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CONVERTING APPROXIMATE ERROR BOUNDS INTO EXACT ONES 

ABRAHAM ZIV 

ABSTRACT. In order to produce error bounds quickly and easily, people often 
apply to error bounds linearized propagation rules. This is done instead of a 
precise error analysis. The payoff: Estimates so produced are not guaranteed to 
be true bounds. One can at most hope that they are good approximations of 
true bounds. 

This paper discusses a way to convert such approximate error bounds into 
true bounds. This is done by dividing the approximate bound by 1 - (, with 
a small d. Both the approximate bound and e5 are produced by the same 
linearized error analysis. This method makes it possible both to simplify the 
error analyses and to sharpen the bounds in an interesting class of numerical 
algorithms. In particular it seems to be ideal for the derivation of tight, true 
error bounds for simple and accurate algorithms, like those used in subroutines 
for the evaluation of elementary mathematical functions (EXP, LOG, SIN, etc.), 
for instance. The main subject of this paper is forward a priori error analysis. 
However, the method may be fitted to other types of error analysis too. In fact 
the outlines of a forward a posteriori error analysis theory and of running error 
analysis are given also. In the course of proofs a new methodology is applied 
for the representation of propagated error bounds. This methodology promotes 
easy derivation of sharp, helpful inequalities. Several examples of forward a 
priori error analysis and one of a posteriori error analysis and running error 
analysis are included. 

1. INTRODUCTION 

In roundoff error analysis of floating-point computations, a local relative error 
is associated with each input number and with each arithmetic operation, and 
it is for the analyst to estimate the resulting global, accumulated, relative errors. 
The challenge that faces an analyst is complicated by the fact that some of the 
propagation rules of relative error are not linear. 

Various techniques were invented that make error analysis possible, in spite 
of the difficulties (see, e.g., Wilkinson [14], Sterbenz [11], Stoer and Bulirsch 
[12]). It seems that no single technique matches, in both power and width 
of applicability, the technique of linearized perturbations, in which terms of 
second and higher orders are systematically ignored. This technique, however, 
has one important disadvantage: The bounds it produces are not guaranteed to 
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be true bounds. They only approximate true bounds. Apparently that is why 
this technique is not more widely used. 

A way to produce true bounds while easing the nonlinearity problem was 
suggested by Olver [2]. He replaces the familiar relative error by a new error 
measure, relative precision: If x is an approximation of x, such that x = eXx 
with 141 < a, he says that x x (rpa). This is equivalent to replacing the 
traditional relative-error measure, p(x, x) = l(x - x)/xl, by a new measure, 
rp(x, x) = I ln(x/x) I. The advantages of relative precision follow, so it seems, 
mainly from the fact that the propagation rules, of its bounds, for multiplica- 
tion, division, and the power operations, are identical in form to the linearized 
propagation rules of bounds of relative errors. 

Another new error measure, relative distance, was tried by Ziv [15]. Its 
definition is d(x, x) = lx - xll max{ lxl, lxj}, and it eases the nonlinearity 
problem in much the same way as relative precision does. 

The use of relative precision for error analyses of various types is demon- 
strated in a series of papers of Olver [2, 3, 4, 5, 6] and Olver and Wilkinson 
[7] (see also Scherer and Zeller [10]). Relative distance was tried for a mixed 
forward/backward error analysis in Ziv [16]. The idea of defining new, useful 
error measures was carried also to complex numbers (Olver [4, 5], Ziv [15]) and 
to linear normed spaces (this includes real and complex, vector and function 
spaces; see Ziv [15], Pryce [8, 9]). 

Both relative precision and relative distance achieve linearity of the propaga- 
tion rules for multiplication and division. However, both lose the linearity of 
the propagation rules for addition and subtraction. In Ziv [18] the possibility 
of defining a new error measure is discussed, that replaces relative error, for 
which all propagation rules for arithmetic operations are identical in form to 
the linearized propagation rules of relative error. The result of the discussion 
is negative. It is shown there that the linearized propagation rules of relative 
errors, for multiplication and for addition, contradict each other and cannot 
both be satisfied by any single, reasonable error measure. 

In the following sections a method is suggested to go around the difficulty. It 
is shown that one may perform a standard error analysis, using the linearized 
propagation rules of the traditional relative error bounds, and convert the final, 
approximate error bound into a true bound by dividing it by 1 - 3 with a small 
positive 3. Both the approximate error bound and 3 are produced by the 
same linearized error analysis. The main subject of this paper is a priori error 
analysis. The methodology, though, may be fitted to other types of analysis. In 
order to demonstrate this point, we describe, in outline, a theory of forward a 
posteriori error analysis, including running error analysis. 

The suggested method seems to be ideal for the production of rigorous, sharp 
bounds for simple accurate numerical algorithms like those evaluating elemen- 
tary mathematical functions (SIN, COS, EXP etc.; see Ziv [17]). This is demon- 
strated by a simple example in ?6.4. For a more interesting example see Ziv 
[18]. The result described above is achieved by looking into the basic inequali- 
ties upon which roundoff error analysis, with relative error, relies. 

In ?2 we describe the general type of algorithm which is covered by this paper 
(this is slightly generalized in Note 3.3) and present the linearized propagation 
rules of relative error. In ?3 the main result, Theorem 3.1, is stated. In ?4 we 
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present some basic inequalities; their proofs appear in the appendix. In ?5 we 
use the inequalities to prove the main result of ?3. In ?6 some examples are 
given for possible uses of the main result. The examples include error analyses 
of general multiplication and division algorithms, addition and subtraction al- 
gorithms, including the evaluation of Euclidean norm and a simple algorithm 
for the evaluation of the sine function for small arguments. In ?7 we outline a 
theory of a posteriori forward error analysis, including a short description of a 
running error analysis theory. These theories are demonstrated on the addition 
and subtraction algorithm. 

2. NUMERICAL ALGORITHMS AND LINEARIZED ERROR BOUNDS 

Suppose that we have m input real numbers, xl, x2, ... , xm, and we apply 
to them a sequence of elementary, binary operations, om+l 0 Om+2, On, : 

(2.1) 
Xk = Yk Ok Zk where Yk, Zk E {X1, X2, ... , Xk-1} (k = m + 1, m + 2, ... , n). 

We shall limit ourselves to the elementary operations of addition, subtraction, 
multiplication, division, and power (the exponents of powers are assumed to be 
errorless constants). 

Let xk :$ 0 be a real, exact value, and let xk be its computed approxi- 
mation, having the same sign. We may express the error by an error factor 
qxk: k = Xkqxk, 0 < qxk < 00. Usually, qxk is close to 1. The relative error 
associated with qxk is Pxk = qxk - 1 . The elementary operation Ok introduces 
an error factor tk into Xk. In analogy with xk and qxk we use the nota- 
tion Yk, Zk, qyk, qzk for the computed approximations and the error factors 
associated with the exact Yk, Zk . The exact propagation rules for error factors 
are: 

(2.2a) Multiply: Xk = fl(Yk X Zk) = qxk = qykqzkqxk; 

(2.2b) Divide: Xk = fl(Yk + Zk) =l qxk = (qyk qzk)qxk; 

F{k = fl(Yk i Zk) = qxk = (Oykqyk + Ozkqzk)4xk 

(2.2c) Add/Sub: where Oyk = Yk/Xk, Ozk = +ZklXk 

(note that Oyk + Ozk = 1); 

(2.2d) Power: Xk = fl(Yk) = 'xk = qzj4xk 

(note that Zk iS errorless; namely, qzk = 1) 

Denote by lxk, lyk, lzk, lxk linearized bounds on the relative errors Pxk, Pyk, 
Pzk, Pxk. We substitute qxk = 1 + Pxk, qyk = 1 + Pyk, *** in (2.2), ignore 
terms of second and higher orders, and look for the best possible bounds for 
Pxk . One gets the linearized propagation rules for bounds of relative error: 

(2.3a) Mult/Div: lxk = lyk + lzk + 'xk; 

(2.3b) Add/Sub: lxk = 'xk + lxk, where lxk = I6ykllyk + I0zkllzk, 

Oyk = Yk/Xk, Ozk = ?Zk/Xk; 

(2.3c) Power: lxk = IZkllyk + 'xk- 

The local, linearized error bounds are actually true bounds, and they must satisfy 
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(exactly) 

(2.4a) lIxk > IP QxkI (k = 1l,+ 2, .. , m) 

(2.4b) lxk > lPxkl = 14xk 
- 

11 (k = m + 1, m + 25 ................... n). 

There is no guarantee that the bounds lxk (k = m + 1, m + 2, ... , n), which 
arise from (2.3), (2.4), are true error bounds. One may only hope that they 
approximate such bounds. 

3. CONVERTING LINEARIZED GLOBAL BOUNDS INTO TRUE GLOBAL BOUNDS 

The following theorem is the main theoretical result of this paper. 

3.1. Theorem. Let a equal (2n? + 1)B, where n? is the total number of 
? operations in the algorithm and B = max,<i<n lxi. If 3 < 1, then the 
accumulated relative error satisfies Ipxn I = Iqxn - l < lxn( 1 - c) ? 

3.2. Note. We assumed that the linearized bounds propagate according to the 
rules (2.3). Sometimes, however, it is convenient to use simpler but weaker 
rules. Thus, for instance, if Oyk, 6zk are both positive, it might be convenient to 
use the rule lxk = max{lyk , lzk}+lxk in place of (2.3b). It is clear, however, that 
such weaker rules increase the values of lxn and 3. So Theorem 3.1 remains 
true if such rules are used. This note emphasizes the fact that a user of Theorem 
3.1 may apply freely any reasonable linearized propagation rules in order to 
produce the sequence {lxk }, and is not restricted to the tight propagation rules 
(2.3). 

3.3. Note. We did not consider, so far, truncation errors. Such errors may 
be included in Theorem 3.1 by introducing fictitious steps into the algorithm: 
Suppose that the exact y is meant to approximate another exact number, x 
(for instance, let R(t) be a rational function approximating the transcendental 
function T(t) and take y = R(t), x = T(t)). One may include in the algorithm 
a transformation of y into x. No operation is performed in the passage from 
y to x . So actually x = y . This is why we call such a step fictitious. Fictitious 
steps are helpful in the error analysis. Actually xc = y = yqy. Let us denote 
y/x = tx. Then we see that qx = qydx. This propagation rule is a special 
case of the exact propagation rule (2.2d) for the power operation (take Zk = 

1). Therefore, fictitious steps such as this are permissible and do not affect 
the validity of Theorem 3.1. One should note, though, that the corresponding 
PX = (y - x)/x must be considered a local error and, like other local errors, 
its bound, lx, should be a true bound and not a linearized approximation of a 
bound. The use of fictitious steps is demonstrated in Example 6.4 below. 

The proof of Theorem 3.1 is given in ??4 and 5. It goes along the following 
lines: We keep track of error bounds by associating with qxk and 4xk two-sided 
bounds of the form 

(3.1) f (1 -eXk) lkxk < qxk < (1 -eXk) lxkIexk (k = 1, 2, *, n), 
l(I - gXi)1X'1-Z qxi < (1-eI)lZe (= m + 1, . .., n). 

Here, lxk, lxi are the linearized bounds described above, and exk, 6xi are 
small auxiliary parameters. Theorem 4.1 below establishes the suitability of 
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such bounds. Theorems 4.1, 4.2 provide basic inequalities that enable one to 
formulate propagation rules for e6k that ensure the validity of (3.1) for all k. 
Theorem 4.3 below makes it possible to convert bounds of the form (3.1), on 
error factors, into bounds on relative errors. The appropriate value of a is 
deduced from the propagation rules for elk . 

4. INEQUALITIES 

The proofs of the theorems in this section are in the appendix at the end of 
the paper. 

4.1. Theorem. The function 

(A(I -)_A/ e- O e,- < A-oo < L<o00 
eA '6~=O, -00<)L<00, 

is analytic everywhere in its domain. It is strictly increasing, as a function of A, 
for all constant e < 1, strictly increasing, as a function of e, for all constant 
A > 0, strictly decreasing, as a function of e, for all constant A < 0 and a 
constant, 1, for A = 0. El 

Note. In what follows we shall use freely the notation (1 - e)I/E instead of 
u(2, e), even if e = 0. 

4.2. Theorem. Let ei, Ai, 6i (i = 1, 2, ..., n) be real constants that satisfy 
ei < 1, E >i = 1 . Denote A = E >iAi and let e < 1 be a real number that 
satisfies e > max{f)i - A +e,i 5, -),} (i = 1, 2, .. .,n). Then 

n 

(4.1 ) OiAi > O (i = I1, 25 .. * , n) X i f1 i) < ( 1 ) 
i=l 

n 

(4.2) iA)j < 0 (i = 1, 2, ..., n) =Z i( 1 )- i) > (1 - 0/I. E 
i=1l 

4.3. Theorem. Let -oo < e < 1, -oo < A < 1. Then (1 -e)-/E- 1 lies 
strictly between A/( 1 - A) and A/( 1 - e), unless either A = 0 or A = , in which 
cases the three numbers coincide. o 

Note that for small Ai, )A, ei, e the expressions to be estimated and the 
bounds in both Theorem 4.2 and Theorem 4.3 differ in terms of second and 
higher orders. In Theorem 4.1 the effect on u(A, e) of a first-order change in 
e is of second order. 

5. PROOF OF THEOREM 3.1 

The proof goes along the lines described at the end of ?3; i.e., we have to find 
first values for gxk, xi which ensure the validity of (3.1). For the local error 
factors qxk, xi (k = 1, ... ,m m+1 . , n), we infer from (2.4) that 
(3.1) is satisfied with 
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For the rest of the error factors, namely for qxk (k = m + 1, ..., n), the 
following propagation rules for exk are suggested by Theorems 4.1, 4.2: 

(5.2a) Mult/Div: exk = max{eyk , ezk, eXk}; 

J exk = max{llXk - lyk sgn(Oyk) + eyk, 

(5.2b) Add/Sub: lxk - lzk sgn(Ozk)I + ezk ' ixk exk} I 

1. where ixk, 6Oyk, 6Ozk are defined in (2.3b); 
(5.2c) Power: 8xk = max{eyk, Cxk}. 

Thus, if gxk , txi are defined recursively by (5.1) and (5.2), then (3.1) is satisfied 
for all k and all i . 

Now we define recursively an auxiliary sequence {e' }: 

Cxk={/2B ifoke{x~+~Power}(k m+n 

xk {x k-t +2B if Ok E {+, -} 

We notice that {e' k} is not decreasing and therefore 'ek ? B (k = 1, ... , n). 
So, from the definition of B (see Theorem 3.1) it is clear that for all k and 
is, > ?xj , e' > ?xj > ?xi . Using this, we can easily prove, by induction, 
that eIk ? ex (k = 1, ..., n). Noting that e6,, = 5 (see Theorem 3.1), 
we infer that > lx, a > -ex,. Also, from (3.1) we have (1 - exn)lxn/exn < 
qxn < (1 - gxn)-lxnlexn . Theorem 4.3 permits us to infer, therefore, that IPxn = 

Iqxn-I < lxnl/(l -) a 

6. EXAMPLES 

The examples below include, more or less, standard, linearized, forward er- 
ror analyses (compare, e.g., Stummel [13]). The main new element is the fac- 
tor 1/(1 - 3), which transforms the approximate, linearized bounds into exact 
bounds. 

It would sometimes be convenient to use linearized, absolute errors rather 
than linearized relative errors. We shall introduce therefore the following nota- 
tion for absolute linearized error bounds: L will denote a linearized bound on 
absolute error in analogy with 1, the linearized bound on relative error. Thus, 
if x = y o z, then the linearized bounds on absolute errors are related to the 
linearized bounds on relative errors by LX = lxIlx, Ly = lylly, L4 = IzIl, 
Lx= Ixllx. 

The following linearized rules for the propagation of absolute error bounds 
are equivalent (in the exact sense) to those of relative error bounds, given in 
(2.3): 

(6. 1a) Mult/Div: LX = Ly/llyl + LzIlOzI + Lx; 
(6. lb) Add/Sub: Lx = Ly + LZ + Lx; 
(6.1c) Power: LX = IzILyIIYl +LX. 

The quantities 6y, Oz are defined in (2.2c), (2.3b). 
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6.1. Multiplications and divisions. Suppose that we are given m real numbers, 
al, . .. , am. We form an expression E by somehow ordering them, inserting a 
single operation, of either multiplication or division, between each consecutive 
two, and adding any legitimate set of parentheses (e.g., (a3 . al) - (a4 x a2)) . 
Let lak be a true bound on the relative error I(ak - ak)/ak I and 1 a true bound 
on the relative error produced by any single arithmetic operation. We have 
E = x, where 

xi=ai, Xk =YkOkZk ok E {X ,} 

(i = 1 , ... , m ,k =m + 1 ,... , n = 2m - 1). 

The linearized error propagation rules give 

lxi=lai lxk=lyk+lzk+l (i=l,...,m, k=m+1,...,n). 

Denote by Ik the set of indices of the a's that compose the subexpression xk . 
Obviously, 

lxk = lai+ (11kI- 1)1 (k = m 1, , n), 
iEIk 

where I'Ikl is the number of terms of Ik. Hence, Theorem 3.1 implies that 

m 

J(E -E)1EI < lxn/10- ), where1Ixn = d= E1ai +(m -l)1. 
i=1 

6.2. Additions and subtractions. We denote Sk = a, + a2 + *. + ak (k = 
1, ... , m) and calculate Sm by the recursion, S1 = a1, Sk = Sk-1 + ak (k = 
2, ... , m) . Subtractions may be included by adjusting the signs of the a's. 

Again, lak denotes a true bound on I 0( - ak)/akl and 1 a true bound on 
the relative error introduced by a single arithmetic operation. The linearized 
propagation rules for absolute errors, (6.1), give 

Ls, = laillal, Lsk = Ls,k-1 + lakllak + ISkll (k = 2, ... , m), 

from which it follows that 
k k 

(6.2) Lsk = ZIaillai + ZI |Sil, lsk = Lsk/lSkl (k = 2, ..., i ). 
i=1 i=2 

Theorem 3.1 then yields J(Sm - Sm)/Sml < lsm/(l - (5), where 

m m \/ 

Ism = ( 
laillai + E 

? 
Sill) ISmI 

i=l i=2 

(5= (2mi- 1)max{laili= 1, ..., mI} U{lsk k=2, ml, m} 

If, owing to cancellation, any of the Sk's is very small, then (5 might grow to be 
larger than 1, in which case Theorem 3.1 is not applicable. This cannot happen 
if all of the ai's are of like signs. In such a case, (5 may be simplified. Actually, 
from (6.2) we get in this case, lsk < maxl<i<k lai + (k - 1)1. So one may take 
( = (2m - 1) x (maxl<i<m lai + (m - 1)1). 
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6.3. Euclidean norm. Suppose that we are given m > 2 real numbers, b, ..., 
bmi, and that we want to compute E = b2 + + b . The algorithm is: 

ak= bk x bk, So=O, Sk=Sk-l+ak (k =,...,m), E = Vm. We may 
apply the results of ?6.2 in order to write down the linearized error bounds: 

k k 

lsk = ailai + ?) Sj/ Sk, 

where ai = bi2, lai = 21bi + 1,Sj =,bi2 (k = 2, . ,m). 
i=l 

This yields, after some algebra, 

k= [2E bilbi+ (kb + (k-i + 2)b?) b] ?bi (k = 2, ... ., m). 
=L i=2 J i=I 

The linearized bound on the relative error of the final output is therefore 

rm /m \ 
IE=2'sm +1 = b bSlbii+2((m+2)bl +Z(m-i+ 4)b?) I Zb?. 

Li=1 ~~~i=2 / i 

Looking for a bound on all of the l's, we get from these results 

ak= 2lbk + < 2 max lbi+kl, E?< max lbi +I (m + 2)1 lak lsk 
I~~<i<k 1<i<m 2 

(k= 1, ,m), 
so, since there are m - 1 additions, we may take 

5 = (2m - 1) (2 max lbi+ml) 

The final result of the error analysis is, by Theorem 3. 1, 

I(E - E)/EI 

< [b?2lbi + - ((m + 2)bI + E (m -i + 4)b2) 1 /((1 - d) Eb?) 

This may be simplified into the somewhat weaker result 

l (E - E)IEJ < (m.ax lbi + 2 (m + 2)1) / ( l-o). 

6.4. Evaluation of sin(t) for a small t. This simplified example demonstrates 
the use of a fictitious step for the inclusion of the truncation error in the analysis 
(see Note 3.3). A more complex and interesting example of an algorithm to 
evaluate exp(t) is given in Ziv [18]. 

We use the approximation sin(t) t - t3/6, Itl < a = 1/64 for the eval- 
uation of sin(t) in single precision of IEEE binary floating-point arithmetic. 
The relative roundoff error in a single arithmetic operation is bounded, then, 
by e = 2-24. The algorithm is given by: xI = t, X2 = 6, x3 = xIxI = t2, 
X4 = X1X3 = t3, X5 = X4/X2 = t3/6, X6 = X1 - X5 = t - t3/6. The fictitious step 
iS X7 = sin(t). 
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For this algorithm, lxl = lx2 = 0, 'x3 = 9, lx4 = 2e, lx5 = 3c. Also, 

I6 X545 + 8= 3 +1 8<1.0018 

and 4x7 = 4x6 + 1x7, where Ix7 is an exact bound on the relative truncation error 
(X7 - X6)/X7 . But 

sin(t) - (t - t3/6) /< a5/5! < 4.968 x 1010 < 0.008335e. 

sin(t) sin(a) 

So, ix7 = 0.008335e and 4x7 < 1.0094c. 
Now we may use Theorem 3.1. We see that max lxk = 3c and that there is 

one addition operation in the algorithm. Hence, J = 9c < 5.4 x 10-7. So, 
- 
X7 I< 1.0094c 

< 1.018. 
x, 1 -5.4 x10-7<1Oc 

7. A POSTERIORI ERROR BOUNDS AND RUNNING ERROR ANALYSIS 

Some of the analyses described in the examples section have characteristics of 
running error analysis. Thus, for instance, the bound for the additions and sub- 
tractions example includes the partial sums, Sk, which are natural by-products 
of the summation algorithm. One should notice, however, that this bound in- 
cludes the theoretical, exact Sk's rather than the approximate Sk'S, which are 
more appropriate constituents of an a posteriori bound. We shall describe, in 
outline, a linearized analysis method and the proof of an analog of Theorem 
3.1, which together constitute a systematic method of producing a posteriori 
bounds. The details are very similar to those of the a priori analysis described 
in the previous sections. 

For exact propagation rules of error factors we take (compare to (2.2)) 

(7.1a) Multiply: Xk = fl(Yk X Zk) q- =- = --I 

(7.lb) Divide: Xk = fl(Yk Z zk) = = (qyk + xzk ) xk 

YXk = fl(Yk ? Zk) = 1 = -1+ q-1 
(7.1 c) Add/Sub: = where Oyk = Yk/Xk 6 Ozk = ?ZklXk 

(note that Oyk + 6 xk = 

(7.1 d) Power: Xk = fl(yzk) - = (q-1 )zk q-I 

The main point to be noticed is that Ok' ok of (7.1c) depend on Xk, Yk, zk 
rather than on Xk, Yk, Zk, as Oyk, Ozk of (2.2c) do. 

For linearized propagation rules of relative error bounds we take (compare 
to (2.3)) 

(7.2a) Mult/Div: 'ik = 1yk + 'zk + 'xk; 

(7.2b) Add/Sub: lxk = loykIlyk + lozkIl'zk + 1xk; 

(7.2c) Power: 'xk = IZkIlyk + 'xk, 

Absolute, a posteriori error bounds are defined in terms of relative error bounds 
by LXk = lXkIlxk, Ly=k = I = IZklkzk, LXk = IXkllxk. Substituting 
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these relations in (7.2), we get (compare to (6.1)) 

(7.3a) Mult/Div: L'k = L Ik/1|,kI +LZk/IOzkI + Lxk; 

(7.3b) Add/Sub: Lk= L'k + L'k+Lk; 

(7.3c) Power: Llk = IZkILyk/IOYkI + Lxk 

The sequence {lxk} is constructed recursively by (7.2) and/or (7.3). The initial 
values of the recursion, Ixk' lI (k = 1, 2, ..., m, i = m + 1,..., n), are 
chosen, exactly as in the a priori case, to be true bounds of Pxk, Pxi (compare 
to (2.4)). Parameters e4k' exi (k = 1, 2, ...,n, i = m + 1, ...,n) are 
chosen so as to satisfy the relations (compare to (3.1)) 

f( 1- CXk)lxi xk < q. ? (1 - 
cXk)l/xkk 

(k = 1, 2,.. ., n), 

l (1 -i)4xil;x'i < 4X-il < (1 - eXi)-1X"19, (i = m + 1, ..,n). 

The initial terms are chosen to be 8'k= 1xk' l = x (k= 1,. , m, 1= 
m + 1, ... , n) (compare to (5.1)). The remaining e4k (k = m + 1, ..., n) are 
chosen, relying on the inequalities, to satisfy the recurrence relations (compare 
to (5.2)) 

(7.5a) Mult/Div: E4k = max{cyk, '6zk, exk}; 

(7.5b) Add/Sub: e = max{IlXk -UI lkl ex k lx ksgn(O'k) + yk 

I1xk -zksgn (O'~I+~ x} | x zk sG zk ) I + 8'zk z lxk }; 

(7.5c) Power: 9xk = max{Yk , exk}l 

In order to deduce (7.5b), we must use Theorem A. 1 (see Appendix) rather than 
Theorem 4.2, because O'k + 6k = 54 1 . From this result we get an analog 
of Theorem 3.1, which is quite similar to it: 

7.1. Theorem. Let d' equal (2n? + 1)B', where n? is the total number of 
? operations in the algorithm and B' = max1<i<n1li. If (' < 1, then the 
accumulated relative error satisfies IPxnI = Iqxn - 1 ? l<lxn/( 1 - (5') E 

Applying this theorem to the additions and subtractions Example 6.2, one 
gets in place of (6.2) 

k k 

LIk=E|ili+ s| s Lsklk (k = 2, ...... ) 
i=l i=2 

and the final a posteriori result is 

(Sm - SM)/SmI < slm/(1 - (5), 
where (s' = (2m - 1 ) max{lai I i = 1,.., m} u {Isk I k = 2,.., m} 

This may serve as the basis for a running error analysis: Start by setting 
S1 =al, ll = la,, LI = la,ll , J5l = l1 and then set, for k = 2, ..., n, 
Sk = fl(Sk1- + ak), Lk = Lk-I + Iakllak + I5kll lk = LkI/lSk, Jk = 

max{Jk_ -1, lak ,l Ik}, bk = lk[1 - (2k -1) Sk ] . Obviously, Nk = fl(al + + ak) 
and I (Sk - S )/Sk I < bk . Note that if bk is to be a true bound, the arithmetic 
operations leading to it must be exact. However, none of these operations may 
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cause cancellation. So, a standard finite-precision calculation produces very ac- 
curate numbers. In fact, unless k is really large, a slight increase in, say, the 
third significant decimal digit of the approximate bk will produce a true bound. 
A theoretically more satisfactory alternative is inclusion of compensating fac- 
tors in the evaluation of bk (see Olver [3]). But this is outside the range of this 
paper. Note that the recursion relations (7.2), (7.3) may serve for running error 
analysis in every algorithm. Measures may be taken to reduce the number of 
operations applied to produce b,. But we shall not discuss this subject here. 

8. CONCLUSIONS 

Substitute measures were suggested in the literature, for the traditional rela- 
tive error, in order to simplify roundoff error analysis. The advantages of these 
substitutes follow mainly from the simplification they imply on the propagation 
rules of error bounds. Although these new error measures do simplify error 
analysis, they do not achieve the degree of simplification achieved by linearized 
error analysis with the traditional relative error. Linearized error analysis, how- 
ever, produces only approximate error bounds rather than true bounds. 

In order to achieve the simplicity of linearized error analysis, while producing 
true bounds, a substitute error measure should imply exact error propagation 
rules which are all identical in form to the linearized propagation rules of rel- 
ative error. It is demonstrated in Ziv [18] that such a substitute error measure 
does not exist. Instead we suggest that it is possible to perform linearized error 
analysis and transform, in a simple way, the approximate error bounds it pro- 
duces into true bounds. This paper is devoted mainly to the demonstration of 
the feasibility of this idea for a priori, forward error analysis with scalars. The 
outlines of a theory of a posteriori error analysis and of running error analysis 
were described too. 

We prove Theorem 3.1, which forms the basis for our method, and then give 
several examples of error analysis which demonstrate the method. The examples 
show that sometimes, in cases where catastrophic cancellation occurs, (5 may 
grow to become larger than 1 in which case Theorem 3.1 is not applicable and 
the method fails. However, there exist interesting cases where cancellation is not 
significant. This includes, for instance, algorithms used in subroutines for the 
evaluation of elementary mathematical functions (see Ziv [17]). In such cases 
the method is efficient in producing sharp, true error bounds, while enjoying the 
convenience of linearized error analysis. 

APPENDIX 

This appendix includes the proofs of the inequality theorems of ?4. 

Proof of Theorem 4.1. There is a doubt, as to analyticity, only when e = 0 . 
The doubt is resolved by the following expansion, which is produced from the 
binomial expansion for (1 - c) t: 

uA, c) = 1?+-A+( (A+-e)+ A(A+,e) , (+ < 1, -< c <A < o0. 

The monotonicity properties follow from the identity 

u (A, e)=-exp( A dt ) e<1, -oo< A<oo. 
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Proof of Theorem 4.2. In fact, we shall prove a slightly more general theorem. 
The generalization is necessary for the discussion in ?7 of a posteriori analysis. 
Theorem 4.2 is obtained from the generalization by substituting A' = 0, c' 
-x0, q=1. 

Al. Theorem. Let c', A', c1, Ai, Oi (i = 1, 2,..., n) be real constants thal 
satisfy ' < 1, ci < 1, and let E O6 = q . Denote A = 'Z+ E OiAi and let c < 1 
be a real number that satisfies c > max{A' - A + c', Ai - A + ci, -A, ', c1} 
(i= 1, 2, ..., n). Then 

(A.1) q < (1 -)-" /Y, A > 0, 
n 

OiAi > O (i = 1,~ 2, ... ., n) 0 i(1 i)-i < (1- )1, 
i=l 

(A.2) q > (1 - A')l8, ,'< 0 
n 

OiAi < O (i = 1,2,.., n) ,oi( 1 - gir-lil"i > ( 1 - Ae)-1. 
i=l 

Let us prove (A.1): We have 

3 oi(l - ei) - 1 = (q - 1) + 3 6i[(1 - - 1] 
i i 

< ; [At(l-ett)1( +e )/e + OAx 6i(l - it)-(&i+ei)/ei dt 

<L [A'(10- t)('+e)/e + ii( -eit)-('+`V`i dt 

< [A'(1 - gt) (A+6)/6 + 0j 6Aj.(l ctX(A+e)/e] dt 

- (1 1- )- 1. 

The proof of (A.2) is similar. Only the directions of inequalities should be 
reversed. 0 

Proof of Theorem 4.3. The case is evident if either A = 0 or A = c. So assume 
that e :$ A :$ 0. The discussion is separated into four cases: (i) A > 0, A > c, 

(ii) A > 0 A <'6 (iii) A < 0 A >'6 (iv) A < 0,A< 
In case (i) we get from Theorem 4.1 

and using an appropriate identity yields 

(1 - e - 1 - ](1 - et)-(-+`)/e dt > A |(1 - et)-(e+e)/ dt - 1 - 

The proofs in the three other cases are almost identical. 0 
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