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CHEBYSHEV-TYPE QUADRATURE AND PARTIAL SUMS 
OF THE EXPONENTIAL SERIES 

ARNO KUIJLAARS 

ABSTRACT. Chebyshev-type quadrature for the weight functions 

Wa (t)= lat -1 <t< 1, -1 <a<l1, 
7rV/1 t2 

is related to a problem concerning partial sums of the exponential series, namely 
the problem to extend the nth partial sum to a polynomial of degree 2N having 
all zeros on the circle I z = laIN. Using this connection, we show that the 
minimal number N of nodes needed for Chebyshev-type quadrature of degree 
n for wa(t) satisfies an inequality C1 n < N < C2n with positive constants 
C1, C2. As an application we prove that the minimal number N of nodes for 
Chebyshev-type quadrature of degree n on a torus embedded in R3 satisfies 
an inequality C1n2 < N < C2n2 . 

1. INTRODUCTION AND STATEMENT OF RESULTS 

A Chebyshev-type quadrature formula is a numerical integration formula in 
which all weights are equal. For an integrable nonnegative weight function w(t) 
on [-1, 1] with f11 w(t) dt = 1, this is a formula of the type 

(1.1) j f(t)w(t) dt t -N ,f(xi) 

with (not necessarily distinct) nodes xi E [-1, 1], i = 1, ..., N. We call 
N the size of (1.1). The degree of (1.1) is the maximal number n such that 
equality holds for every polynomial f(t) of degree < n. We say that w(t) 
admits Chebyshev-type quadrature of size N and degree n if there exist N 
points xi E [-1, 1] such that (1.1) has degree n. See [2, 3], for surveys on 
Chebyshev-type quadrature. 

If N < n, then (1.1) is called a Chebyshev quadrature formula. We say 
that w(t) admits Chebyshev quadrature if a Chebyshev quadrature formula 
exists for every n. The classical example of a weight function which admits 
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Chebyshev quadrature is the function (1 - t2)-1/2/7r, but more examples are 
known; see [2] and the references therein. 

In this paper we consider the weight functions 

Wa(t) = 
- 

-1 < t < 1, -1 < a < 

These functions arise in connection with quadrature problems on the surface 
of a torus; see ?5. It has been proved by Xu [16] that wa (t) admits Chebyshev 
quadrature if lal < y = 0.27846... , where y is the unique positive root of 
xel+x = 1. 

We show that for the weight functions wa(t), the existence of Chebyshev- 
type quadrature is related to properties of the partial sums s,(z) of the expo- 
nential series, 

n zk 

Sn(z) = k!. 
k=O 

Using a general condition for the existence of Chebyshev-type quadrature (The- 
orem 1), we find that wa (t) admits Chebyshev-type quadrature of size N and 
degree > n if and only if s, (z) can be extended to a real polynomial of degree 
2N having all its zeros on the circle lzl = laiN. Here we say that p(z) is an 
extension of sn (z) if p(z) = Sn (z) + &(zn+ 1) (z -- 0) . Furthermore, if sn (z) 
has an extension to a polynomial of degree 2N - n - 1 which has all its zeros 
in Iz > a IN, then wa (t) admits Chebyshev-type quadrature of size N and 
degree > n. 

Thus, we are led to consider extensions of sn (z) which have their zeros as 
far from the origin as possible. Our main results are as follows: 

* For 0 < R < I there is a constant c such that every sn(z) has an 2 
extension to a polynomial of degree cn which has no zeros in IzI < Rcn 
(Theorem 6). 

* For a E (-1, 1) there exist positive constants C1, C2 such that wa(t) 
admits Chebyshev-type quadrature of degree n and size N where 

C1n < N < C2n 

(Corollary 7). An application to Chebyshev-type quadrature on the sur- 
face of the torus is given in Theorem 8. 

* For lal = 1 the corresponding bounds are 

C1n3 < N < C2n3, 

which imply that sn (z) can be extended to a polynomial of degree N 
Cn3 which has all its zeros on the circle Izi = N/2 (Corollary 5). 

* The bound lal < y for the existence of Chebyshev quadrature is sharp: 
For lal > y, the weight function wa(t) does not admit Chebyshev 
quadrature (Proposition 4). 
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2. CONDITION FOR CHEBYSHEV-TYPE QUADRATURE 

Let w(t) be a weight function on [-1, 1] with f11w(t) dt = 1. Set 
1~~~ 

(2.1) Ck = 2 Tk(t)w(t)dt, k > 1 

where Tk(t) is the Chebyshev polynomial of the first kind of degree k, and 
construct the power series 

OC 

(2.2) G(z) = Ck k 

k=1 

which is analytic in z < 1. In view of the formula 

-log(l -2tz + Z2) = E0 
2 

Tkzk, 
k=1 

cf. [14, equation (4.7.25)], we see that 

G(z) = - J log(l - 2tz + z2)w(t) dt. 

In terms of the function G(z) we have the following conditions for the 
existence of Chebyshev-type quadrature. Theorem 1 is a slight modification of 
results due to Geronimus [4, Theorem 1] and Peherstorfer [8, Theorem 1], [9, 
Theorem 3]. For convenience of the reader we have included the proof. 

Theorem 1. Let w(t) be a nonnegative integrable function on [-1, 1 ] such that 
f1 w(t) dt = 1. Let G(z) be defined by (2.1) and (2.2). Let n, N E N. Then 
the following hold: 

1. The weight function w (t) admits Chebyshev-type quadrature of size N 
and degree > n with all nodes in the open interval (- 1, 1) if and only if 
there is a real polynomial P(z) of degree 2N such that 
(a) P(z) = exp(-NG(z)) + (Zn+l) (z -+0), 
(b) all zeros of P(z) are nonreal and have modulus 1. 

2. If there is a real polynomial p(z) of degree 2N - n - 1 such that 
(a) p(z) = exp(-NG(z)) + (Zn+l) (z , 0), 
(b) all zeros of p(z) have modulus > 1, 
then w (t) admits Chebyshev-type quadrature of size N and degree > n. 

Proof. Suppose P(z) satisfies 1.(a)(b), so that P(O) = 1 and all zeros of P(z) 
are complex and come in conjugate pairs. Then there are qj E (O, 7r), j = 
1, ..., N, such that 

N 

(2.3) P(z) = fJ(eiO, - z)(e-'Oj - z). 
j=1 
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We will compute the logarithmic derivative of P(z) in two ways. From (a) and 
(2.2) we have 

(2.4) P (z) -NG'(z) +6&(z ) = -NEckzkI +6&(zn) (z -+ 0). 
P(z) ~~~~~~k=1 

From (2.3) it follows that 

P'(z) N 1 1 1 N oo 

P(2) 5) -=l [e + z+ e- J -2 E E cos(kj)z k-) 
(2.5) 

j=__ j=1 k=1 

=-2ZZ Tk(xj)zkI 
k=l j=1 

where we have written cos qj = xj. 
Comparing coefficients in (2.4) and (2.5) and using (2.1), we find 

-NETk (Xi) = 2=LTk (t) w(t) d t k =1..,n, 
j=1 

that is, the points Xj E (- 1, 1), j = 1, ... , N, are the nodes of a Chebyshev- 
type quadrature formula for w(t) of degree > n. 

Conversely, if Xj E (-1, 1), j = 1, ... , N, are the nodes of a Chebyshev- 
type quadrature formula of degree > n, then writing xj = cos qj and defining 
P(z) as in equation (2.3), we can easily check that P(z) satisfies 1.(a)(b). 

Next, assume that the real polynomial p(z) of degree 2N - n - 1 satisfies 
2.(a)(b). Let p*(z) = z2N-n-lp(z-1) denote the reciprocal polynomial of p(z). 
Then 

p(z) = p(z) + zn+lp* (z) 

is a real polynomial of degree 2N (exactly) which has all its zeros on the unit 
circle, cf. [10, pp. 88 and 256] for a related result of Schur. Note that P(+1) = 
2p(?1) 5 0, so that P(z) satisfies condition 1.(b). Since p(z) satisfies 2.(a), it 
is clear from the definition of P(z) that P(z) satisfies l.(a) and the theorem 
follows. o 

3. THE WEIGHT FUNCTIONS Wa(t) 

For the weight function 

Wa(t) = 
-a 

tE < a <1 

the function G(z) of formula (2.2) is simply G(z) = -az, and the condition 
2.(a) of Theorem 1 is 

p(z) = exp(aNz) + (zn+l) (z - 0). 

Denoting by S, (z) = En zJ/j! the nth partial sum of the exponential series, 
we obtain for a 0 0, 

p(z/aN) = Sn(Z) ++(Zn+1) (Z - 0) 
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A result of Seymour and Zaslavsky [ 1 1, Corollary 2] shows that for every n, 
Chebyshev-type quadrature formulas of degree > n exist in case the size N is 
sufficiently large. So part 1 of Theorem 1 implies 

Corollary 2. Let n E N, 0 < a < 1. For N sufficiently large, Sn(z) has an 
extension to a real polynomial of degree 2N having all its zeros on the circle 
lzl = aN. 

Note that the bound a < 1 is sharp. For a > 1, it is not possible that 
every Sn(z) has an extension to a real polynomial of degree 2N having all its 
zeros on lzl = aN, since that would imply that Chebyshev-type quadrature of 
every degree exists for the weight function (1 - at)/(r vYl'2) which assumes 
negative values in (-1, 1). This is impossible, since a slim high-peaked im- 
pulse function, centered at a point where the weight function is negative could 
be approximated arbitrarily closely by a polynomial of sufficiently high degree 
whose square could then be taken in the role of f in (1.1). This would produce 
a negative number on the left, and a nonnegative number on the right. 

Part 2 of Theorem 1 gives the following condition for the existence of a 
Chebyshev-type quadrature for Wa(t). 

Corollary 3. Let -1 < a < 1. If sn(z) has an extension to a polynomial of 
degree 2N - n - 1 which has all its zeros in lzl > laiN, then there exists a 
Chebyshev-type quadrature formula for wa (t) of size N and degree > n . 

The question of Chebyshev quadrature for Wa(t) has been discussed by 
Xu [16]. He proved that Wa(t) admits Chebyshev quadrature if lal < y = 
0.2784645... , where y is the unique positive solution of xel+x = 1. 

Corollary 3 with N = n + 1 shows that Chebyshev-type quadrature of size 
n + 1 and degree > n is possible if the zeros of s,+I (z) have absolute value 
> lal(n + 1). [Take s,+I(z) as the extension of sn(z) .] The behavior of the 
zeros of s,(z) has been well studied. It is a classical result of Szego [13] that 
accumulation points of the zeros of the normalized partial sums s,(nz) lie on 
the curve given by 

lel-zzl= 1, lzl < 1. 

Later, Buckholtz [1] showed that all zeros lie outside this curve. The point on 
the curve with smallest absolute value is on the negative real axis and is -y, 
which is in accordance with Xu's result. For more details on the zeros of s, (z), 
see [15, Chapter 4]. 

Using Theorem 1, we can prove that Xu's bound lal < y for the existence 
of Chebyshev quadrature is sharp. 

Proposition 4. For lal > y, the weight function Wa(t) does not admit Chebyshev 
quadrature. 
Proof. Without loss of generality we take a E (y, 1). 

Let n E N and suppose that wa(t) admits Chebyshev quadrature of degree 
n . By part 1 of Theorem 1 there is a real polynomial P(z) of degree 2n having 
all its zeros on the unit circle and satisfying 

P(z) = exp(anz) + (zn+l) (z -> 0). 
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Then P(z) = P*(z) and it easily follows that 

P(z) = qn(Z) + Zn q(z) 

with 

qn(Z) = k) + 2 (n = 1 (sn(anz) + sn-l(anz)). 
k=O k! 2 n! 2 

In particular, P(l) = 2qn(l) > 0 and P(- 1) = 2qn (- 1) . If we could show that 
qn(- 1) < 0, then it would follow that P(z) has a zero in the interval (-1, 1), 
which would be a contradiction. Therefore we will show that qn (- 1) < 0 for 
n sufficiently large (in fact only for n even). 

Since for z E C, 

e-zsn(z)= 1- I J e-ttn dt 

(which can be verified by differentiation), it follows that 

e-z(sn(z) + Sn-I(z))= 1- 1j e-t(tn + ntn-) dt 

(1)nnn+1 fz/ln 
1 2-l)n! enx(xn-I-xn)dx, 

where we have made the substitution t = -nx. Hence 

e-anzqn(z) = 1 - (I1) n e-n fa e(l+x)nxn - 1) dx 

and we see that qn(- 1) < 0 if and only if n is even and 

(3.1) je(l+x)nXn I) dx > 2n+ 

For the left-hand side we have 

j e(l+x)nXn I) dx > (1- (el+xx)n dx 

Since a > y we have el+aa > 1 and we see that that the left-hand side of 
(3.1) increases exponentially as n -x oc. Further, the right-hand side tends to 
0 for n -x 00, so that for n large enough the inequality (3.1) holds and the 
proposition follows. o 

For the special cases a = h1, the weight function wa (t) is a Jacobi weight 
function. Chebyshev-type quadrature for wa(t) is related to Chebyshev-type 
quadrature for the ultraspherical weight function 2(1 - s2) 1/2/7r because of the 
relation 

_ f (t) ( 1 t) t/2(l1 + t) -1t/2 dt =- Xf(2S2 -1)(1-S2) l 2 ds. 

[We have taken a = +1 .] Using this relation and the symmetry of the weight 
function 2(1 - s2)1/2/7r we get the following: 
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If xI, ..., XN are the nodes of a Chebyshev-type quadrature formula for 
w1 (t) of degree n then the 2N points 

+ XI + 1 )1/2 (X2 + 1)I/2 XN I /2 

are the nodes of a Chebyshev-type quadrature formula for 2(1 - s2)1/2/a of 
degree 2n + 1. 

Conversely, if ?yI, ...?, YN are the nodes of a symmetric Chebyshev-type 
quadrature formula for 2(1 - s2)1/2/a of degree 2n + 1, then 

2y2 - i 2y 22 - 1,., 2y2 - i 

are the nodes of a Chebyshev-type quadrature formula of degree n for w1(t). 
For the weight function 2(1 - s2)1/2/g, the author [7] has shown that the 

minimal number N of nodes needed for Chebyshev-type quadrature of degree 
n satisfies an inequality 

C1n3 < N < C2n3, 

where Cl, C2 are positive constants which do not depend on n . Hence also for 
w I(t), Chebyshev-type quadrature of degree n is possible with Cn3 nodes, 
and this is the correct order. Now part 1 of Theorem 1 immediately gives: 

Corollary 5. There exist constants Ci, C2 > 0 such that, for every n E N, sn(z) 
has an extension to a polynomial of degree N with C n3 < N < C2n3 whose 
zeros are nonreal and all lie on the circle IzI = N/2. The order n3 cannot be 
improved. 

For y < IaI < 1 no results on Chebyshev-type quadrature seem to be known. 
We will show that the minimal number of nodes N needed for Chebyshev-type 
quadrature of degree n for Wa(t) satisfies an inequality C1 n < N < C2n . The 
positive constants Cl and C2 depend on a but not on n. To obtain this 
result, we will construct extensions of sn (z). 

4. EXTENSION OF PARTIAL SUMS OF THE EXPONENTIAL SERIES 

We will prove the following theorem. 

Theorem 6. Let 0 < R < I . Then there is a constant co = co(R) E N such that, 
for every n and every c > co, sn (z) has an extension to a polynomial of degree 
cn which is zero-free in the disc lzl < Rcn. 

Remark. a) From the results of Szego [13] and Buckholtz [1] (see ?3) it follows 
that one can take co = 1 in case R < y = 0.2784645... . 

b) The theorem does not hold for R > 1; see Corollary 5. 

Proof. Motivated by the relation 

e-Zsn(z) 1- e-ttndt, 

we will study polynomials SN(z) satisfying 

(4.1) e-zSN(z) = 1 - 4 ,, e-ttnpm(t)n dt. 
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Here pm(t) will be a polynomial of degree m and 

(4.2) An= e-ttnpm(t)n dt. 

It is easy to see that with this choice of An, (4.1) defines a polynomial SN(Z) 
of degree N:= (1 + m)n and 

SN(Z) = Sn (z) + 6(Zn+l) (z - 0). 

Thus, SN(z) is an extension of sn(z) to a polynomial of degree (1 + m)n. 
For pm(t) we take qm(t/N), where qm(w) is a monic polynomial with real 

coefficients. In the integrals of (4.1) and (4.2) we make the substitution t = wN 
to obtain 

lIz/Nn 
(4.3) eezSN(z) = 1- [e (I+m)wwqm(w)] dw. 

with 

(4.4) Bn= [e-(i+m)wwqm(w)] dw. 

From (4.3) it is clear that SN(z) is zero-free in the region defined by 

(4.5) jIN [e(`+m)wwqm(w)] dw < Bn 

The rest of the proof will be divided into three steps. In Step 1 we introduce 
an auxiliary function F(z) and establish some basic properties. In Step 2 we 
define for every m a polynomial qm(t) and a function Fm(z). We show that 
Fm (z) tends to F(z) as m -- oo. Using these results we will show in Step 
3 that for m large enough (say m > mo) the inequality (4.5) holds for every 
n E N and for every lzl <RN = R(1 + m)n. 

Then the theorem follows with co = 1 + moi. 

Step 1. Take r = 2R2 so that 0 < r < R < 1/2 and let p be the measure 
on the circle 4 - reio given by 

dp(4) = 1 2Cos do. 

The moments of p are easily computed: 

1 for k = 0, 
J 

Xkdp(4) -r/2 for k = 1, 
0 O for k >2. 

Define for IzI > r, 

(4.6) F(z) = -Re z + log Iz - XI dp(4). 



CHEBYSHEV-TYPE QUADRATURE 259 

Since for z > r, 

Jlog Iz - XI dp(4) = log lzl + Re |log (1 - )dp(4) 

= log Izl -Re E kzk Jk dp(4) 
k= 

=log lZI +jRe - 

we have 

(4.7) F(z) = -Re z + log Izi + -Re - 
2 z 

We need two properties of F(z). 
A: F(z) is constant on the circle lzl = R. 

Indeed, since Re (1 /z) = Re z/lz12, we have for lzl = R, 

F(z) = logR +Re z [-1 + 2R2] =logR. 

B: F(x) is strictly increasing on the interval (r, 1/2 + e), where 

(4.8) e := (1/4 -R 2)1/2 > 0. 

Indeed, using (4.7), we compute for z = x > r, 

F'(x)= -1+ ---1 r -(x-l12)2+ 2 F'() - 
+x -2x2 X 

and property B follows. 
From properties A and B we obtain (recall r < R < 1/2) 

(4.9) max F(z) < F(1/2) 
lzl=R 

and for some a > 0, 

(4.10) F(1/2) + d < F(x) for all x E (1/2 + e/2, 1/2 + e). 

In the rest of the proof, e as defined in (4.8) and a satisfying (4.10) will be 
fixed. 

Step 2. For every m, take m points ,m,m ... , m,m on the circle I4I = r 
as follows. We let j, m = reioj m, where 

(On1, m-Cos610 1 fOj+ I'l-CosO ; 1 2OdO= 2m ] dO.-, j=1,..,m-1 
JO O],m 27r m 

In this way, we have ,m+l-j = ,j and no ,j,m is real and positive. We also 
define 0,Om = O. Put 

m 

qm(z) = fJ(Z-j,rm). 
j=1 
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Then qm (z) is a monic polynomial of degree m with real coefficients and 
qM (z) > 0 for z real and positive. Let Pm be the normalized counting measure 
of the points Xo, m, 41, m, * M, m: 

1 m 

Pm = m+ 1 Jy,m 

The measures Pm converge to p in the weak *-topology for convergence of 
measures. Write 

Fm(z) = -Re z + m 1 log zqm(z) 

1 m 
(4.11) = -Re z + m+1 E log|z- j, m 

= -Re z + log Iz - 4Jdpm((). 

The function Fm (z) is subharmonic on C and is harmonic for z $j,m 
j = 0, ... , m, so in particular, Fm(z) is harmonic for lzl > r. 

Comparing (4.6) and (4.11), we have that 

(4.12) lim Fm(z)=F(z) 
m- OO 

pointwise for lzl > r. As the points Xj,m, j = 0, ..., m, have absolute val- 
ues < r, it easily follows from (4.11) that the functions Fm(z) are uniformly 
bounded on compact subsets of lzl > r. Since the functions Fm(z) are har- 
monic for lzl > r, this implies that they form a normal family (see, e.g., [5, 
Theorem 2.18]). It follows that the limit (4.12) is uniform on every compact 
subsetof IzI>r. 

Then by (4.9) and (4.10) we have for all m sufficiently large, 

(4.13) max Fm (z) < F(1/2), 
lzl=R 

and 

(4.14) F(1/2) + d < Fm(x) for all x E (1/2 + e/2, 1/2 + e). 

Since Fm(z) is subharmonic on C, (4.13) also gives 

(4.15) max Fm(z) < F(1/2). 

Step 3. We take m such that (4.14), (4.15) hold and such that 

(4.16) e(l+m)6e/2 > R. 

For a given n E N we write N = (1 + m)n and we are going to prove (4.5) for 
lzl < RN. 
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Note that by the definition (4.1 1) 

(4.17) e (1+m)wwqm(w) = e(l+m)Fm(w) 

Thus, if IzI < RN, then by (4.15) and (4.17), 

(4.18) J [e(I+m)wwqm(W)] dw < ReNF(112) 

Also by (4.4), (4.14), (4.17) and the fact that qm(w) > 0 for w > 0, we have 
1 /2+,E 

(4.19) Bn > / eNFm(w)dw > eN(F(1l2)+3)E/2. 
1/2+,E/2 

From (4.18) and (4.19) we see that (4.5) holds for every IzI < RN if eN36/2 > 
R. Since N = (1 + m)n, this follows from (4.16). o 

Corollary 7. For every a E (- 1, 1) there exist constants C1, C2 depending on 
a, such that, for every n, the minimal number N of nodes in a Chebyshev-type 
quadrature formula of degree n for wa(t) satisfies the inequalities 

C1n < N < C2n. 
Proof. The upper bound follows easily from Theorem 6 and Corollary 3. 

For the lower bound we take C1 = 1/2. It is a general result that for any 
quadrature formula of degree > n with arbitrary weights one needs more than 
n/2 nodes. o 

5. CHEBYSHEV-TYPE QUADRATURE ON THE TORUS 

Fix 0 < a < 1 and let Ta be the torus embedded in R3 with parametrization 

x = cosq$(1+acosy/), 
y = sin$(1 +acos/), Oq < < 27r, 0 < O < 27r. 
z = asiny/, 

The surface element is a( 1 + a cos VI)dobdy, = d a and the surface area is 4ir2a . 
A Chebyshev-type quadrature formula for Ta is a formula of the form 

(5.1) f ( , z)da ; N f(xi, Yi, zi) 

with (xi, Yi, Zi) E Ta. The degree of (5.1) is the maximal n such that equality 
holds for all polynomials in three variables f (x, y, z) of total degree < n . 

Multidimensional Chebyshev-type quadrature formulas for various other re- 
gions were given by Korevaar and Meyers [6]. 

Theorem 8. Let 0 < a < 1. There exist constants C1, C2 > 0 (depending 
on a) such that the minimal number N of nodes needed for Chebyshev-type 
quadrature on Ta of degree > n satisfies the inequalities 

C1n2 < N < C2n2. 
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Proof. The lower bound follows from a result on general quadrature formulas 
(i.e., not necessarily with equal weights) for 2-dimensional domains. Let 

"Ta ~~N 
4ral f (X, Y, z) da A if (xi, Yi, zi) 

be a quadrature formula of degree n with weights Ai. Then for polynomials 
g(x, y) of two variables of degree < n, we have 

Jjg(x, y)w(x, y)dxdy = ig(xi Yi), 
Aa i=l 

where Aa is the annulus 

Aa := {(x, y) I 1 -a < x+y2? 1 +a}, 

and w(x, y) is a positive weight function on Aa. A result of Stroud [12, 
Theorem 3.15-1] shows that the number of nodes satisfies N > n2/8. 

For the upper bound, we first consider polynomials f(x, y, z) of degree 
< n which are even in y and z. For such polynomials we have 

1 

Id 

1 

f27 f27 
47r2aJTa 

f(x y 
z) da 

- 

42 
1010 F(q, 

/)(1 + a cos ) 
dqd y/ 

?jjFQ 
i0 F$ y/)(1 +acos )dbdd, 

where we have written 

F($, /)= f (cos q(1 + a cos ), sin q(1 + a cos ), a sin ). 

There is a polynomial p(s, t) of degree < 2n such that 

p(cos q, cos ) = F(q, w), 

and the substitutions cos b = s, cos V = t give 

lf f( d 1f1(t\ ds (1 +at)dt 
4.r2a JJr f(x y z)da =J J p(s, t) 1s2 + t)d 

According to Corollary 7 there exist a constant C > 0, not depending on n, 
and N1 < 2Cn points tl, ... , tN, which are the nodes of a Chebyshev-type 
quadrature formula for W-a(t) of degree 2n. There also exist n + 1 points 
S ... , Sn+I which are the nodes of a Chebyshev-type quadrature for wo(t) 
of degree 2n. (Simply take the nodes of the (n + 1)-point Gauss-Chebyshev 
quadrature formula.) Then it is easy to see that 

1 ds (1 +at)dt _ 1 n+1I N1 

L/'-' JP(S' t) _ 1=EP(sitj) -1 irx/TT7 S 2 - NI(n + 1) t) 

holds for every polynomial p(s, t) of degree < 2n. Take /i = arccossi, 
vII = arccos tj, and 

x1j = cos oi (1 + a cos Vj), yij = sini (I + a cos yj), zij = a sin y{. 
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Then 
1 f'1 n+I1N1 

47r2a]T f(x, y, z)da = NI(n + 1) Z E f(xiy, Yij zi1) 

holds for all polynomials f(x, y, z) of degree < n which are even in y and 
z . By the symmetry in y and z, it then follows that the 4N1 (n + 1) points 

(xij , ?Yey, AZij) i-:1, ~..., n+l1, j =1, ... Nj, 

are the nodes of a Chebyshev-type quadrature formula of size < 8Cn(n + 1) 
and degree n . o 
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