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COLLOCATING CONVOLUTIONS 

FRANK STENGER 

ABSTRACT. An explicit method is derived for collocating either of the con- 
volution integrals p(x) = fx f(x - t)g(t) dt or q(x) = fb f(t - x)g(t) dt, 
where x E (a, b) , a subinterval of R. The collocation formulas take the form 
p = F(Ar)g or q = F(Br)g, where g is an m-vector of values of the func- 
tion g evaluated at the "Sinc points", Am and Bm are explicitly described 
square matrices of order m, and F(s) = f0 exp[-t/s]f(t)dt, for arbitrary 
c E [(b - a), 00]. The components of the resulting vectors p (resp., q) ap- 
proximate the values of p (resp., q) at the Sinc points, and may then be used 
in a Sinc interpolation formula to approximate p and q at arbitrary points 
on (a, b). The procedure offers a new method of approximating the solu- 
tions to (definite or indefinite) convolution-type integrals or integral equations 
as well as solutions of partial differential equations that are expressed in terms 
of convolution-type integrals or integral equations via the use of Green's func- 
tions. If u is the solution of a partial differential equation expressed as a 
v-dimensional convolution integral over a rectangular region B, and if u is 
analytic and of class Lipa on the interior of each line segment in B, then the 
complexity of computing an e-approximation of u by the method of this paper 
is &([log(e)]2v+2). 

1. INTRODUCTION AND SUMMARY 

This paper describes a new procedure for collocating an indefinite integral of 
convolution type. Examples are then given, illustrating the application of the 
procedure to the approximate solution of (indefinite or definite) convolution- 
type integral equations, and to the approximate solution of (ordinary or partial) 
differential equations, whenever their exact solutions can be expressed via the 
use of Green's functions, either explicitly as an integral of convolution type, or 
in the form of a linear or nonlinear convolution-type integral equation. 

There exist relatively few types of procedures for obtaining approximate so- 
lutions of ordinary or partial differential equations, or of integral equations. 
While these methods are referred to by a variety of names, such as Rayleigh's 
method, Ritz's method, Galerkin's method, the Bubnov-Galerkin method, the 
Petrov-Galerkin method, the finite element method, the spectral method, or the 
collocation method, they are all, in effect, variants of the same method. One first 
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selects a suitable basis, {I }1j , and then attempts an approximate solution of 
the form 

n 

(1.1) Zajij, 
j=1 

in which the coefficients aj are unknown. The form (1.1) is substituted into 
the differential or integral equation to be solved, and the coefficients aj are 
then determined in one of a variety of ways, depending on which of the above 
procedures is used. 

The method of this paper also depends, in a sense, on a certain type of basis; 
nevertheless, it is quite different from any of the above-named methods. This 
method is based on an accurate approximation of either one or both of the 
convolution integrals 

x 
p(x) = Jf(x -t)g(t) dt, xE(a, b), 

( 1.2) ab 

q(x) = f(t -. x)g(t)dt, xE (a, b), 

where (a, b) is either all of the real line ]R, or else a subinterval of IR. Evi- 
dently, effective methods of approximating p and q in (1.2) can then be used 
to yield an accurate approximation to the definite convolution integral 

b 

(1.3) p(x) + q(x) = L f(lx - tj)g(t) dt. 

The approximation of Volterra-type integrals or of integral equations has 
been attempted by relatively few other authors. Excellent expositions of such 
methods may be found in Linz [7] and in Brunner [2]. By way of a quick 
overview, we mention the work of Young [18] who in 1954 studied the approx- 
imation of integrals of the form 

(1.4) P(x)= j(x )g(t)dt, xE(O,b), 

with g continuous on (O, b), and with K continuous on (O, b) x (O, b) . He 
discretized the integral with respect to x, and he then approximated K(xi, t)g(t) 
on each interval [xi-, xi] by a linear spline, which enabled him to carry out the 
resulting integrations explicitly. This procedure has been extended to more gen- 
eral spline approximate methods by Brunner (see, e.g., [1]), to the use of more 
accurate differential equation techniques by De Hoog and Weiss [3], and to the 
use of Sinc quadrature and Sinc collocation by Riley [12] and by Stromberg 
[15, 1 6], who were able to achieve arbitrary accuracy in their approximation of, 
e.g., p(x) in (1.2), even though f or g (or both) could have singularities at 
endpoints of their respective intervals of definition. In [6] Linz recommended 
the use of simple quadratures, such as the trapezoidal and midordinate rules, 
to approximate P(x) as given in (1.4). Lubich [8, 9] appears to be the first 
to have used the Laplace transform of f to approximate the integral p(x) as 
given in (1.2). He first converted (1.2) into 
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X 

p(x)= f f(x - t)g(t) dt 

(1.5) 2 l& L 1 
~f(s) jestg(x - t) dt ds, 

for which the inner integral solves the initial value problem y' = sy + g, 
g(O) = 0, and he then showed that the nth coefficient of the expansion of 
f(5(4)/h)g(4) in powers of 4 approximates the value p(nh), where 6(c) = 

[aoOk +. * * + akl/[floCk +. * * + /3k], and with aj and /j denoting the usual mul- 
tistep method coefficients. This procedure, which gives accurate results when 
one of the functions f or g has a singularity at an endpoint of (0, b), was 
extended to the application of Runge-Kutta methods methods in [10]. 

The method of the present paper provides both formulas of high accuracy, 
and it uses values of g at a fixed set of points on (a, b), to yield an approxi- 
mation of either p or q over the entire (finite, or semi-infinite) interval (a, b) . 
It allows for f(x) to have a singularity at x = 0, and simultaneously, for g 
to have singularities at both endpoints of (a, b). The present method thus 
also provides an improvement over the Fast Fourier Transform method of ap- 
proximating convolutions of the form (1.3) in the case of finite or semi-infinite 
intervals, in the case when f has a singularity at the origin, or in the case when 
the convolution (p or q) of f and g has singularities at one or both of the 
endpoints of (a, b). 

Whereas the solution to an ordinary or partial differential equation can fre- 
quently be expressed as a convolution integral of a Green's function and a known 
function, because of the relative lack of existence of methods of obtaining accu- 
rate approximations of (indefinite and definite) convolution-type integrals, such 
transformations have to date been used more often to study properties of the 
solution than to obtain accurate approximations of the solution. After a differ- 
ential equation is transformed into such a convolution form, the method of this 
paper then provides an explicit procedure for obtaining an approximate solution 
to the differential equation. More generally, if the (linear or nonlinear) differ- 
ential equation is transformed into a convolution-type integral equation via the 
use of Green's functions, the method of this paper enables us to replace the 
resulting integral equation by a system of (linear or nonlinear) algebraic equa- 
tions, whose solution yields an accurate approximate solution to the differential 
equation. 

In ?2, which follows, we briefly describe the collocation procedure, and in 
?3 we derive the approximation scheme. In ?4 we give a proof of conver- 
gence, and in ?5 we illustrate a number of applications of the method, to the 
inversion of Laplace transforms, to the solution of Abel-type integral equa- 
tions, to the solution of feedback control problems, and to the approximation 
of multidimensional convolution integrals. This last technique provides a new 
discrete separation of variables algorithm for the approximation of multidi- 
mensional convolutions, and, a fortiori, it provides a new parallel computation 
technique for solving any partial differential equation-elliptic, parabolic, or 
hyperbolic-whose solution can be written either as a multidimensional (def- 
inite or indefinite) convolution integral, or as a multidimensional (definite or 
indefinite) convolution-type integral equation. 
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2. APPROXIMATION PROCEDURE 

This section describes the procedure of this paper, for collocating the convo- 
lution integrals (1.2) and for obtaining explicit approximations of the functions 
p and q defined in (1.2). 

Let Z denote the set of all integers, and let C denote the complex plane. 
Let sinc(x) and ek be defined by 

sinc(x) = sin(7rX) 
k 

(2.1) Ok = ] sinc(x) dx, 
1 

ek = 2+rk k E Z. 

Note that J-k = -aJk, and we therefore only need to compute ok for positive 
integers k . One way of computing the ok is via the recurrence Jk+l = aJk + 

(_1)kvk, where Uk = f01{sin(7rx)}dx/{7r(x + k)}, and where the Uk can be 
accurately and efficiently computed via Gauss-Legendre quadrature. 

Let q denote a one-to-one transformation of the interval (a, b) onto the real 
line RI, let h denote a fixed positive number, and let the Sinc points be defined 
on (a, b) by Zk = q-I (kh), k E Z, where q$1 denotes the inverse function 
of the function q$. Let M and N be positive integers, set m = M + N + 1, 
and for a given function u defined on (a, b), define a diagonal matrix D(u) 
by D(u) = diag[u(zM) , ..., U(ZN)]. Let 1-1) be a square matrix of order 
m having ei-i as its (i, j)th element, i, j = -M, ..., N. Define square 
matrices Am and Bm by 

(2.2) Am = hI(- OD(l/I'), Bm = h{I(l)}TD(l/I'), 

where the superscript " T" denotes the transpose. Throughout the paper, when 
referring to the Laplace transform of a function f we will mean the usual 
Laplace transform, f(s) = foc e-stf(t) dt, whereas when referring to the Laplace 
transform in quotations, i.e., the "Laplace transform", will mean the function 
F defined by F(s) = f(1/s), i.e., 

(2.3) F(s) = j e-tlsf(t) dt. 

We shall assume that the "Laplace transform" exists for some c E [b-a, oc], for 
all s on the right half of the complex plane Q+ = {z E C: 9lz > 0}. Although 
these conditions suffice for purposes of defining the convolution approximations 
of this paper, in ?4 of this paper we shall require more stringent conditions on 
the "Laplace transform" for purposes of obtaining an accurate error bound 
on the approximation. For example, in ?4 we shall require that the "Laplace 
transform" should exist for some c E [2(b - a), o0], and for all s E Q+ In 
applications it is most convenient to simply look up the Laplace transform f(s) 
in a table, whenever this is possible. The choice c = ox is fine, whenever the 
integral in (2.3) exists for c = o0. On the other hand, it may be necessary 
to take c to be finite. This is the case, for example, if (a, b) = (0, 1), and 
f(t) = t- /3 exp{t2}. It is probably best to take c as small as possible if F(s) 
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has to be approximated via numerical integration, although the approximation 
of F can usually be done effectively via Sinc quadrature (see [13, ??4.2, 6.9]), 
regardless of the length of the interval. 

The eigenvalues of each of the matrices Am and Bm defined in (2.2) be- 
long to Q2+ (actually it has been shown by numerical computation that these 
eigenvalues belong to Q+ for 1 < m < 513). Thus, if nonsingular matrices 
Xm, Ym, and complex numbers sm, j are determined such that 

(2.4) Am = Xm diag[sm, _M, . . ., Sm, NIX' 1, 
Bm = Ymdiag[sm,-M, ... , Sm,N]Yrn 5 

then square matrices F(Am) and F(Bm) may be defined via the equations 

(2.5) FF(Am) = Xm diag[F(sm,-M), * 
..., F(Sm,N)]X;1, 

F(Bm) = Ym diag[F(sm, _M) , ... , F(sm, N)]Ym 
I . 

We have tacitly assumed here that Am and Bm are diagonalizable (see the 
pertaining discussion in ?4). 

Now, define column vectors gmin Pm, and qcm by 

gm = (g(Z-M), ... , g(ZN))5 

(2.6) Pm = (P-M, * , PN) = F(Am)gm , 

qm = (q-m , ... * qN)T = F(Bm)gm. 

The component pj of the vector Pm (resp., qj of the vector qm) approximates 
the value p(x) (resp., q(x)) at the Sinc point x = zj . 

The next step of the procedure is to describe a basis, {C)j}JN -M' such that 
the vectors Pm and qm determined as in (2.6) may be used to approximate 
the functions p(x) and q(x) throughout (a, b), where p(x) and q(x) were 
defined as in (1.2). Letting sinc(x) be defined as in (2.1), we set 

yj(X) = sinc{[q(x) - jh]/h}, j = -M, ... , N, 
(x) = yj (x) j = -M + 1, ... . N - 1,) 

(2.7) (J-)-M(X) = [1 +e [I +p(x) E ej] 

(l)N(x)=[1+NhIF P(X) N_ 
ejh y3(x)1 CN(X)= [I +e ][l+ P(x) EM I +eih J 

with p = e . The functions { oj}JN -M defined in (2.7) satisfy the relations 
0bj (Zk) = k, where 65, k denotes the Kronecker delta. We remark that the 
multiplicative factors [1 + e-Mh] and [1 + e-Nh] (which enable us to write 
0bj (Zk) = 6j, k) can in fact be dropped for purposes of carrying out interpolation 
in practice, since, e.g., the exclusion of these factors does not alter the statement 
of Theorem 4.2 below. 

The approximations of p and q on (a, b) then take the form 
N N 

(2.8) p(x)~ E1 pj j (x) q(x)j E qjwj-(x). 
j=-M j=-M 
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The basis functions defined in (2.7) suffice for purposes of uniform-norm 
approximation over (a, b) . They are also convenient for purposes of uniform- 
norm approximation in that the same basis functions can then be used to ap- 
proximate both functions p and q, and hence also the sum, p+q . On the other 
hand, it may at times be convenient to replace &X-M(x) by y-M(X), or WN(X) 
by YN(X), with yj(x) defined in the first line of (2.7), if it is desirable that the 
final approximation vanish at an endpoint of the interval, since the functions 
yj(x) vanish at both endpoints of the interval of approximation. For example, 
for purposes of approximating p on (a, b) via the formula in (2.8), an equally 
accurate uniform-norm approximation obtains, if instead of the basis in (2.7), 
we select the basis 

w1j(x) = sinc{[q(x) - jh]/h}, j = -M, ...,N- 1, 

(2.9) 
C)N(X) = [1 + eNh] [ p(X) -E eihco(x) 

[1 +p(x-) =_ M 1+ eihj 

Furthermore, by using (2.9), the resulting approximation as defined in (2.8) 
then vanishes at the endpoint a. An obviously similar modification of (2.7) is 
possible for purposes of getting an approximation of q, which vanishes at b. 

More specific descriptions will be given below for the selections of q$, h, M, 
and N, as well as for a space of functions of the type that one usually encounters 
in applications, and these more explicit descriptions will then make it possible 
to obtain accurate bounds on the error of the approximations (2.8). 

3. FORMULA DERIVATION 

It suffices to consider only the case of p(x) as defined in (1.2), since the 
case of q(x) can be treated in exactly the same way. Let Jw be defined for 
w eL1(a, b) by 

x 

(3.1) (Jw)(x) = Jw(t)dt. 

It then follows that, for n = 1, 2, ... 

(3.2) (jfl X (n- )! w(t) dt. 

The length of the interval (a, b) will at the outset be assumed to be finite. 
It is then convenient to take I1w I = (b - a)1 ft' Iw(t)I dt, since this choice of 
norm yields the simple inequality 

(3.3) IIJwII = b j jw(t)dt dx < (b - a)IIwII, 

which, together with (3.2), implies that 

(3 4) 11g < (b -)n 1j nII < IIjIIn < (b-a)n (3.4) IK'I II'I II5?( - a~ 

By using the Bromwich formula [17, p. 67] for the inversion of the Laplace 
transform, and then converting to the "Laplace transform" via replacement of 
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s by 1/s (a transformation which transforms Q+ to itself) the expression (1.2) 
for p(x) may be written in the alternate forms 

x 1 ioo 

p(x) = - j 2 j e(xt)/SF(s)s 2dsg(t) dt 

(3.5) ~~~~~~27ri ii: =-2 - 
l w(x,s)ds, 

where F(s) is given by (2.3), and where 
x 

(3.6) w(x, s) = js-2e(x`t)/sF(s)g(t) dt 

Now, if IsI > b - a, and we use the notations of (3.1) and (3.2), as well as the 
inequality (3.3), we get 

( ' /tE n!Sn+2 g 

(3.7)=(42 Z 4nF(s) ) (x) = ( i(s - J)F(s)g) (x). 

By analytic continuation as a function of s, it then follows that the identity 

(3.8) js-2e(x`t)/sF(s)g(t) dt = ( ii(s - ) F(s)g) (x) 

holds not only for all s E C such that IsI > lb - al, but in the larger, resolvent 
set of Jf, excluding the point s = 0. Here, the resolvent set of Jf is the 
set {s E C: (s - f)-l exists}. The resolvent set of JY can be more closely 
identified, upon setting 

Lb 
(3.9) (u, v) u(x)v(x) dx. 

It follows, in this notation, that 

b 2 

(3.10) 1 I(x dx >0. 

Hence, the resolvent set of Jf includes the set {s E C: 9is < 0}, as well as the 
set {seC: Isl>b-a}. 

Substitution of (3.8) into (3.5) yields the Dunford-type integral 

(3.11) 
p (x) 

li- 

(s-e 

_g)-fF(s)dsg) 

(x), 

where we have defined this integral as a limit lime o , since we have only estab- 
lished above that the spectrum of Jf lies in the closed (and not the open) right 
half-plane. If (a, b) is a finite interval, then it follows that F(s) is bounded 
for all sufficiently large s E C. We may thus use Cauchy's formula in (3.1 1), to 
evaluate the integral by summing the residues at the "poles", at s = J + e and 
at s = e, and then let e -- 0 in the result. Since the classical Laplace transform 
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f(s) f_ foe-stf(t)dt -O 0 as s -- oo, it follows that F(O) =f(oo) = 0. Hence 
(3.1 1) is equivalent to the expression 

(1 CFOO ~d~ 
(3.12) p(x) = - ( (s -5 lF(s)dsg (x). 

Either (3.1 1) or (3.12) thus yields the formula 

(3.13) p(x) = (F(J5)g)(x), 
which is valid for bounded intervals (a, b) . 

One way of interpreting the expression F(>F)g is the following: Let _j}I O-1 

denote a sequence of simply connected open domains each having compact clo- 
sure, and each lying in Q+, such that ~Wj c Wj+j, and such that limj,o1. Wj = 
Q+. For each fixed j, let {pj, r(s)}?m?=o denote a sequence of polynomials, 
with Pj,m(s) of degree m in s, such that P1,m(s) converges uniformly to 
F(s) in the closure of GW . Then Pn,n(s) -- F(s) for all s E D+ . The operator 
(Pn , n(J)g)(x) is of course well defined for every positive integer n, and we 
can define (F(>J)g)(x) by (F(>J)g)(x) = limn ,oo(Pn, n ()g)(x) X 

Another (equivalent) way of interpreting the expression F(>F)g is to note 
from above that 

w(x, s) (_ [s - F]-1F(s)g) (x) 

(3.14) 1sx 
= 1 j; e(xt)/sF(s)g(t) dt. 

Hence, recalling the above definition of GW, it thus follows from the Dunford 
integral expression (3.12) that 

(3.15) (F(J>)g)(x) = lir .j w(x, s)ds. 

Recall now the definition (2.3) of F, which implies that F = F1 + F2, 
where F1 (s) = fo' ets f(t) dt, and where F2(s) = fbia e-tlsf(t) dt. It fol- 
lows from this, and the Bromwich inversion formula, that if t < b - a, then 
(27ri)' f1 i et/sF2(s)s2 ds = 0. The formula (3.12) still holds in the case 
when c > b - a, since in that case, in view of the above remarks, it follows, 
upon recalling that g(t) = 0 for t > b - a, that F2(Jf)g = 0, and therefore 
F(J)g = Fi (J)g . 

Next, assume that (a, b) is an unbounded interval, and assume for this case 
that the function p defined in (1.2) exists for fixed f and a dense subspace X 
of functions g E L1 (a, b) such as the space C[a, b] of continuous functions on 
[a, b] . The space X will be defined more precisely in ?4 below. The expression 
(3.13) can then again be established to be valid for all g E X, by repeating 
the above argument for each of a sequence of nested finite intervals (aj, bj) c 
(aj+I, bj+1), where aj -- a and bj b as j - oo0. We furthermore need to 
assume that F(s)/s2 = o(l/s) as s oo in Q+, in order to be able to apply 
the residue theorem to get (3.13) from (3.11) or from (3.12). On the other 
hand, if F(s) ys as s -- oo, then F(s) - ys = o(s) as s -- oo, i.e., we can 
in fact assume that (3.12) holds even if F(s) = (f(s) as s - oo0. 

Now define linear operators Vmr, VIm, and Am as follows. For g defined and 
continuous on (a, b), set Vmg = (g(Z-M), ... , g(ZN))T, and for a given vec- 
tor c = (C-M, ... , CN)T, define lrnmc by (mjroC)(X) = Zj-M c1w1(x), where 
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the basis functions wc are defined as in (2.7). Then, define am on X by 
am= , mAmVm , where the matrix Am is defined as in (2.2). That is, 

Vmg = (g(z-M), ***, ,(ZN))T, 

C=(C-M, ,CN)T, 

(3.16) N 

j=-M 

(,2mg)(x) = (Li mAmVmg)(x). 

Since Vmlnm is then the unit matrix of order m, it follows, upon recalling the 
above definition (2.5) of F(Am), that F(Jm) is given by 
(3.17) F( m) = LImF(Am)Vm. 

The operator F(Jm) could, of course, also be defined in the same way that the 
operator F(Jf) was defined above, either as a Dunford operator-valued inte- 
gral, or as a limit of a sequence of polynomials in the variable JA, although 
these latter definitions have little practical value. On the other hand, the ex- 
pression (3.17) yields a practically useful definition of F(J"m) and moreover, it 
provides a practically useful method of approximating F(>J)g. The expression 
(3.13) can thus be replaced by the approximating one 

(3.18) p(x) = (F(J5)g)(x) ; (F("m)g)(x) = (LlmF(Am)Vmg)(x). 
The convergence and error of this approximation are discussed in the following 
section. 

4. CONVERGENCE 

The procedure of the previous section has already been tested on a variety 
of partial differential equation and convolution integral problems. Since the 
procedure is based on Sinc approximations, the proof of convergence given 
below is for spaces of functions in which Sinc approximation is close to optimal. 
Only the case of fx f(x - t)g(t) dt is considered throughout this section, since 
the considerations for fx f(t - x)g(t) dt are essentially the same. 

Definition 4.1. Let d E (0, 7i), and let R22d = {Z E C: 13ZJ < d}. Let the 
interval (a, b) be defined as in the previous section, and let q be a conformal 
map of a simply connected domain 2 onto 4rd, such that 2 contains the 
interval (a, b), and such that 0((a, b)) = R. Clearly, if d' is a number such 
that d' > d, and if the same function X provides a conformal map of ?2r' onto 
'r , then 0 c ?'. Set p = e . Let a and f, denote positive numbers, and 
let La , (92) denote the family of all functions f E Hol(9Y), for which there 
exists a positive constant cl such that, for all z E '2, 

(4.1) If(z)l ? Ci jp(Z)ja 

Now let the positive numbers a and ,B belong to (0, 1], and let Ma,,8 (0) 
denote the family of all functions g E Hol(9Y), such that g(a) and g(b) are 
finite numbers, where g(a) = limz pa g(z) and g(b) = lim, ,b g(z), and such 
that f E La,f (2), where 

(4.2) f(z) g( )_ 
g(a) + p(z)g(b) (4.2) f(z)=g(z)- 

l~1+ p(z) 
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We remark that the spaces La!, 8 (92) and Ma, ,8 (92) are invariant under confor- 
mal transformation, in the sense that if Oj denotes a conformal map of j onto 
2d, for j = 1, 2, and if, e.g., u E La,8(2l), then v = uoq$jiOq2ELafl(22). 

The space of functions g E Hol(9Y) that are absolutely integrable over 
the boundary of 2 will be denoted by X. The space of all functions w E 
Hol(9Y) that are uniformly bounded in 2 will be denoted by Y. The spaces 
X and Y may be normed by IlglIX = SuPxE(a b) Ig(x)/qY(x)l and liwily = 
SUPxE (a b) I w (x) I , respectively. 

Corresponding to a positive integer N, determine h via the formula h = 
c/N1!2, where c is constant, take M = [fl/aN], where [x] denotes the greatest 
integer in x, and then set m = M + N + 1 . The Sinc points zj are determined 
by the formula zj = q-1(jh). Given g E X, let OJg and 4,2g be defined as 
in (3.1) and (3.16), respectively. It may be shown, for example (see [13]), that if 
g/qY E La',j8l(?2) (resp., g e X), then OJg E Ma,j8(-2r), a = min(1, a'), and 
,B = min(1, /B') (resp., Jfg E Y) . On the other hand, if U E Ma,f8(P') (resp., 
u E Y(2r')), then u'/q' E La,f8(2r) (resp., u'/q' E Y(S2)). Since 0 < d < 7r, 
and since a E (0, 1], and ,B e (0, 1], it follows that Ma!, f(-) C Y. D 

For purposes of approximating in the spaces Y and Ma,,8 (-) we record 

Theorem 4.2 ([13, 14]). (a) Let u E Y, let wj be defined as in (2.7), and let 
M and N be defined as in Definition 4.1. If h = y/N112, where y is a positive 
constant, then as N -- oo, 

N 

In particular, if U E Ma,j8(-), and if h = [7rd/(/JN)]1/2, then there exists a 
positive constant c1 which is independent of N, such that 

N 

(4.4) u - E u(zj)1)j < CiN1/2e-(7d8N)'/2 

The choice h = [7rd/(16N)]1/2 is close to optimal for approximation in the 
space Ma,,8(-2) in the sense that the error bound in (4.4) cannot be apprecia- 
bly improved regardless of the basis; if instead of this choice of h, we select 
h = y/N112, then we get the error bound ce-,5N"2 in which we may take 
a = min(7rd/y, fly). 

It may be readily shown that the eigenvalues of the matrix Am defined in 
(2.2) lie in the closure of the right half-plane, Q+ . To this end, we mention that 
j-l) = H + S, where each of the m2 entries of H is the number 1/2, and 
where S is a square matrix of order m having ai-j as its (i, j)th element. 
Hence, if c = (C-M, ..., c)T is an arbitrary complex vector of order m, 

2 
N 

(4.5) C*(-l)C 1E c +cSc 
j=-M 

Since the term c*Sc is purely imaginary, it is clear that the eigenvalues of j(-') 
all lie in the closure of the right half-plane. Indeed, it has already been shown 



COLLOCATING CONVOLUTIONS 221 

by numerical computation that the matrix j-01) of order m is diagonalizable, 
and moreover, the real part of each eigenvalue of (- 1) is positive, for every 
integer m E [1, 513]. Whereas the attainable accuracy of Sinc approximation 
is problem-dependent, a value of m = 15 will usually yield about 3 places of 
accuracy, a value of m = 30 will yield about 5, and a value of m = 513 should 
yield at least 25 places of accuracy. It will thus be assumed that m is such 
that I(-1) is diagonalizable, and that the real part of every eigenvalue of (l-) 
is positive. Next, since Am = IP-1OD, where D = D(1/q'), and each entry dj 
of the diagonal matrix D is positive, and since the eigenvalues of Am are the 
same as the eigenvalues of D 12AmD- 12 = D1/2Ij(- D 12, it follows, in the 
notation of (4.5), that 

2 
N 

(4.6) c*Dl/2j(-l)Dl/2c = 1 c dj + c*D 12SD 12C 
j=-M 

The term involving the sum on the right-hand side of (4.6) is nonnegative, 
whereas the inner-product term involving the matrix S is purely imaginary, 
which again leads to the conclusion that the eigenvalues of Am lie on the closure 
of the right half-plane. Indeed, the above discussion shows that the real parts of 
the eigenvalues of Am are positive if and only if the real parts of the eigenvalues 
of (- 1) are positive. Unfortunately, we have not been able to show theoretically 
that the matrix j( -)D(1 /') is always diagonalizable, although this has been 
the case for all of the examples that we have attempted to date. It will therefore 
be assumed that Am = I(-1)D is such that the real part of every eigenvalue of Am 
is positive, and that Am is diagonalizable. It follows, under this assumption, 
that every eigenvalue of the matrix Bm = (I(- 1))TD lies on the right half-plane, 
and that this matrix is diagonalizable, and also, that the matrices F(Am) and 
F(Bm) are well defined. 

The examples which follow exhibit finite, semi-infinite, and infinite intervals, 
and corresponding functions q, which allow for either algebraic or exponential 
approach to limits, as either x -- a or as x -- b. 

Example 4.3. For example, if (a, b) = (0, 1), and if 2 is the "eye-shaped" 
region, 2 = {z E C: Iarg[z/(l - z)]l < d}, then +(z) = log[z/(l - z)], the 
relation (4.2) reduces to f = g - (1 - x)g(O) - xg(l), and the class La,fl(-) 
described by (4.1) is the class of all functions f E Hol(S1Y), such that for all 
Z E -2, If(z)I < cIzIall - zlfl. In this case, if, e.g., a = max{a, ,B}, and a 
function w is such that w E Hol(2), and w E Lipj(S2), then w E Ma,8(-2) . 
The Sinc points zj are zj = ejh/(l +ejh), and 1/q$'(zj) = ejh/(l +eih)2 . This 
transformation 0 enables the approximation of convolution integrals of the 
type 

rx 

(4.7) p(X) = (x - t)c-b'ltb'1(1 _ t)a' dt. 

Example 4.4. If (a, b) = (0, ox), and if _ is the "sector" 2 = {z E C 
I arg(z)I < d}, then 0q(z) = log(z), the relation (4.2) reduces to f(z) = g(z) - 
[g(O) + zg(oo)]/(l + z), and the class La,j8(-) is the same as the class of all 
functions f E Hol(2) such that, if z E 2 and Izi < 1, then If(Z)I < CIZIa, 
while if z E 2 and IzI > 1, then If(z)I < cIzK-J. This map thus allows for 
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algebraic decay at both x = 0 and x = 00. The Sinc points zj are defined by 

zj = eih and 1 /q'(zj) = eih . This transformation enables the approximation 
of convolution integrals such as 

(4.8) p(x) = J(x _ t)a'- I tb'- 1(1 + t)-c' dt. 

Example 4.5. If (a, b) = (0, oo), and if 2 is the "bullet-shaped" region 9 = 

{z E C: I arg[sinh(z)]l < d}, then +(z) = log(sinh(z)). The relation (4.2) then 
reduces to 

f(z) = g(z) - [g(O) + sinh(z)g(oo)]/(l + sinh(z)), 

and the class La ,,(92) is the same as the class of all functions f E Hol(9Y) 
such that, if z E 2 and IzI < 1, then If(z)I < cizIa, while if z E 9 and 
IzI > 1, then If(z)I < cexp{-JlIzI} . This map thus allows for algebraic decay 
at x = 0 and exponential decay at x = 00. The Sinc points zj are defined by 
z; = log[eih+(l+e2ih)l/2], and 1/q$'(zj) = (1+e-2ih) -/2 . This transformation 
enables the approximation of convolution integrals such as 

(4.9) q(x) = J (t - X)a'-ltb-le-c't dt. 

Example 4.6. If (a, b) = R, and if 2 is the above-defined "strip", 2 = rd, 
take q+(z) = z. The relation (4.2) then reduces to 

f(z) = g(z) - [g(-oo) + ezg(oo)]/(1 + ez). 

The class La,j8(-2) is the same as the class of all functions f E Hol(9Y) such 
that, if z E 2 and 91z < 0, then If(z)I < ceIzI, while if z E - and 
91z > 0, then If(z)j < ce-f8zl . Thus, this map allows for exponential decay at 
both x = -00 and x = 00. The Sinc points zj are defined by zj = jh, and 
1/q'(zj) = 1 . This transformation enables the approximation of integrals such 
as 

(4.10) p(x) = X dt 
j4.0 cosh[b'(x - t)] cosh(c't)' 

Example 4.7. If (a, b) = R, and if 2 is the "hourglass-shaped" region, 9 = 

{z E C: I arg[z + (1 + z2)1/2]I < d}, take q(z) = log[z + (1 + z2)1/2]. The 
relation (4.2) reduces to 

f(z) = g(z) -[g(-00) + (z + 1(1 + z2)1/2)g(oo)]/[1 + z + (1 + z2)1/2] 

and the class La,,8(92) is the same as the class of all functions f E Hol(9Y) 
such that, if z e 2 and 91z < 0, then If(Z) < c(l + IzI)-a, while if z e - 
and 91z > 0, then If(z)l < c(l + Izl)-8. This map thus allows for algebraic 
decay at both x = -oo and x = 00. The Sinc points zj are defined by zj = 
sinh(jh), and I/q$'(zj) = cosh(jh) . A possible integral to be approximated via 
this transformation is 

x 
(4.11) p(x) =/ (x -t)a'- 1(2 + t + t2)-b' dt. 
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Example 4.8. If (a, b) = IR, and if 0 is the "funnel-shaped" region, 0 = {z E 
C: I arg{sinh[z + (1 + z2)1/2]}I < d}, take +(z) = log{sinh[z + (1 + z2)1/2]}. 

The relation (4.2) then reduces to 

f(z) = g(z) - [g(-oo) + sinh(z + (1 + z2)1/2)g(oo)]/[1 + sinh(z + (1 + Z2)1/2)] 

and the class La,8 (92) is the same as the class of all functions f E Hol(S) 
such that, if z E 0 and 91z < 0, then If(z)I < c(l + IzI)-a, while if z E 0 
and 91z > 0, then If(z) I < ceo-JzI . This map thus allows for algebraic decay 
at x = -oo and exponential decay at x = oo. The Sinc points zj are defined 
by zj = (1/2)[tj - 1/tj], where tj = log[eih + (1 + e2ih)l/2], and 1/q$'(zj) = 

(1/2)(1 + 1/t2)(1 + e-2jh)-12. A possible integral which could be considered 
via this transformation is 

x 

(4.12) p(x)= j (x - t)a'-(I +eb't)-l4dt. 
-00 

In the above examples, the specific convolution integrals given can be used to 
identify the constants a and ,B in the space Ma, ,l (-2) containing the convo- 
lution p or q defined in (1.2). Given a particular convolution integral, it may 
be possible to bound the integrand in this integral by the integrand in one of the 
above specific examples. Known identities or asymptotic expressions of hyper- 
geometric or confluent hypergeometric functions can then be used to determine 
the asymptotic behavior of p or q, as x approaches an endpoint, a or b, of 
the interval (a, b) . To this end, known limiting relations about the asymptotic 
forms of f and its classical Laplace transform f are frequently also useful. 

The second part of the following theorem was stated in [14], and then proved 
in [4, 5] (see also [13]); the first part of the theorem follows readily from the 
second part. 

Theorem 4.9. Let g E X, and let h = y/N11/2E for some fixed positive constant 
y . Let J be defined as in (3.1), and let Am be defined as in (3.16). Then, as 
N --*O) 

(4.13) IJlg - JgIIY - > 0. 

In particular, if g/q' E La,8(2), and if h = [7rd/(/N)]2,then there exists a 

positive constant c1 which is independent of N such that 

(4.14) 11 .,g -,-3mgjjy < c N112 -( rdON) 1/2 

One finds, in the derivation of (4.14), that the constant cl is proportional to 
foo I g(t) dtl . 

Next, we shall obtain a bound on the difference F(lJ)g - F(Jm)g. The 
main difficulty of carrying out this task results from the fact that Jf and Am 
do not commute. 

At the outset, we establish the convergence of F(JYm)g to F(Jf)g, as well 
as the continuity of the Frechet derivative of F. To establish our notation, we 
set 

(4. 1 5) A = J"-am J"M JI = JAm + t/\. 

Since Jt = tJf + (1 - t)Jm4, and since the spectra of both Jf and Am lie in 
the closure of Q+, the same is true of Xt, for all t E [0, 1]. 
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We may now deduce, by proceeding as for (3.1 1), that 

(4.16) F -h-!-t jg [s -J fIt1F(s) ds g. 

Using (4.16), we readily derive the expression 

d 1 vioo 

(4.17) dt F[FI]g t ig j i [s - Jj-f'A[s - Jq7 1F(s) ds g. 

We then find that 

[F(J) - F(Jm')]g = j +- t] d t g 

1 ioo 1 
(4.18) 21.i j [s -J 41 [s ->-tdtF(s)dsg 

1 ioo 

= ._i1 J [s -_ J -A[s - JT]-'F(s) ds g. -2ir i JoO 

These integral expressions will be useful for estimating a norm bound on 
[F(J) -F(m)]g . 

Let us now prove 

Lemma 4.10. Let 9is < -c < 0. Then, for g E X, we have 
(a)as m-oo , 

(4.19) gm-|[S - "] IA[s - J]' gIly O- 0 

(b) as m oo, and for any fixed t E [O, 1], 

(4.20) 11{[s - .F] A[s - - [s - " IA [s - J=g(8m) 

where gm is defined as in (4.19). 

Proof. Set 

(4.21) w wt= [s- -g 

The expression for w can be written in explicit form, namely, 

(4.22) w(x) = -1] e(xt)/sg(t) dt. 

Taking the difference between w and wt as given in (4.21) yields 

(4.23) s[w - Wt] - J't[W - Wt] = [I - J't][w + g/s]. 

Since the spectra of both J and Am lie in the right half-plane, the same is 
true of JX, and it thus follows that II[s - .t'II < l 1/c. A norm bound on 
w - wt is thus given by 

(4.24) llw - wtlly < c 

where w is defined in (4.21). The first inequality (4.19) now follows, by The- 
orem 4.9. 
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To prove the inequality (4.20), we start with the following identity, which is 
valid for all t E [0, 1]: 

(4.25) {[s - 
IfA _s - f1 - [s -J _fA[s -JflI}g 
I [[s J,-I1 - [Is -J]1]A{[_IIs -f - [s - J] }g. 

Now, if w and wt are defined as in (4.21), we have 

(4.26) W - Wt = {[Is - 1 - [s -J]1 }g, 

and moreover, since by assumption we have 9is < -c < 0, and since the 
spectrum of Jt lies on Q+ for all t E [0, 1], we have 

1 
(4.27) I[-fII<- <IsJ]I ?. (4*27) ~~~11 S - >]111 < 1 11 IS - --t]- 

I 
11 < 1 

The result (4.20) now follows from (4.19), (4.26), and (4.27). 0 

The following result follows directly, from Lemma 4.10, via, e.g., the approx- 
imation of F(s) by F(s + 2cm), with cm playing the role of c in (4.27), and 
'then selecting a sequence {cm } of positive numbers such that cm converges 
monotonically to 0 as m -+ oo, and such that the right-hand side of (4.24) with 
c replaced by cm also approaches 0 as m -+ oo. 

Lemma 4.10 enables us to come to the following conclusion. 

Corollary 4.11. Let the conditions of Lemma 4.10 be satisfied, and for a given 
g E X, let F(>J)g E Y. Then, 

(a) as m -+ oo, 

(4.28) II{F(J) - F(Jfm)}glly -- 0; 

(b) there exists a constant cl which is independent of N such that 

(4.29) II{F(J) - F(1m)}gIgy <c?l -dF[-]g | 

Corollary 4.11 establishes the convergence of F(Jm)g to F(Jf)g, 
and it also provides a mechanism for obtaining a bound on the norm 
II{F(J") - F(>Jm)}gjjy. Assumption 4.12 below enables us to prove the rapid 
convergence of F(JYm)g to F(>J)g. These assumptions are somewhat more 
stringent than those required to define the approximation F(>Jm)g. 

Towards clarifying our notation, Definition 4.1 will continue to be in force, 
and in particular we let 2 and 92J' be related as in Definition 4.1. In order to 
introduce properties of the function f, we assume the existence of a function 
qf which maps the interval [0, c] onto R, where c > 2(b - a), and which 
conformally maps the domain ?i/r onto 2d. We will also use the notation 
pf = eOf . 

Assumption 4.12. Let the "Laplace transform" of f defined as in (2.3) with 
c > 2(b - a) exist for all s in the right half-plane Q+, and let F(s) = 6'(s) as 
s -) ox in Q+. Let g E X, and let a, ,B, af, and f3f be positive constants 
such that 0 < a < 1, and 0 < ,B < 1 . 

(p) Set 

(4.30) P(r, / f(r+T- q)'(q)dn 
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and assume that P(r, *) E Ma,f8(9'), uniformly for r E [O, b - a], and also, 
that IPr(r, T)I ? cI[pf(r)]afO (r)/[1 + pf(r)]af+flf , for all r E [0, b- a] and for 
all z E 0, with cl independent of r and T. 

(q) Set 
rb 

(4.31) Q(r, T)= J f(r + r - T)g(q) dr, 

and assume that Q(r, ) E Ma,fl ('), uniformly for r E [0, b - a] and also, 
that I Qr(r, T) I < cl[pf (r)]af k, (r)/[l + pf (r) ]af+flf , for all r E [O, b - a] and 
for all T E 0, with cl independent of r and T. 0 

The upper limit c > 2(b - a) is required in Assumption 4.12 since the (p) 
and (q) parts of the assumption require that P and Q be analytic functions of 
x, uniformly for r E [0, b - a]; if c in (2.3) were taken to be b - a, then our 
function f as reproduced in our proof of Theorem 4.13 below would vanish 
when the argument of f would be greater than b - a, and it would then not 
be possible for P and Q to be analytic as assumed in the assumption. 

The theorem which follows can also be established, via a slightly more lengthy 
proof, under the alternate, simpler-to-state conditions that P(r, -) (resp., 
Q(r, *)) E Ma, fl ('), uniformly for r E [0, b-a], and also, that P(., T) (resp., 
Q(., T)) be of bounded variation over [0, b - a], uniformly for T E Q". 

Theorem 4.13. Let p and q be defined as in (1.2), let N be a positive integer, 
let M and m be selected as in Definition 4.1, let Am and Bm be defined 
as in (2.2), and let F, Vm, and Urn be defined as in (3.13) and (3.16). Let 
h = [7rd/(13N)]12. 

(i) If P satisfies Assumption 4.12 (p), then there exists a constant cl which 
is independent of N such that 

(4.32) lIp-FImF(Am) VmIgjjy < ciN1/2e-dflN)1/2 

(ii) If Q satisfies Assumption 4.12 (q), then there exists a constant ci which 
is independent of N such that 

(4.33) liq - rImF(Bm) Vmglly < ciN1I2e-dfl)'I2 
Proof. We only prove the (i) part of the theorem, since the proof of the (ii) part 
is almost exactly the same. 

We shall use (4.17) and (4.29) in Corollary 4.1 1. 
Replacing s by l/s in (4.17), and recalling that F(s) = f(1/s), we get 

(434 p [dt F [_t] 9 
27ti | ( 1 - )-IK(i _s1 - s)-If (s) ds g 

with A defined as in (4.15). Now it readily follows that if g E X, then for any 
s ? Q+, s$&0,wehave 

(4.35) (s)g]) gT {jes(s-1)!(s)g(q)d?}, 

and applying this result once more, we get 

[(1 9 lix)-eA(1 A { 5 f- jd(S)ge(X) 
(4.36) _ 9 _ a DSXt) St6 {on n\{t 
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where the subscript T on A indicates that A operates with respect to the vari- 
able T. We now apply the operation (2zi)-l Jf[.O. ds to each side of (436) 
to get 

(4.37) E~P(x) = 
i. 

A' 
{T 

f(X - t + - )( (t) dt. 

(Towards proving the (ii) part of Theorem 4.13, we remark at this point that, if 

(JYg)(x) =fx' g(t)dt, and if Jm = rmBmVm,with IIm, Bm, and Vm defined 
as in (2.4) and (3.16), then the result for q corresponding to the result (4.37) 
for p is 

(4.38) Eq(x) = 
a9x jA/ {9 

j f(t - x + q 
- T)g(q) d} (t) dt, 

where AT = J - Jm operates with respect to the variable T.) Let us write 

(4.39) Ep = E(1) + E( 
where 

E(l)(x) = AT { f(f -v)g(v)dv} (x) =Ar{PT(0, )}(x), 

(4.40) x Ta 

EJ(x)= A{P(x t )}(t) dt. 

By assumption, P(r, .) E MA,, B (') uniformly with respect to r E [0, b - a], 
and it therefore follows that PT(r, .)/q' E La,,g(s), uniformly for r E [0, b - 
a], where 0 is defined in terms of O' as in Definition 4.1. Hence it follows 
immediately, by Theorem 4.9, that there exists a constant cl, independent of 
N, such that 

(4.41) ||EJ'1liy < cN1 /2e-( dflN)"/2 

We next bound E(2) (x). In essence, it will suffice to show that for all r E 

[0, b - a] and T E , we would have the inequality 

(4.42) IPrT(r, T)l < C2 [fc(r)]af t+(r IpQr)la) 
[1 + pf,(r)]alf+flf I1 + jpQT)j]a'+fl 

with c2 a constant independent of T and r. For, if (4.42) were to hold, then 
by Theorem 4.9 we would get 

(4.43) {ATPrTP(r, T)}(t)j < C3 [pf (r)I]af f(f) XN 1/2e-(7r dflN) 
1"2 

[1I + pf (r) ]af +flf 
with C3 a constant independent of r, T, and N. It would then follow that 

IE, )(X)P = J xr(X-t, T)}(t) dt 

< 

IX 
[1 + pf(x 

t)Iaf+ 
flf 

q$f 
(x - t) dt 

N'I2e-(dfN) 
C 3 J [ + pf(r)]a+ f() dr N2e(dflN) 

= C3 i(f ) (ff) N1 2e-(7r dfiN)"/2 
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and we would then get (4.32) by combining (4.39), (4.41), and (4.44). 
It remains to derive (4.42). Since P(r, *) E M<,(J') uniformly with re- 

spect to r e [0, b - a], it follows that PT(r, .)/q' e L,f,(2) uniformly with 
respect to r E [0, b - a]. Since for r E [0, b - a], we also have IPr(*, T)/q$4 < 

ci [pf]af/[1 + pf]af+,flf, uniformly for z E , with cl a constant independent 
of T and r, the result (4.42) follows. o 

5. APPLICATIONS 

In this section we illustrate some of the many applications made possible by 
the discretization of convolution procedure of this paper. 

Example 5.1: Laplace transform inversion. Assume that f satisfies the property 
f(O) = 0, so that f(x) = fo f'(t) dt = f0 f '(x - t) * I dt; i.e., we have a 
convolution of the form (1.2), in which g(t) = 1. The Laplace transform 
equivalent of this last equation in f is f(s) = {sf(s)} { 1 /s}, or, upon replacing 
s by 1/s, f(1/s) by F(s), and setting G(s) = F(s)/s, then in the notation of 
(3.13), we get 

(5.1) f(x) = (G(JY) 1)(x). 

Using (3.13), (3.17) and (3.18), we get the accurate approximation 

(5.2) f(x) (lImG(Am)1)(x), 

where 1 = (1, 1, ... ., )T. 

Example 5.2: Feedback control. By classical feedback control theory, the dia- 
gram 

+I 

implies the relation 

(5.3) p(s) G(s) 

1 + H(s)G(s) 

where the "hat" functions denote standard Laplace transforms, and where a 
frequently occurring situation in practice is that g as well as the "hat" functions 
G and H are known, and p is to be determined as a function of time t. Upon 
setting 

(5.4) K(s) = 1 (1 / 
1 + H(l I s) G(l Is) 

the method of this paper immediately yields the approximation 

(5.5) p(t) (1 (nmK(Am) Vmg)(t). 



COLLOCATING CONVOLUTIONS 229 

Example 5.3: Convolution-type integral equations. The method of this paper 
provides a straightforward method of obtaining accurate solutions to convolu- 
tion-type integral equations. For example, the Abel integral equation problem 

t 
(5.6) p(t) - (t -T)-"1/3p(T) dT = g(t) t E (0, o), 

can be dealt with, straightforwardly, either by taking the Laplace transform 
of each term, solving for p, and then proceeding as in the previous example, 
or, noting that the function f(t) t-113 has the Laplace transform f(s) = 
F(2/3)/S213, by replacing s by 1/s in this last expression to get F(s) = 
F(2/3)S213, and then solving the system 

(5.7) {I - I(2/3)(Am)213}p = g 

for the vector p = (P-M, ..., PN)T, where g = (g(Z-M), ..., g(ZN))T. Since 
Am = XmDXm1, where D is a diagonal matrix (cf. (2.4)), it follows that Am/3 - 
XmD213Xm1 . Consequently, (5.7) is equivalent to 

{I - F(2/3)D2/3}q = h, 

where q = X Ip and h = X Ig. The solution p of (5.7) can therefore be 
obtained in the following way: First solve Xmh = g for h, then solve the 
above linear system for q, and finally compute p = Xmq. We could then 
use (2.8) to get an approximation of p over (0, ox). This same procedure 
could also be used to approximate special functions, expressed as convolution 
integrals, such as an incomplete Gamma function, a hypergeometric function, or 
a confluent hypergeometric function. Convolution Fredholm integral equations 
over a finite interval (a, b), over a semi-infinite interval (a, b), or over all of 
R can similarly be dealt with, by using two convolution approximations, one 
over (a, x) and the other over (x, b) . Several numerical tests of this type have 
already been carried out, and the procedure has been found to be effective. 

Example 5.4: Sinc approximation of a three-dimensional convolution. We illus- 
trate here an explicit procedure for approximating a three-dimensional convo- 
lution integral of the form 
(5.8) 

fX3fob2f {Xl 
P(X1, X2, x3) = 

3 J2 'x, f(xI-4I, 2-X2, X3-3)g(QI, 2, 3)dXj dX2dX3, 
a3 X2a 

where the approximation is sought over the region B = fJi3 0(a1, bi), and 
with (as, bi) C R. The reader is instructed to pay particular attention to 
the method of separation of variables made possible by the one-dimensional 
convolution approximation, as well as to how well the final algorithm can be 
adapted to parallel computation. In order to guarantee some accuracy in the 
final approximation, we shall simply assume, without going into detail, that the 
function p belongs to the class Mj,flgj(Oj) with respect to each variable xj, 
for all fixed values of the other variables, each in its respective interval of def- 
inition, j = 1, 2, 3. We shall also assume that the mappings Ob: Oj' 

` d 
have been determined. We furthermore assume that positive integers Nj and 
Mj as well as positive numbers hj (j = 1, 2, 3) have been selected such 
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that [Nfl91] = [N2f2] = [N3,/3], such that Mj = [3jNjl/aj], where [1] de- 
notes the greatest integer function, and such that hj = 7rd/(fljNj)} 12 . These 
definitions ensure that we get the same order of accuracy of approximation 
, = 6(NI 2e@dfllNl)l'2) in each variable. We set mj = Mj + Nj + 1, and we 

define the Sinc points by z(J) = 0-1(lhj), for = -M,..., Nj, j = 1, 2, 3. 
Next, we determine matrices Aj, Xj, and Sj such that 

(5 9) ~Aj = hjI( ,l)D(l/) = jjX.1 j = 1, 3, 

A2 = h2(I( 21))TD(1/q02) = X2S2X-1. 

In (5.9), I(- 1) is defined in the manner similar to that j&-') was defined, and 
the Sj are diagonal matrices, 

(5.10) Sj = diag[s_ Mj,.. * , sr]. 

Arbitrarily taking Cj e [2(bj - aj), x] , we set 

F(s(P), y z) = J f(x, y, z)e xS()dx 
f 

(5.11) G(s(1) S(2) Z) = JF(s('), y, z)e_yIs( dy 
J 

H(S(1) S(2) , S(3))) = G(s(1) ,S(2) ,z)e-z/(3) dz. 
0 

We mention at this point that the functions F and G defined in (5.11) are 
introduced here solely for purposes of understanding the method of separation 
of variables described below. Only the function H defined in the last line of 
(5.1 1) is required in the final algorithm. 

We now illustrate the method of separation of variables. To this end, we first 
rewrite (5.8) in the notationally more convenient form 

{z rb2 rx 
(5.12) p(x, y, z) = j f(x - , j - y, z - C)g(4, C, C) d diidC. 

a3 y a 

Discretization with respect to x. We set 

(5.13) g(tj, C) = (g(z(j) tj, ), ) g(z(4) Q ))T 

and we then define a vector p(y, z) by 

Z rb2 

(5.14A P(y, 

z) 

(= J FAl, 

-y, z - C)g(q, ,) dqdC, 
a3y 

where Al and F are defined in (5.9) and (5.11), respectively. By the use of 
the diagonalization identity Al = XISI X l given in (5.9), it now follows from 
(5.14) that 
(5.15) 

/F(s('), C- y, z - ) 
Z ob2 

m 

p(y, z) = XI x JI X g(rq, C) d r d C. 
a3y 

F(s(ll),- -)) 
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The expression (5.15) motivates the transformations 

(5.16) h(t, q) =X-lg(t, q ) q(y, z) = X-1p(y, z). 

Thus, if the components of h and q are denoted by hi and qi, respectively, i = 
-ml ~ ... , N1 , equation (5.15) reduces to the decoupled set of scalar equations 

(5.17) qi(y, z) = | | F(si(l), q - y, z - C)hi(q, ) dq dC. 
a3y 

Discretization with respect to y. We set 

(5.18) hi(Q) = (hi(z (2) 2 1), hi(z(2) ))T 

and we then define a vector qi(z) by 
z 

(5.19) qi(z) - J G(si(), A2 , z -)hj(C)d 
a3 

where A2 and G are defined in (5.9) and (5.1 1), respectively. By the use of 
the diagonalization identity A2 = X2S2Xj1 , given in (5.9), it now follows from 
(5.19) that 

G(si( ) -5M)2 ' -) 

(5.20) qi(z) =X2 2 ) X)hi (C) dC. 
3 

;(S(1) S(2), Z_ 

The last expression motivates the transformations 

(5.21) ki C) = X1 hi (Q), ri(z) = X7-1qi(z). 

If the components of ri and ki are denoted by ri, j and ki, j respectively, i = 
-ml , ... , N1, j = -M2, ..., N2, equation (5.20) reduces to the decoupled 
set of scalar equations 

(5.22) ri,j(z) -] G(s1), s2) , z - C)ki,j(C) dC. 
a3 

Discretization with respect to z. We now set 

(5.23) ki, j = (ki,j(z(3), 
j , (Z(3)))T 

and we then define a vector ri, j by 

(5.24) rij = H(sPl), Sj2), A3)ki,j, 

where A3 and H are defined in (5.9) and (5.11), respectively. By the use of 
the diagonalization identity A3 = X3S3XT 

I given in (5.9), it now follows from 
(5.24) that 

/H(si() Sj) 1 S-M3) 

(5.25) rij = () ) X- ki, j. 
H(s(1) 5(2) 5(3) 
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The expression (5.25) motivates the transformations 

(5.26) mi, = X3lkik, j, ti,j =X 71ri, j. 

If the components of mi, j and ti, j are denoted by mi, j, k and ti, j, k, respec- 
tively, i = -M1, ..., N1, j = -M2, ..., N2, k = -M3, ..., N3, equation 
(5.25) yields the decoupled set of scalar equations 

(5.27) ti, j,k = H(s'), Sj 2) Sk))Mi ,j,k I S k 

By assumption, the mi j,k are known at this point, and (5.27) then determines 
the ti, j,k . The second equation in (5.26) next determines the vectors ri, j . The 
second equation in (5.21) is then used to determine the vectors qi(z) at the Sinc 
points zj3) . The second of (5.16) is next used to determine the vector p(y, z) 
at the set of Sinc points (y, z) = (Zj2), Zk3)). We can thus recover the complete 
array of values p(x, y, z) at the set of Sinc points (zI, Z2), Zk3 . The whole 
procedure is illustrated succinctly via the following algorithm. In this algorithm 
we use the notation, e.g., hi, ., k = (h*i,-M2,k, .. . , hi,N2, k)T. We emphasize 
the obvious ease of adaptation of this algorithm to parallel computation. We 
also remark that the matrices XT-I, j = 1, 2, 3, do not need to be found in 
the algorithm which follows. For example, in Step 3 of the algorithm, h. j,k 
satisfies the system of linear equations X1 h. j, k = g., j, k, and hence one can 
find the LU factorization of X1 and then use it in the back and forward 
substitutions when solving for all h., j, k . The same observation applies also to 
the computation of ki, . k in Step 4, and to the computation of mirj, . in Step 
5 of the algorithm. 

Algorithm. 
1. Form the array zO , and d(O)(x) at x Z for j=1, 2, 3, and 

i= -Mj,..., j, and then form the array [gij,k] =[g(Z~I), Z k )] 

2. Determine Aj, Sj, and Xj, for j = 1, 2, 3, as defined in (5.9). The 
matrices XT-I, j = 1, 2, 3, do not need to be found, as is explained in the 
above paragraph. 

3. Form (See (5.16)) [Done] 

h ,j,k = Xl g,j,k P, j],k = Xlq.j ,k 

4. Form (See(5.21)) 

ki, *,k = XI hi,-,k qi,, k= X2ri,.,k 

5. Form (See (5.26)) 

mi'j,. =X3 ki,j,. ri,j, X3ti,j, 

6. Form (See (5.27)) 

ti, j,k = H(si' ), Sj 3)Sk) Mi, j,k 
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Once the numbers Pi, j, k have been computed, we can then use these num- 
bers to approximate p on the region B via the use of a Sinc basis; upon setting 
p(l) = e"', we can define the functions 

y2') = sinc{[0(') - ih]/h}, =1, 2, 3, i=-M, ..., N, 

(01) = yN) 1= 1 2 3 i=-Ml + 1, ... Nl- 1 

(5.28) wP( 1- +p - Z 1eh (5.28 ov-Ml + p(l) E 1 + ejhl Y] 

j=-M1+1 

W Nl) _____ (P = N1-1 eihI (1 
1 +p(') - 

M11 + eihl~ 

We then get the approximation 
N1 N2 N3 

(5.29) p(x, y, z) Z Z Z Pij,k(1)(X*(2)(y) )(3)(Z) 
i=-M1 j=-M2 k=-M3 

Assuming a one-dimensional error of the order of , = NlI2e-@dfllNl)12 , we may 
expect the approximation in (5.29) to have an error of the order of {log(Ni )}2e . 

It is also relatively simple to obtain an estimate of the complexity, i.e., the 
total amount of work required to achieve an error e when carrying out the 
computations of the above algorithm on a sequential machine. By taking aj = 
f3, = a, and then selecting M1 = Nj = N, it follows that the error in the 
final approximation is roughly of the order of e = e-(7daN) 1 . The amount 
of work required to factor the matrices Aj into the form XjSjX7-1 is of the 
order of (2N + 1)3, and the amount of work in the totality of the matrix-vector 
multiplications in steps 3 to 6 is of the order of (2N+ 1)4 . Hence the complexity 
is &([2N + 1]4) = ([log(g)]8). 

Example 5.5: Solving partial differential equations. Solutions of partial differ- 
ential equations can often be expressed as convolution integrals, or in terms 
of convolution-type integral equations, via the use of Green's functions. For 
example, the solution to the problem 

(530) Ut - Uxx=g(X t), XERll t>O, 

(5) u(x, 0) = 0, x E R, 

can be expressed in the form 

(5.31) u(x, t) = J 2 { (L + J) e (x)2 /4(t-r)g(, T) d} dT. 

The Green's function in (5.31) is 
1 -x21 

(5.32) f(x, t) = CeX/4t 

and its "Laplace transform" can be expressed explicitly, i.e., 

F(s, a)= J J e-xs-t/f(x, t) dx dt 

(5.33) Sou 
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We can use the result (5.33) to obtain an explicit procedure for approximating 
the repeated convolution integral in (5.31). The method is the same as that 
illustrated for a three-dimensional convolution integral in Example 5.4 above. 
This procedure has also been tested numerically and found to be effective. 

Similarly, the "Laplace transform" of the Green's function for a two-dimen- 
sional Poisson problem can be explicitly expressed. The Green's function re- 
ferred to is 

(5.34) f(x - Y ?I) log 

and its "Laplace transform" is 

F(s, a) = j e-xls-Ylaf(x, y) dx dy 

(5.35) _Ss2aT2 saf s2 log(s) + a2 log(a) 
4(S2 +a2) 27c s2+a2 J 

'where y denotes Euler's constant. 

We remark here that when applying the Sinc discretization procedure of this 
paper to the approximation of the integral of the Green's function (5.34) times a 
given function integrated over a rectangular region (a, b) x (c, d) in the plane, 
we need to approximate the four convolution integrals, f Ju f f2d, f b fy, 

and fx <yd . Similarly, for three-dimensional potential problems (e.g., when the 
Green's function is l/r) we need to approximate eight integrals. In this latter 
case it is perhaps worthwhile to mention that it is presently not known whether 
or not the three-dimensional "Laplace transforms" of convolution kernels such 
as 1 /r or eikr/r can be explicitly expressed. However, in the final algorithm, 
the multidimensional "Laplace transform" is required only at discrete points, 
and the integrals could be evaluated via Sinc quadrature [13, 14, 1 1]. Since the 
error of one-dimensional convolution approximation by the method of this pa- 
per, using a (2N+ 1) x (2N+ 1) matrix, is of the order of E-e-cN"2 , it is readily 
seen by examination of the algorithm of Example 5.4 that the complexity, i.e., 
the amount of work required to approximate a v-dimensional convolution in- 
tegral via the methods of this paper to within an error E, is of the order of 
[log(e)]2v+2 in the case when the "Laplace transform" of the convolution kernel 
is explicitly known. Since the number of points at which the v-dimensional 
"Laplace transform" has to be evaluated is of the order of (2N + 1)", and 
since using N points in a one-dimensional Sinc quadrature formula yields an 
error of the order of e, the complexity of evaluating the one-dimensional in- 
tegral at (2N + 1)v points via one-dimensional Sinc quadrature is also of the 
order of [log(e)]2v+2. Hence, the order of the complexity to approximate the 
v-dimensional convolution by the method of this paper is not increased if the 
v-dimensional integral for the "Laplace transform" of the convolution kernel 
can be reduced explicitly to the approximation of a one-dimensional integral, 
which can then be evaluated numerically via Sinc quadrature. For example, 
each of the three-dimensional "Laplace transforms", that of the Poisson kernel, 
l/r, that of the Helmholtz kernel eikr/r, and that of the heat equation kernel 
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t-312e-r 2/t, can be explicitly reduced to a one-dimensional integral. 
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