cases. 

1. INTRODUCTION 

The Faber polynomials for particular regions of the complex plane have been 
used to provide polynomial and rational approximations in a wide variety of 
different contexts. Near-minimax polynomial approximations may be obtained 
by truncating Faber series [15, 9, 1], by economization of Faber series [12] 
and, for solutions of linear differential equations, by the Lanczos T-method [2, 
3] and by Clenshaw's method [14]. Rational approximations based on Faber 
series were discussed in [11] and [13], and applications to iterative methods in 
numerical linear algebra appear in [8, 7, 29]. 

The Faber polynomials for any closed bounded continuum D in the complex 
plane are associated with a certain exterior con-formal map. According to the 
Riemann mapping theorem (e.g., [21, p. 380]) there is a unique function X, 
such that 

(1.1) 0(oo) = oc, lim -1 
Z-400 z 
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which maps the complement of D in the extended z-plane conformally onto 
{w: IwI > p}, the complement of a closed disc of radius p . The number p is 
called the transfinite diameter, or logarithmic capacity, of D. The function X 

has a Laurent expansion 

b(z) = z + o + +l +. z 

about the point at infinity. The Faber polynomial of degree n is obtained by 
deleting all negative powers of z from the corresponding Laurent expansion 
of [q(z)]n. For the unit disc, the Faber polynomial of degree n is zn, and 
multiples of the Chebyshev polynomials of the first kind are the Faber polyno- 
mials for an ellipse with foci at (? 1, 0) and, in particular, for the real interval 
[-1, 1]. 

Properties of the Faber polynomials and Faber series are described in the 
books of Markushevich [24, v. 3, pp. 104-112], Smirnov and Lebedev [28, 
Chapter 2], Henrici [22, Chapter 18] and Gaier [17, pp. 42-57], and in a sur- 
vey article by Curtiss [6]. The Faber polynomials are known explicitly only 
for a few types of domain. Those for certain lemniscates appear in [24], El- 
liott [15] computed the coefficients of some Faber polynomials for the semidisc 
{z: Izi < 1, Rez > 0} and for the square {z: IRezl < 1, lImzl < 1}, and 
Ellacott [10] expressed the Faber polynomials for a circular arc in terms of 
Chebyshev polynomials. Coleman and Smith [4] derived a recurrence relation 
for the coefficients of the Faber polynomials for circular sectors, and provided 
numerical values of those coefficients for polynomials of degree up to i 5 for se- 
lected sectors [5]. Gatermann et al. [18] modified the algorithm of [4] to obtain 
a form involving only rational coefficients and therefore amenable to computer 
algebra systems; the algebraic forms in [19] allow the computation of the Faber 
polynomials of degree up to 20 for an arbitrary circular sector. In other cases, 
where explicit formulae were not available, numerical algorithms for conformal 
mapping have been used to generate Faber polynomials (see Ellacott [9], Starke 
and Varga [29] and Papamichael et al. [25]). 

Virtues of suitably normalized Faber polynomials as residue polynomials for 
matrix iterative methods are described in [291. In that case the Faber poly- 
nomials are required for some bounded region which contains the estimated 
locations of matrix eigenvalues produced by the Arhioldi method or otherwise. 
Since one is working with a rough prediction of the eigenvalue spectrum it is not 
necessary for the chosen enclosing region to bear any specific relation to the es- 
timated eigenvalues. Professor G. Opfer suggested to one of the authors that an 
annular sector would be a useful general-purpose region which, by scaling and 
rotation, could be adjusted to enclose any estimated eigenvalue cluster bounded 
away from the origin. That suggestion motivated the work of the present pa- 
per, which provides explicit formulae for Faber polynomials for a sector of an 
annulus. Results for circular sectors are included as a special case. The main 
theoretical results are summarized in the following theorems. 

Theorem 1. The complement of the unit disc {w :w I < 1} is mapped confor- 
mally onto the complement of the annular sector 

Q = {z: R < Iz < 1, 0 < 6Iargz I <? }, O < 0 < r, 
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by 

B(x)dx 
Vg(w) = -exp [J2 xA(x) dx 

where 

4 [(w2 + 1)(a2 - a2) - 2w(a-2 + a2)] 

and 

A(x) = [(x - a2)(x - a-2)] , B(x) = [(x - b2)(- b-2)] 

The parameters a and b satisfy the equations 

fb2[ 
0(b2- x)(b2- X) 2 dx 

J2 [(X - a2)(a-2 - X)]X 

and 

logR 
b 

x-[( 2)(b2 1X) dx 

Theorem 2. The transfinite diameter of the annular sector Q defined in Theorem 
1 is 

(1 -a4) [[ a2 a2+a-2 _b2 b-2d 
4 exp[J A(x)[A(x) + B(x)] j 

Theorem 3. The coefficients of the Laurent expansion 

yi(w) = p(w + ,o + fl1w'- + .-) 

of the function defined in Theorem 1 may be generated recursively. Given a 
and b, in the notation of Theorem 1, let 

2a2 (I + b4) 2___a u= b2(1 - a4) a4' 

Let ai=O for i<O, ao= 1 and,for k>O, 

(k + l)ak+l = (2k + 1)(s - u)ak-2k(s2 - su - l)ak-l 

+ (2k - 1)(s - u)ak-2 + (1 - k)ak-3 

and 
ck+l = ak+1 - sak + ak-l. 

Then go = cj9,f = c2 and, for n > 2, 

n-I 

(n + l )in = Cn+ 1- lCn_zBli. 
1=1 

Theorem 4. The Faber polynomial of degree n for the annular sector Q defined 
in Theorem 1 is Fn(z) = pnpn(z), where p is the transfJnite diameter of Q. 
The scaled Faber polynomial may be written as Fn(pz) = zn + n-1 (Z), and the 
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ancillary polynomials {qn} are generated recursively, in terms of the Laurent 
coefficients of Theorem 3, by the formula 

n-I n-I 

On (Z) = (Z - fio>;nI (Z) E Afkqn-k- 1 (Z)- Z flkznk _ (1 + n)8n 
k=1 k=O 

Theorem 5. The Faber series for z-', expressed in terms of the scaled Faber 
polynomials and the notation of Theorem 1, is 

1R(-4pa)2 +a2 

Theorem 1, which is proved in ?2, provides an expression for the map- 

ping function qi, whose inverse is a multiple of the function 0 of (1.1); if 
z = VI(w), then +(z) = pw, where p is given by Theorem 2. Section 3 estab- 

lishes the formulae collected in Theorem 3, which allow the recursive evaluation 
of the Laurent coefficients essential for the computation of the Faber polynomi- 

als by the recurrence relation of Theorem 4. In addition to proving Theorem 4, 
?4 explores some of the properties of the ancillary polynomials {IOn } and shows 
how explicit expressions for those polynomials may be obtained with the help 
of a computer algebra system such as REDUCE or Mathematica or Maple; the 

Supplement provides all that is required to determine the scaled Faber polyno- 
mials of degree < 15. The numerical evaluation of the parameters a, b, and 

p, for a given annular sector is discussed in ?5. 

Norms of Faber polynomials are of interest in connection with their use in 

approximations. Section 6 summarizes some results which are generalizations 
of those of Gatermann et al. [ 18] for circular sectors. As an example of a Faber 

series, the expansion of l/z is investigated in ?7, where we find the simple 

formula stated in Theorem 5. 

2. THE CONFORMAL MAPPING 

The aim of this section is to calculate an analytic function, yI(w), which 

maps the complement of the unit disc, A = {w:Iw I < 1 }, conformally onto the 

exterior of the annular sector Q = {z: R < IzI < 1, 0 < I argzI < rI}, where 

O < 6< Xr (see Figure 1). There is no loss of generality in this choice since 

rotations and magnifications allow us to apply the results to any annular sector. 

For example, to work with the annular sector {z: R < IzI < 1, I arg zI < 0} we 
make the transformations z - z and w - -w, the latter being required to 

maintain the form (1.1) . 

The domain obtained by cutting (C\Q along its intersection with the negative 

real axis is mapped conformally onto the shaded domain E of Figure 2 by the 

function z -- log z, where the principal value of the logarithm is taken. The 

domain E is the interior of an infinite polygon with finite vertices at the points 
logR ? i7r, logR ? iG, ?iO, and ? i7r. Conversely, the function z - ) ez 

maps E conformally onto the cut version of C\Q, and the infinite edges of 

the boundary of E are mapped onto the cut. 

A Schwarz-Christoffel transformation may be used to map the upper half- 

plane I1 = {v: Imv > O} conformally onto the domain E in such a way that 

the real axis is mapped onto the polygonal boundary in Figure 2 and the finite 
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FIGURE 1. The annular sectorQ 
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Then 

(2.2) u(v) - u(a) = KJv B(w 2) dw 

K VB(w)-A(W2) dw + Klog () 

(2.3) K f cosha-coshfl dx+ Klog (v' 
J2 A (x) [B(x) + A(x)] al 

where we have written 

(2.4) a-2 =ea and b-2 = ef. 

To determine the constant K, we note that the positive real axis is mapped 
onto the upper boundary of the polygon in Figure 2, and the lower boundary 
is the image of the negative real axis. Therefore, for all v E (0, a), 

27ri = u(v) - u(-v) = K [log(a.) -log(-2a)] = -K'ri, 

from which K = -2. Furthermore, we require 

u(a) = i7t, 

and (2.2) becomes 

U(V) = i7-j2xAB(x) dx. 

If we assume that a and b can be determined for any given annular sector 
(see ?2.1), the rest of the argument is similar to that of Coleman and Smith 
[4]. A composition of the Joukowski function w -+ 2(w-1 + w) and a linear 
transformation gives 

(2.5) 4= 2 (W + 1) sinh a - 2w cosh a 
2w i 

which maps C\A, the complement of the unit disc A, conformally onto the slit 
plane C\J, where J is the interval [-a-2, -a2]. Let L denote the interval 
(-oo, 0] of the real axis. Then the function 4 - i4- maps the cut plane C\L 
conformally onto the upper half-plane 171. 

By composition of the mappings described here we obtain 

(2.6) z=-exP [dx 

which maps C\L conformally onto the cut version of C\Q. At the end of ?2.2 
it will be shown that the cut introduced in C\Q may be removed and that C\L 
is then replaced by C\J. 

2.1. Defining equations for a and b. The symmetries inherent in our choice 
of the preimages of the vertices of the polygon, under the Schwarz-Christoffel 
map, preserve the relationships, which are evident in Figure 2, between the 
lengths of the edges. The two distinct lengths which arise are 

7C - O = i [u(b) - u(a)] 
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and 
-logR=u(b)-u (b-). 

These equations, which may be written as 

(2.7) fb -[ (b- x) (b -X)] 
2 

dx 
72 _(x -a2)(a-2-x)_ X 

and 

(2.8) logR = 
b 

J 
x 

[x - b2)(b - x)J dx 

uniquely determine 0 and R for any given a and b such that 0 < a < b < 1 . 
Furthermore, as the geometrical interpretation in Figure 1 requires, 0 < 0 < X . 
Since the integrand in (2.7) is nonnegative, the right-hand inequality is true 
and, since b2 + b-2 is a decreasing function of b, 

(2.9) 7t-06< f7xd=- 2 sin-'(a ) 
Ja)2[(X -a2)(a-2 - x)]+ X 2 ) 

in particular, 0 > 0. Equation (2.8) may be expressed in a form which is more 
useful for numerical computation, by regarding its right-hand side as a sum of 
integrals on [b2, 1] and [1, b-2] . Making the transformation x -+ x- in the 
second integral, we obtain 

(2.10) logR =-2 1 b[(x-; 2)(b ] dx 

The integrals in (2.7) and (2.8) may be expressed in terms of elliptic inte- 
grals of the first and third kinds. In a standard notation [27] we find 

ff 0 12abb[C (7tl k)+ 2 _ -2) 

x ( -ak k - (7! 2 k) 

and 

log R = 2b2 [CF ( 2X l + (b - a2 

>< {f (, k2, ki) - a2 
- 
I (2 ' k2 Xki)} 

where 

k= Ia2b2, ki (l.- a2b2) X k2 = (I a2b2), 

and 

(2.11) C = 2(cosh a - coshf,). 

2.2. Formulae for y,(w). The mapping function V/ may be written in several 
different ways, which we list here for later reference. 
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By using the change of variable x -+ x-l in the first formula quoted, by 
taking a-l as reference point instead of a as in (2.2), and by using the sub- 
stitution x x-I again, we obtain 

(2.12a) Z= V(w)= -exp [- xA(x) dx] 

(2.12b) exp [f1 xA dx] 

(2.12c) -Rexp [ xA(x) ] 

(2.12d) -Rexp j ( ) dx] 

where 

4 = 2 [(W2 + 1) sinh a - 2w cosh a]. 

In some cases, particularly if the integration interval may include the origin, 
it is preferable to remove the logarithmic term from the integral, as in the 
derivation of (2.3). Corresponding to the formulae (2.12), we have, with C 
asin (2.11), 

(2.13a) z = a2C exp [j2 A(x)[A(x) + B(x)] dx] 

(2.13b) = a24 exp [ A(x[A + B(] ] 

(2.13c) a2 P[/;~~2 A(X)[A(x) +B(x)]dX] 
(2.13c) = exp [2; A(x)[A(x) + B(x)] dx] 

[2-L?7 A(x)[A(x) + B(x)] d] 

Other forms, which do not involve the intermediate variable 4, may be de- 
rived from (2.12). For example, the change of variable 

x = j2 [(2 + 1) sinh a - 2, cosh a] 

applied to (2.12b) gives, after some algebra, 

(2.14) z =y(w) =exp [L| 2+)i 
- 2T2 I + 1)1 d/] 

where 

(2.15) t= cosha - b2 cosha - b-2 
sinh a sinh a 
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By combining these definitions with (2.4), it is easily seen that iti < 1 and 
IT < 1 for 0 < a < b < 1. 

To complete the proof that the function y, provides the required mapping 
from C\A to C\J, it is necessary to show that we may remove the cuts intro- 
duced in constructing V/. Let 

x(C) = a2 exp A(X) [A(X) + B(x)] ] 

= a2 exp 
[-a2 

A(x) [A(x) + B(x)] 
[1 2ex Cdx] 

The denominator of the integrand is a single-valued analytic function in C\J, 
the region of the complex plane exterior to the slit J, and it does not vanish in 
that region. Integration gives a single-valued analytic function in C\J and the 
identity of the two integrals shows that it remains finite as C -+ 00. It follows 
that x(4) is a single-valued analytic function in C\J and, consequently, 4x(4) 
is also single-valued in C\J. Since the part of the interval L which lies in 
C\J is mapped onto that part of the negative real axis which lies in C\Q, the 
function yi given by (2.12) and (2.13) maps C\A conformally onto C\Q. 

2.3. The transfinite diameter. Given the mapping z = yi(w), we now define 

(2.16) p= lim V/(w) 
w -00 w 

and q(z) = pVy-'(z), where y-' denotes the inverse mapping of yi. Then 
q+(z) will map C\Q conformally onto the complement of the disc {w: Iwj < p}, 
so the number p is the transfinite diameter of the annular sector Q. As w - 

00, 

4= -wsinha + 
2 4 + (w)] 

Therefore, from (2.13a) and (2.16), 

(2.17) p 4=(1a) exp [ja4 A(x)[A(x) + B(x)]dx] 

2.4. Special cases. There are three special cases which provide useful checks on 
the mapping, the formula for the transfinite diameter and the Faber polynomials 
themselves. 
Case (i): b = a. A real interval 

When b = a, the equations (2.7) and (2.8) give 6 = X and R = a4 
Consequently, the annular sector Q becomes the interval [-1, -R] of the real 
axis. 

From (2.3) it is evident that 

u(v) = ir-21og () 

when b = a. Therefore, 

z = eu = a2C = 4 (w +-) (1 - R) - Iw(1 + R), 
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which correctly maps C\A onto the complement of the real interval [-1, -R]. 
When b = a, the integrand in (2.17) vanishes, so 

(1-a 4) 1 I- ) p=(_ = )=(1 -R). 
4 4 

Case (ii): b = 1. A circular arc 

When b = 1, the integral in (2.8) vanishes to give R = 1, and (2.7) gives 
(see (2.9)) 

(2.18) 6=2sin-(a221) 

The annular sector Q then degenerates to an arc of the unit circle lzj = 1, of 
half-angle X - 0 . 

In this case, T=t in (2.14), and 
[F ~2 - 2tjs + 1 

y(w) = -exp [ 2 --2ucotha+ 1)d] 

2 fw d,u = w exp sinh a P u2- 2,u coth a++ 

The remaining integral is elementary, and the result is 
w(wtanh a - 1) 

(2.19) z = V/(W) = w-ah2 w -tanh a 

which correctly maps C\A onto the complement of the circular arc 

{z: jz = 1, 0 < Iargzl < ?}, 
where 0 is given by equation (2.18). 

From the expression (2.19) for y,(w), the transfinite diameter of the arc is, 
a I1-a2\ 0 

p = tanh - = c2 cos - 2 \1 +a ,2 

which, with allowance for the difference in notation, agrees with Ellacott [10]. 
The formula (2.17) similarly gives 

p (- 4 exp [2log a2 + ) + a2) 

Case (iii): a -O 0 and b -+ 0. A circular sector 

In the integrand of (2.7), x << b-2 < a-2 when 0 < a < b << 1. Expand- 
ing (b - x) (a2-x)A in terms of a and b, and evaluating the integrals, 
we obtain 

-6 = (I- + ) [i+0(a2) + 0(b2)] 

so when a - 0 and b - 0, we have 

(2.20) 6 ' b 

Similarly, from (2.10), 

logR =2a 
[[1 (x - b2)T dx + (a2) + 0(b2l 

boR-~ [J2X(x -a2)~ 0(2 
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The substitution y2 = (x - b2)1(X - a2) allows us to evaluate the integral as 

log( 1 +Yo) + blog( b - ayo) 

with yo = (1 - b2 - a2)1. Since further expansion shows that R -+ 0 as 
a and b both tend to zero, the annular sector Q tends to the circular sector 

{z: IzIl < 1, 0 < largzl <? } 

where 6 = ra/b; our results in that limit should agree with those of Coleman 
and Smith [4] and of Gatermann et al. [18]. 

To find the transfinite diameter in the required limit, we write a = Ab in 
equation (2.17) and make the substitution x - tb2 to obtain 

p 
(1 

Xib4)exp[I(A, b)] 

where 

I(, b)=j-(2 - [b4(A2- 1)+ A2- 1] dt 

Jtb4)2 [(2 - t)I2 - tb4)2 + (1 - t)l (1 - b4t) ] 

In the limit as b -O 0this reduces to 

p = 1exp [- 
t 2 

dt 

The substitution y2 = (1 - t)/(A2 - t) and use of partial fractions converts the 
integral to a sum of elementary integrals, and we find 

1 

(1 i)-A ( I+ 1+' 

and in this limit A = 0/17. Theorem 2 of Coleman and Smith [4] shows that 
this is the transfinite diameter for a sector of the unit disc of half-angle Xr - 6 . 

Similar reasoning applied to the integral in (2.1 3a) allows us to compute Vo 
the limit of the mapping function V as a and b both tend to 0. Noting that 

= 4a2w [(W - 1)2 + O(a4)] 
as a - O, we find 

'o (w) - W~) exp 
A( 

-tXO1d 4D [xo{ (A2 - t), t] 

where xo = 4A2w(W - 1)-2. 
To obtain the configuration chosen by Coleman and Smith [4], it is necessary 

to carry out the transformations z -+ -z and w -+ -w. In the notation of 
[4], modified to avoid conflicting uses of a, 

2acw1 

when the correct branch of the square root function is chosen. Straightforward 
algebraic manipulation then shows that - yio(-w) is the mapping function in 
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Theorem 1 of Coleman and Smith [4], thus confirming that the map derived 
here correctly reduces to that for a circular sector in the limit as a -O 0 and 
b -O 0. 

3. THE LAURENT EXPANSION OF y,(W) ABOUT THE POINT AT INFINITY 

The function yi(w) has a Laurent expansion of the form 

(3.1) i(w) = p(w + flo + flw +.) 

about the point at infinity. The coefficients of this expansion are required in a 
recurrence relation used to generate the Faber polynomials. 

Differentiation of (2.14) gives 

(3.2) dy = y(w M(W, t)M(W, T) 
dw (w) W(W2- 2wcotha + 1)' 

where 
M(w, y) = (W2 - 2yw + 1)2. 

If we now let w - 4-' and T(4) = (w), equation (3.2) may be rewritten as 

3.) T(g,) =- Mg2 - 2- coth a + 1) dT(,) 

Since It I< 1 and Tl <? 1, there is a convergent expansion of the form 
00 

(3.4) [M(4, t)M(4, T)]f' = E ak :k 
k=O 

for j4j < 1 . Substitution in (3.3) gives 

(3.5) T(4) = ( ck1k) ( k 
d) 

where 

(3.6) ck= ak-2-2coth aak-l+ ak, k > 0, 

with a2 = a_ I = 0. Also, from (3.1), 

T(4) = P ( 0+i+4 ) 

for 11 < 1 . We may substitute this in (3.5) and equate coefficients of the 
powers of 4 on both sides to obtain ,Bo = cl, flu = 'c2 and, for n > 2, 

n-i 

(3.7) (1 + n)fin = Cn+- icn_ifli 
i=l 

The recurrence relation in (3.7) and the definition (3.6) allow us to generate 
so , Il, i , fln , for a given positive integer n, when ak is known for k = 

0, 1, ... , n + 1 . In the case of circular sectors, Coleman and Smith [4 ] found 
a very simple expression for the corresponding coefficients in terms of Legendre 
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polynomials. A similar approach can be used here; noting that M(w, y) is the 
reciprocal of a generating function for the Legendre polynomials, we find 

k 

ak = Z PI (t)Pk-l (T) 
1=0 

where Pn is the Legendre polynomial of degree n. This formula has the com- 
putational disadvantage that as k increases an increasing number of Legendre 
polynomials must be evaluated and stored. For this reason we have derived a 
five-term recurrence relation from which {ak} may be computed directly. Let 
f(t, T, 4) be the function in (3.4). Then, by differentiation and rearrangement, 

[t + T- 2,(1 + 2tT) + 3(t + T)g2 - 23]f(t, T, T) 

=(I - 2tE + 42) (I-2TX + 42)9f(t, T,) 

Equating the coefficients of the powers of 4 on both sides of the equation, we 
obtain 

(k + l)ak+l =(2k + 1)(t + T)ak- 2k(1 + 2tT)akl1 

+ (2k -1)(t + T)ak-2 + (1- k)ak-3 

for k > 0, with ao = 1 and ai = 0 for i < 0. With 

cosh acoh, 
s = 2 

a 
and u = 2cosh 

sinh a sinh a 

this becomes 

(3.8) (k + l)ak+l = (2k + 1)(s - u)ak - 2k(s2 - su - l)ak-1 

(3.8) + (2k - 1)(s - u)ak-2 + (1- k)ak-3. 

4. THE FABER POLYNOMIALS 

The Faber polynomials, Fn(z), satisfy the recurrence relation 

n-i 

(4.1) Fn+l(z) =(z-bo)Fn(z)-Z bkFn-k(Z)-(1+ n)bn, n > 0, 
k=1 

where bk = 13kP k+l , p is the transfinite diameter of the region, and the 13k are 
generated from the recurrence relations above. Following Gatermann et al. [ 18], 
we introduce the scaled Faber polynomials 

(4.2) Fn(z) = Fn(z)pn = 1 (5) p 

and let 

(4.3) (Dn (z) = zn + q$n-1 (z), 

where qn- 1 is a polynomial of degree n - 1 for n > 1, and qKi(z) = 0. 

Substitution in (4.1) gives the recurrence relation 

n-I n-i 

(4.4) q$n(Z) = (Z- ,6o)qn-1 (Z)- Zfk(kn-k-1(Z)- Z 3fk znk -(1 + n)Iln. 
k=1 k=O 
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Our notation differs slightly from that used by Gatermann et al. [18], in their 
work on circular sectors, because no factor analogous to their 1 - c is evident, 
except in the limit as a -- 0 and b -- 0, when the annular sector tends to 
a sector of the unit disc. Given the Schwarz-Christoffel parameters a and b 
corresponding to a particular annular sector, the Faber polynomials of degree 
up to nmax may be computed by the following algorithm. 

Algorithm. 
s = 2(1 + a4)/(l - a4); u= 2a2b-2(1 + b4)/(l - a4); 
a-3=a-2=a-, =0; aO= 1; al =s-u; 
cl = al - s; fio = ci; o = -fio; 
Fo(z) = 1; Fi (z) = z + pqo. 
For n = 1, nmax - 1 

an+l - [(2n + 1)(s - u)an - 2n(s2 - su - 1)an-1 
+(2n - 1)(s - u)an-2 + (1 - n)an-3]/(n + 1); 

Cn+1 = an+ - san + an-1; 
fin = (cn+l- Z7-I 1cn-1,fl)/(n + 1); 
On = (z - flo)qn-_1 -En-, fik(5n-k-l + zn k) - (1 + n)f3n- fozn; 

iDn1 = zn+l + On; Fn+l(z) _ pnl+l+l (fZ) 

end. 

Example. With nmax = 2 we obtain 
ao= 1; al =s-u; c1 =-u; f3o=-u; qo=U; 
a2 = (s2 - 4su + 3U2+ 2)/2; c2 = (-S2- 2su + 3U2+ 4)/2; 
fhi = (-S2 - 2su + 3U2 + 4)/4; q$ = 2uz + (S2+ 2su -u2- 4)/2; 
a3 = (-s3 - 3s2u + 9su2 5 5u3 + 8s - 8u)/2; 
c3= (-2s3 + s2u + 6su2 - 5U3 + 8s - lOu)/2; 
fl2= (-4s3 + s2u + lOsu2 - 7u3 + 16s - 16u)/12; 
02 = 3uz2 + (3S2 + 6su + 3U2 - 12)z/4 + (2s3 + s2U - 2sU2 + u3 + 2u - 8s)/2. 
Then Fl(z)=z+u, (D2(Z)=z2+q$i(z), (D3(z)=Z 3+q$2(Z). 

In the limit as a -* 0 and b 0, when the annular sector becomes a sector 
of the unit disc, we have that s 2 and, from (2.20), 

u * ,2() =2(1 -c) 

where the parameter c is as used by Gatermann et al. [ 18]. Making the changes 
described at the end of ?2.4 to obtain the appropriate sector, we find, for exam- 
ple, 

(1(z) = z-2(1 -c), 

I02(z) = z2+(1 -c)[-4z+2+2c], 

I03(z) = z3 + (1 - c)[-6z2 + (9 - 3c)z + -2 - 4c], 

which agree with Gatermann et al. [18]. 
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4.1. The coefficients of qn (z). Letting 
n 

(4.5) q$n(Z) = ,Pn, jZni 
j=O 

in the recurrence relation (4.4), we obtain, after some algebra, 

(4.6a) Pn,O = Pn-1,0-fio = (n + 1)u, 

n 

(4.6b) Pn,n =- fin-kPk-1,k-1 -(1 + n)fn 
k=1 

and,for i=1,...,n-1, 
n 

(4.6c) Pn,n-i =Pn-l,n-i - j fin-kPk-1,k-1-i - fin-i. 
k=i+l 

In the interest of brevity we shall use the term A-polynomial to describe a 
polynomial in two variables, s and u, which is invariant or changes sign, under 
the planar antipodal map (s, u) -* (-s, -u), according as the degree of the 
polynomial is even or odd; in other words, such a polynomial of even (odd) 
degree contains only terms of the form siuj where i + i is even (odd). 

Theorem 6. The coefficient Pn,j, for n = 0, 1, ... and j = 0,..., n, is an 
A-polynomial of degree j + 1 in s and u. 
Proof. An induction argument applied to the recurrence relation (3.8) shows 
that ak is a polynomial in s and u of degree k. Furthermore, since s - u 
and S2 - su - 1 are A-polynomials of degree 1 and 2, respectively, the hy- 
pothesis that ak is an A-polynomial of degree k for k = 0, ... , n leads to 
the conclusion that the same property holds for k = n + 1; the induction hy- 
pothesis is readily confirmed for n = 1. It then follows from (3.6) that cn is 
an A-polynomial of degree n, and an induction argument applied to equation 
(3.7) shows that fin is an A-polynomial of degree n + 1 . 

Turning now to the equations (4.6), we assume, as an induction hypothe- 
sis, that for each n the coefficient Pn, is an A-polynomial of degree j + 1. 
Then each term on the right-hand side of (4.6c) is an A-polynomial of degree 
n - i+ 1 , and (4.6b) gives the corresponding result for i = 0; finally (4.6a) shows 
that Pn,o is an A-polynomial of degree 1. Clearly the hypothesis is true for 
n=1. 0 

In view of Theorem 6, we may write 

Pn-l,O = Yn1U, 

Pn-i, 1 = Yn2 + Yn3S + Yn4SU + Yn5U , 

Pn-1,2 = Yn6S + Yn7U + Yn8S3 + Yn9sU2 + Yn1osu2 + Yn1U 3a 

etc. In keeping with the notation of Gatermann et al. [18], we regard the coef- 
ficients Ynk as the elements of the nth row of a matrix 

r= (Ynk), n = 1, 2, ...; k = 1, 2, ..., m(n), 

where m(n) is the number of terms in the nth row of F. 
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Theorem 7. The elements of the matrix F are rational numbers, and the number 
of elements in the nth row is 

m(n) = 21 (2n3 + 15n2 + 37n - 30) - [ ] 

where [x] denotes the integer part of x. 

Proof. It is clear from the various defining equations that the coefficients of the 
polynomials Pn, j are rational numbers. 

A homogeneous polynomial of degree j has j + 1 terms. An A-polynomial 
of degree 2r is a sum of homogeneous polynomials of even degree from 0 to 
2r inclusive; it consists of 

Z(21 + 1) = (r + 1)2 
1=0 

terms. Similarly, an A-polynomial of degree 2r + 1 has 

r+1 

Z 21 = r2 + 3r + 2 
1=1 

terms. 
Equation (4.6a) shows that pn, o consists of a single nonzero term. For i > 2, 

the polynomial Pn, i- I, being an A-polynomial of degree i, has I (i + 2)2 terms 
if i is even, and (i+ 2)2 - terms if i is odd. For a given n, the total number 
of terms is 

m(n) I + - ,(i +2)12 _ _ 

=2 (2n 3 + l5 S2 + 37n - 30) - - 

A computer algebra system may be used to compute the polynomials Pn,j 
from (4.6), as polynomials in s and u. We have used Mathematica and 
REDUCE for this purpose. The polynomials Pn-l,j, for j = 0(l)n - 1 and 
n = 0(1)15, are listed in the Supplement section of this issue, where Pn-i,j is 
denoted by p(j), for each value of n . The results given there may be used with 
(4.2), (4.3) and (4.5), to construct the Faber polynomials of degree < 15. 

The first ten rows of the matrix F have the form 

1 
2 -2 1/2 1 -1/2 
3 -3 3/4 3/2 3/4 -4 1 1 1/2 -1 1/2 
4 -4 1 2 3 -16/3 -8/3 4/3 5/3 2/3 1/3 ... 
5 -5 5/4 5/2 25/4 -20/3 -25/3 5/3 10/3 10/3 5/3 ... 
6 -6 3/2 3 21/2 -8 -16 2 11/2 7 11/2 ... 
7 -7 7/4 7/2 63/4 -28/3 -77/3 7/3 49/6 35/3 77/6 ... 
8 -8 2 4 22 -32/3 -112/3 8/3 34/3 52/3 74/3 ... 
9 -9 9/4 9/2 117/4 -12 -51 3 15 24 42 ... 
10 -10 5/2 5 75/2 -40/3 -200/3 10/3 115/6 95/3 395/6 ... 
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and other entries may be read from the Supplement. As Gatermann et al. [18] 
found for circular sectors, all entries in a column of F are expressible in terms 
of a polynomial in the row index. For example, we find 

I 0 2 
Yn2 = n, Yn7 = 10 - n, 

3 
Yn2 =-n, Yn8 = fl, 

1 7 1 2 
Yn3 = 4n Yn9=--2n+-n 12 4 

1 11 1 2 
Yn4 =-ns Yn = 

nflO6f+ -nf, 

1 2 5 29 5 2 1 3 
Yn5 = 2n -4n,Yl = 12n 4n + 6 n. 

4 
Yn6 = -n, 3 

5. NUMERICAL EVALUATION OF a, b, AND p 

To compute the Faber polynomials for a particular sector of an annulus, 
we need to evaluate the Schwarz-Christoffel parameters (a and b) and the 
transfinite diameter p. Given R and H defining a particular sector, a and b 
are found by solving the pair of nonlinear equations (2.7) and (2.8). We used 
a modified Newton iteration in which the partial derivatives in the Jacobian 
were approximated by central difference formulae of the form 

af(a, b) f(a + D, b) - f(a - D, b) 
d9 a 2D 

The convergence of the Newton iteration depends on having sufficiently good 
initial estimates of a and b. Table 1 gives suitable values for certain ranges 
of R and 6. As H tends to 0 or xc, and as R tends to 0 or 1, the con- 
vergence becomes much more sensitive to the choice of starting value, but the 
corresponding regions, which are close to known limits, are less likely to be of 
practical interest than those covered by Table 1 . 

At each step of the Newton iteration it is necessary to evaluate the integrals in 
(2.7) and (2.8) numerically to an accuracy consistent with that required in the 
Newton iteration. Despite the square root singularities at the endpoints of the 
integration intervals, the NAG routine DO1AHF, which is based on the Gauss- 
Kronrod-Patterson family of formulae, works satisfactorily. Figures 3 and 4 
show a and b, respectively, as functions of R and 6, for 0.001 < R < 0.999 
and 0.3_<<3.1414. 

The integral in equation (2.17), which defines the transfinite diameter, must 
also be evaluated numerically to whatever accuracy we require. Again. the NAG 
routine DOIAHF is appropriate. 
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TABLE 1. Starting values for modified Newton iteration 

n 0.999 - 0.1 0.1 - 0.02 0.02 - 0.01 0.01 - 0.005 0.005 - 0.001 
e 

3.1414- 3.0 a = 0.489 a = 0.3760 a = 0.3107 a = 0.26591 a = 0.17774 
b = 0.513 b = 0.3761 b = 0.3108 b = 0.26592 b = 0.17775 

D=1.Oxlo-6 D=1.0X 10-6 D= 1.0X 10-7 D _1.0 x10-8 1.0x 10-9 

3.0-1.9 a=0.49 a=0.12 a=0.09 a = 0.07 a=0.07 
b = 0.52 b=0.24 b = 0.12 b=0.12 b=0.10 

D-=0.001 D = 0.001 D = 0.001 D=0.001 D = 0.001 

1.9-1.57 a= 0.12 a=0.12 a=0.06 a=0.06 a = 0.01 
1=0.24 b=0.24 b=0.10 b =0.10 b=0.02 

D = 0.001 D = 0.001 D = 0.001 D = 0.0001 D = 0.0001 

1.57- 1.00 a = 0.05 a = 0.03 a = 0.01 a 0.01 a 0.0005 
b = 0.16 b = 0.08 b = 0.03 b =0.03 b= 0.001 

D=0.001 D = 0.001 D = 0.001 D= 0.001 D= 0.0001 

1.00-0.75 a = 0.05 a = 0.03 a=6.0 x 10-5 a-4.0 x 10- a-4.0 x 10-6 
b = 0.07 b = 0.08 b = 6.0 X 10-4 b = 3.0 X 10-4 b = 3.0 x 10-5 

D = 1.0 x 10-5 D=0.001 D-1.0 x 10-5 D= 1.0 X lo- D-1.0 X 10-6 

0.75-0.50 a = 0.01 a=0.03 a =6.0 x 10-5 a 4.0 x 10-5 a 4.0 x 10-6 
b = 0.06 b = 0.08 b =6.0 x 10-4 b 3.0 X 10-4 b =3.0 x 10-5 

D =1.0 x 10-5 D = 0.001 D =1.0 x 10-3 D 1.0 x 10-5 D 1.0 X 10-6 

0.50-0.30 a =1.1 X 10-4 a=5.0 x 10" a 1.0 X 10-6 a =1.0 x 10-7 a 1.0 x 10-9 
b=1.6x10-3 b - 50x10-5 6_1.0x10-5 b-10xo-6 b=8.0x10-9 
D =1.0 X 10-5 D-1.0 x 10-6 D 1.0 X 10-7 D _1.0x 

- D=O X 10-10 

FIGURE 3. A graph of a(R, 0) 
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FIGURE 4. A graph of b(R, 6) 

6. NORMS OF FABER POLYNOMIALS ON ANNULAR SECTORS 

Any assessment of the accuracy of an approximation based on Faber poly- 
nomials requires some knowledge of a relevant norm. Both the area and line 
versions of the 2-norm may be computed explicitly by a slight modification 
of the work of Gatermann et al. [18] for circular sectors. An upper bound is 
available for IIF11Io. 

6.1. The area 2-norm. The square of the relevant norm of the scaled Faber 
polynomial Fn is 

2 f()2 
(6.1) 2n 2 J Dn Z- dxdy = p2 | o(u)I2 dv dw. 

Here, z = x + iy, u = v + iw, z = pu and QY,R,p is an annular sector of 
half-angle y, outer radius l /p, and inner radius R/ p . Using the approach of 
[18], we obtain 

2 n-i n-I 

n2 =n + 2ZPn-1,jIn-1-j,n + Zpn ijIn 
2 j~~=0 j=0 

(6.2) 
j 

n-I 

+ 2 ZPn-1, jPn-i ,kIn-1-j,n-1-k 

j>k 

where 

[ pisin(i-]j)a [1 -Ri?j?2if$] 2p-i-( if i A j= 

i,j = 

lp- 2(1 (I- R2i+2)ar if i = j. 
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As R -+ 0 these expressions reduce to those of ? 3.1 of [18], when account is 
taken of the difference in notation mentioned after equation (4.4) above. 

6.2. The line 2-norm. In defining the line 2-norm, IFl i, the surface integral 
of (6.1) is replaced by a line integral around the boundary of the annular sector. 
The square of that norm is obtained by replacing each Ii, in (6.2) by 

f 2pij [(1 - Ri+j+l) (cos(i-j)a) + sin(ij)a (Ri+j+l + 1)] if i $ jI 

| 2p2i 2i+1 ) + a (R2i+1 + 1)] if i = j. 

6.3. The maximum norm. Upper and lower bounds may be obtained for the 
norm 

|n ||= max -Pn (z) 00 ZEQ 

of a scaled Faber polynomial; by the maximum principle, that maximum value 
occurs on the boundary of the domain Q. Let 

Tn(z) = zn +an-Izn-I +***+ao 

be the Chebyshev polynomial of degree n for the annular sector Q, the monic 
polynomial of smallest maximum modulus on Q. It is known (Walsh [30, 
p. 320]) that I TnI > pn and therefore, since no monic polynomial of degree 
n can have smaller norm, IIFPnIlo > 1. An upper bound, independent of the 
degree n, comes from the inequality 

V 
Fn| 

<- 

(see Ellacott [9]), where V is the total rotation of the boundary of the domain 
Q. For an annular sector of interior angle 2y, 

(2r + 4y for0 < y < - 
V = 2 

6r - 4y for 72 < Y < r. 

Combining these bounds, we have 

V 
(6.3) 1< Fn <?- 

00 ii: 

Starke and Varga [29], who used a different normalization for the Faber poly- 
nomials, provided bounds in terms of the norm of the corresponding Chebyshev 
polynomials. Their Theorem 3.4, for nonconvex regions, is applicable to annu- 
lar sectors, and q(0), which appears in their bounds, is given in closed form 
by equation (7.3) below. 

7. THE FABER SERIES FOR Z--1 ON AN ANNULAR SECTOR 

The Faber series for a function f, analytic in the annular sector Q, is an 
expression of the form 

00 

E ajFj(z). 
j=0 
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See Curtiss [6], Markushevich [24, v. 3, p. 109], or Gaier [17, p. 44]. The 
coefficients are 

(7.1) aj 2pip fIRf(I )) dw, 

where R1 > 1 is sufficiently small that f can be extended analytically to the 
closed region bounded by the image under ,/ of the unit circle IwI = R1 . In 
particular, when f(z) = z-, the Faber series is 

(7.2) 1z W_ /1 (W1) (W*)nJ z w*v,I(w*) n=I J 

where Fn(z) is the scaled Faber polynomial introduced in (4.2), and w* is the 
root of magnitude greater than 1 of the equation yi(w) = 0; in other words, 
w * is the point which V/ maps to the origin in the z-plane. Equation (7.2) 
may be established either by applying Cauchy's residue theorem to (7.1) or, 
as in Chui et al. [1], by using a generating function for Faber polynomials and 
the uniqueness of the Faber series. It is clear from (2.13) that z = 0 implies 

0 = 0, and therefore 

(7.3) W -1a2 

From (2.13c) and (3.2) we obtain 

4wa4 ) 2 A(x)[A(x) + B(x)]M 

Setting; = 0 in this expression, and noting that 

4a 2 
M(w*, t)M(W*, T)= (- a2)2 

and 

(1 -a4) a2 Cdx 
4 exp [ A(x)[A(x B)x ] 

we obtain 

(7.5) w* v(w*) - R( ap4) 

Then, from equation (7.2), the Faber series for z-4 is 

1 _ 4pa 2 [ -a 2\l ] 

(7.6) 1=- R(l 4) [1+ I( +a2) Fn(z)J. 

As a check on (7.6), it can be shown that it correctly gives a known Cheby- 
shev expansion when b = a (case (i) of ?2.4). The Faber polynomial of degree 
n > 1 for the interval [-1, 1] is 21-nTn(x), where Tn is the Chebyshev 
polynomial of degree n, and the corresponding polynomial for z E [-1, -R] 
is 

Fn(z) =2(1 2 R) Tn (2z+ +R) 



202 J. P. COLEMAN AND N. J. MYERS 

With the help of results from ?2.4 for this particular case, the expansion (7.6) 
becomes 

1 1 0 1(-Vk\T( 
n 

2z+l1+Rd 
(7.7) z =-+ {12 E ( 1 z Tn( -R ) 

The Chebyshev expansion 

x-d V'2 T{ 1+2 E( 32_ l ) Tn (x)} 

for 3 > 1 and x E [-1, 1], may be established by a technique used, for exam- 
ple, by Fox and Parker [16, p. 85]. By transforming to the interval [-1, -R] 
and letting 3 = (1 + R)(1 - R)-1 , we again obtain (7.7). 

The maximum norm of the error in approximating z-1 on the domain Q 
by a truncated Faber series 

qn(z) - 
w* *y,/ (w*) (Z1 + (W*)kFk(z)) 

is easily bounded. From (6.3) we obtain 

!| -qn(z) < V IW*I-n 
z 0 ,- rIw*vI/(w*)I(Iw*I - 1) 

(see also [1]), and from (7.3) 

||z 
< 

R(+a2) kl+a2} 
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