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ON THE ABSOLUTE MAHLER MEASURE OF POLYNOMIALS
HAVING ALL ZEROS IN A SECTOR

GEORGES RHIN AND CHRISTOPHER SMYTH

ABSTRACT. Let o be an algebraic integer of degree d, not 0 or a root of
unity, all of whose conjugates «; are confined to a sector |argz| < 6.
We compute the greatest lower bound c(6) of the absolute Mahler measure
(Hf-i=l max(1, |e;]))!/4 of a,for § belonging to nine subintervals of [0, 27/3].
In particular, we show that c(n/2) = 1.12933793, from which it follows that
any integer o # 1 and o # e*™/3 all of whose conjugates have positive real
part has absolute Mahler measure at least ¢(7/2) . This value is achieved for «
satisfying o + 1/a = ﬂg , where fBo = 1.3247... is the smallest Pisot number
(the real root of B3 = By +1).

1. INTRODUCTION

Let P(z) # z be a monic polynomial with integer coefficients, irreducible
over the rationals, of degree d > 1, and having zeros «;, ..., ag . Its relative
Mahler measure (“height”) M(P), given by

d
M(P) = Hmax(l s leil) s
i=1

is either 1 (if P is cyclotomic) or thought to be bounded away from 1 by
an absolute constant (if P is not cyclotomic) [1, 2]. When the zeros of P
are restricted to a closed set V¥ which does not contain the whole unit circle,
however, one can say much more. Then, from a result of Langevin [4] there
is a constant ¢y > 1 such that the absolute Mahler measure Q(P) := M(P)!/4
for such P is either 1 or else satisfies

Q(P) >Cy.

The aim of this paper is to try to find the largest value for the constants cyp
when V' is the sector {z:|argz| < 6}, where 0 < 0 < n. We denote this best
value by c(8). It is clear that ¢(0) is a nonincreasing function of 6, and, using
the polynomials z2¥*! —2 as k — oo, that ¢(8) — 1 as § — n. We succeed
in finding ¢(f#) exactly for 6 in nine intervals (see the Theorem below). We
suspect that in fact ¢(6) is a “staircase” function of €, which is constant except
for finitely many left discontinuities in any interval [0, ©) for © < &. [It is
clear that ¢(6) would then have infinitely many discontinuities on [0, x).]
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TABLE 1. Intervals [0;, 6] where ¢(0) is known exactly. Here
c(0) = c(0;) = Q(P) for 6 €[6;, 0], and b; is a lower bound
for ¢(6;—) —¢(0;). The polynomial P is read off from Table 3

i c(o) 91 91 P bj

1 1.61803399 0.00000000 17.39 P2

2 1.53922234 26.40874008 26.65 P7 0.00085
3 1.49363278 30.44014506 30.59 P8 0.00341
4 1.30305506 47.94143202 49.46 PO 0.00002
S 1.25926867 60.89019592 63.87 P12 0.00001
6 1.21060779 73.63161482 73.99 P14 0.00006
7 1.15461811 80.24103363 81.40 P17 0.00006
8 1.12933793 86.70851871 91.40 P18 0.00001
9 1.05542318 112.64711862 115.32 P21 0.00008

Our main result is the following:

Theorem. There is a continuous, monotonically decreasing function f(0), which
is > 1 for 0< 6 <2n/3, and a staircase function g(0) > 1 such that

min(f(0), g(0)) <c(6) <g(0) (0<6<n).

Table 1 shows nine intervals [6;, 6/] where f(0) > g(6), so that c(f) =
g(0) = g(0;) for O in those intervals. Furthermore, c¢(6) has a discontinuity
at 0 =0; (6 >0),alower bound b; := f(6;) — g(8;) for c(6;—) — c(6;) being
shown in Table 1 also. We call such angles 8, critical angles. The functions f
and g are shown in Figure 1.

The function f(0) is given by f(0) := max(f;(0), f2(0), ..., fo(6)), where
the f;(6) are defined as follows:

Let Wy be the sector {|z| <1, |argz| < 6}. Then

—1/(2a,-+2} e;; deg Pij)
) fi(0) = {ng% }

2% [[ Pij(2)%
j

where the a;, and P;;, and the ¢;; are given by Table 2, using the polynomials
of Table 3.

Absolute
measure 1-6

1.0

20 20 80 30 T00 20

6 degrees
FiGURE 1. The functions f(0) and g(6). The nine intervals
where f(0) > g(6), and so where c¢(#) is known exactly, are
given in Table 1
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TABLE 2. The auxiliary function 4;(z)-= z% []; P;j(z)% used
to compute f;(6) (i=1,...,9). (See equation (1).)

i M Polynomials P Exponents e

i i) 1) 1
1 17.39 P1 P2 P3 P4 PS5 21021 05609 00135 00264 00053 20831
2 26.65 P1 P& PT 26358 00726 00255 19499
3 30.59 P1 P8 30077 00387 18762
4 49.46 P1 P9 P10 P11 19000 00964 00642 13732 11807
5 63.87 P1 P11 P12 P13 P14 10218 18924 00572 00369 00989 13958
6 73.99 Pt P11 P14 P15 P16 07363 26215 00525 00436 00033 12974
7 81.40 P1 P11 P17 P18 P19 04785 23747 02185 00299 02617 09215
8 91.40 P1 P11 P18 P19 P20 06679 13137 02400 09200 00808 12168
9 115.32 P1 P11 P19 P20 P21 03973 05717 05892 06225 01039 11251

P22 P23 04497 00688

TABLE 3. Reciprocal polynomials used in Tables 1 and 2. Here,
d =degP, and ¢(P) = max{|argz|: P(z) =0}

P apP) o(P) d Highest half of coefficlents of P
P1 1.000000 0.000000 -2
P2 1.618034 0.000000 -3

P3 1.610559 18.863480
P& 1.611995 20.717188
PS5 1.634404 17.665834
) 1.547928 26.301669

12 58 =143 193

18 141 -628 1756 -3219 3935

25 281 -1873 8238 -25211 55246 -88031 102749
14 85 -287 585 -739

- s
rsrOoOO0NNVOONON

P7 1.539222 26.408740 -5 9
P8 1.493633 30.440145 -8 26 -37
P9 1.303055 47.941432 =5 13 -7

P10 1.300734 50.830684
P11 1.000000 60.000000

-7 26 -53 67
-1

[ QT S S QU (PO O SOV QT (i O N QU ST G (I QI QO gy

6

é

8

2
P12 1.259269 60.890196 6 -4 10 -13
P13 1.245865 68.365783 12 -7 30 -85 175 268 309
P14 1.210608 73.631615 6 -3 7 -9
P15 1.208398 74.983796 8 -4 12 ~21 25
P16 1.238359 73.295530 8 -4 13 -23 28
P17 1.154618 80.241034 8 -3 8 -13 15
P18 1.129338 86.708519 6 -2 4 -5
P19 1.000000 90.000000 2 0
P20 1.000000 108.000000 & -1 1
P21 1.055423 112.647119 8 -1 2 -3 3
P22 1.000000 120.000000 2 1
P23 1.000000 128.571429 6 -1 1 -1

No attempt has been made to get good lower bounds b; in Table 1—their
significance lies in the existence of the discontinuity.

The function g(0) is the decreasing staircase having left discontinuities at the
angles given (in degrees) in Table 4 (next page). The corresponding absolute
measure is the new smaller value of g(6). There is no mystery about the
function g(0): it is simply the smallest value of Q(P) that we could find, for
P having all its zeros in |argz| < 6.

Alternative representations of the polynomials of Table 4, in terms of poly-
nomials with small coefficients, are given in Table 5 (see p. 299).

As an immediate consequence of the Theorem we have

Corollary. Suppose that P is a monic irreducible polynomial with integer coef-
ficients such that all its zeros have positive real part. Then either P(z) = z — 1
or z2—z+1 or Q(P) > 1.12933793. This constant is best possible, as it is
Q(z6 - 225+ 4z*% — 523 + 422 — 2z + 1) (see polynomial 80 of Table 4). [Note
that a zero o of polynomial 80 satisfies o+ a~! = B3, where By = 1.3247...
is the smallest Pisot number (satisfying B3 — fo—1=0).]
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TABLE 4. The polynomials having the smallest known absolute
measure (P) among P having all zeros in |argz| < ¢(P).

(All P shown are reciprocal and d = degP.)

Only those

marked with an asterisk () have been proved to have the min-
imum measure for that angle (see Table 1, and the Theorem)

ar)

1.61803399
1.61055890
1.61042390

1.60951906
1.60875146
1.60602484

1.60343922
1.60252700

1.59675950
1.59641464

1.59490694
1.59371757
1.59248481
1.59238987
1.59195280

1.58773857
1.58664156
1.58399074
1.58126124
1.57845870
1.57605659
1.57502475

1.57337576

1.57202659
1.56822726
1.56745492

1.56085652
1.55866420
1.54792824
1.53922234
1.53856371
1.53690935
1.53634186
1.53417105
1.53294906
1.52803640
1.52783633
1.52317075
1.49363278
1.48712931
1.48613506
1.47303689
1.46831860
1.44220546
1.42763753
1.40892986
1.40098750
1.39293273
1.39197902
1.38886516
1.38672830
1.37405008
1.36544255
1.35958794
1.35868017

®P)

0.00000000
18.86348024
20.11828489

20.18105687
20.21826375
20.72545242

20.78090097
21.02657367

21.09398100
21.33780558

22.04919262
22.15703712
22.23364019
22.60546073
22.66102759

22.77269643
23.04197694
23.32992728
23.56198519
23.80772861
24.36229590
24.70049547

24.77142387

24.93081408
25.19319309
25.99466170

26.04815162
26.14910977
26.30166936
26.40874008
28.26134817
28.61161388
28.94624095
29.05559709
29.39289999
29.53677292
29.97043209
30.38499324
30.44014506
33.01882862
33.15594485
33.66516788
34.27948888
35.06754357
36.51735901
38.40495951
39.89520338
40,41069275
41.05028480
41.11332694
41.61657428
41.64379330
42.81604800
43.08523420
43.93101605

d

2
8
22
14
12
18

12
18

14
20

18
18
16
20

1

Highest half of coefficients of P

-3

~12 58 -143 193

-34 535 -5172 34392 -166922 612521 -1737494
3864978 -6804357 9534443 -10665781

-21 196 -1070 3789 -9141 15394 -18297

-18 141 -628 1755 -3214 3927

~27 332 -2464 12330 -44025 115826 -228798

342996 -392343

-18 140 -618 1714 -3124 3811

=27 334 -2503 12671 -45784 121768 -242624
365746 -419163

-21 197 -1084 3873 -9419 15949 -18991

-30 415 -3509 20274 -84B00 265539 -635379
1176446 -1698152 1918389

-27 333 ~2483 12493 -44854 118597 -235195

353466 -404661

-27 333 -2483 12492 -44841 118524 -234965
353020 -404107

-24 260 -1679 7196 -21588 46646 -73704
85783

-30 414 -3487 20055 -83494 260329 -620669
1146102 -1651585 1864727

-27 333 -2483 12491 -44827 118441 -234694
352484 -403437

-21 196 -1070 3790 -9147 15408 -18313

-21 196 -1070 3789 -9140 15389 -18287

-15 96 -337 703 -895

-15 96 -336 699 -889

-15 96 -335 695 -883

-18 140 -620 1726 -3153 3847

-29 389 -3199 18031 -73808 226950 -535188
980420 -1406001 1584867

-26 310 -2244 11008 -38702 100653 -197235

294273 -336075

-18 140 -619 1718 -3130 3815

-20 180 -957 3327 -7930 13262 -15725
-23 240 -1501 6265 -18406 39169 -61315
71139

-20 179 -944 3254 -7700 12816 -15171

-20 179 -943 3245 -7665 12741 -15075
-14 85 -287 585 -739

-5 9

-12 56 -135 179

-14 85 -284 573 -721

-14 84 -280 565 -711

-16 104 -363 740 -933

-14 B5 -283 569 -715

-9 30 -43
-13 69 -168
-14 83 -272
-8 26 -37
85 -283
83 -272
82 -266
65 -201
-11 51 -116
-7 21 -29
-10 43 -94 121

-16 114 -441 1080 -1804 2133
-12 68 -206 385 -4T71

-20 156 -704 2094 -4399 6778
=14 93 -350 849 -1414 1671
~18 151 -709 2153 -4568 7071 -8161
-6 17 -23

=15 110 -482 1413 -2944 4518 -5201
=12 70 -246 577 -946 1113

=15 108 -467 1359 -2821 4322 -4973

223
542 -679
561
535
520
388
151

~701
-667
-647
-481

-7813
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a(P)

1.35500148
1.35359802
1.34524128
1.33550191
1.33312797
1.33053856
1.33025466
1.33007903
1.32321829
1.32093425
1.30305506
1.30073415
1.29784756
1.29767066
1.29685473
1.28550928
1.25926867
1.24586457
1.23544344
1.21060779
1.20839808
1.20421642
1.18341933
1.15461811
1.12933793
1.12563914
1.12081684
1.11297184
1.10689963
1.10191797
1.09296553
1.05542318
1.05483984
1.04927511
1.04001156
1.03901563
1.03774032
1.03410559
1.02030622
1.01693963
1.01659238
1.01024571
1.00992571
1.00897002
1.00854510
1.00851313
1.00787053
1.00571887

TABLE 4 (continued)

o(P)

44.18553691
44.49883563
44.52804944
44.55539531
44.62336482
46.06100005
46.31840149
46.383976€0
46.60342750
47.05677939
47.96143202
50.83068415
56.57775241
58.90632647
59.62749399
59.64526005
60.89019592
68.36578307
70.85860808
73.63161482
T4.98379635
77.48168986
79.38262510
80.24103363
86.70851871
95.33291972
97.13490108
98.75579012
101.56299913
107.61406915
110.68926206
112.64711862
128.99706301
129.11512456
131.10299832
131.32718720
136.29274959
136.74259166
137.10280567
143.15802667
151.30902379
152.17719835
155.35339189
164.40870993
167.55942060
168.05867296
168.36676004
175.21007112

B i T e e S S S N S N N PO PP PPy

Highest half of coefficients of P

-14 67 -182 319 -383

=14 97 -411 1184 -2446 3740 -4301
=17 138 -679 2283 -5594 10381 -14923 16821
-8 30 -61 77
=12 70 -242 557 -901 1055

=14 95 -392 1102 -2234 3376 -3867

10 49 -136 243 -293
-16 126 -611 2041 -4988 9249 -13294 14985
-9 41 -110 194 -233

~13 85 -345 964 -1951 2948 -3377

~5 13
-7 26

=17
-53 67

-10 52 -167 369 -585 681
=11 66 -255 694 -1386 2082 -2381

-1001
=1 0000000 -1

-1 0-10 -1

0000100
-1000-100

-1

-6 21 -42 53

-9 46 -147 324 -513 597

-4 10 -13

-7 30 -85 175 -268 309
=5 17 -37 59 -69

-3 7 -9

-4 12 -21 25

-5 18 -42 68 -79

~4 13 -26 39 -45

-3 8 -13 15

-2 4 -5

-2 5-89

-3 8 -16 24 -27

-3 8 -15 21 -23

=12 -3

-1 3 -45

-1 4 -6 8 -11 11
-12-33
-11-22-3

-1 1-23-3
-12-33-3

01-22-33-3
00-22-12-3
-12-22 -3

01 -11-21

00 -11-11-1

01-11-11-21
1100-10-10 -1
10-1000

10 00

01 010000
0100-1-19-10011
00-100

-1 00000
000001001

TABLE 5. The small-coefficient polynomials Q corresponding to
polynomials 1 to 87 of Table 4 (see equation (2)). Polynomials

88 onwards already have small coefficients (see §3)

Q(P)

1.618034
1.610559
1.610424
1.609519
1.608751
1.606025
1.603439
1.602527
1.596760
1.596415
1.594907
1.593718
1.592485
1.592390
1.591953
1.587739

NP NN SN Y
MBSOV NOWVEWN -

[ d

0.000000 2
18.863480 8
20.118285
20.181057
20.218264
20.725452
20.780901
21.026574
21.093981
21.337806
22.049193
22.157037
22.233640
22.605461
22.661028
22.772696

k

WUHWWWUWUWHEWWWWEWWWN

Coefficients of Q

P P P | Y

P A OO BB NNND - =

'
'

D)
CO-0000 2= a2 20020

A A A A A ANNIO AN

0000000000000 20—

1 [

NN -

NSO -—=0NnNOoOMNN

(
PO AONOAN AW 2O
U |
Nt ot NO =N w

1
-

-1 -1 -1
2 1
1
-1

-3 -2 -1
0 0 1

-
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17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
b¥4
53
54
55

Q(P)

1.586642
1.583991
1.581261
1.578459
1.576057
1.575025
1.573376
1.572027
1.568227
1.567455
1.560857
1.558664
1.547928
1.539222
1.538564
1.536909
1.536342
1.534171
1.532949
1.528036
1.527836
1.523171
1.493633
1.487129
1.486135
1.473037
1.468319
1.442205

1.427638
1.408930
1.400987
1.392933
1.391979
1.388865
1.386728
1.374050
1.365443
1.359588
1.358680
1.355001
1.353598
1.345241
1.335502
1.333128
1.330539
1.330255
1.330079
1.323218
1.320934
1.303055
1.300734
1.297848
1.297671
1.296855
1.285509
1.259269
1.245865
1.235443
1.210608
1.208398
1.206216
1.183419
1.154618
1.129338
1.125639
1.120817
1.112972
1.106900
1.101918
1.092966
1.055423
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TABLE 5 (continued)

®

23.041977
23.329927
23.561985
23.807729
24.362296
24.700495
24.,771424
24.930814
25.193193
25.994662
26.048152
26.149110
26.301669
26.408740
28.261348
28.611614
28.946241
29.055597
29.392900
29.536773
29.970432
30.384993
30.440145
33.018829
33.155945
33.665168
34.279489
35.067544

36.517359
38.404960
39.895203
40.410693
41.050285
41.113327
41.616574
41.643793
42.816048
43.085234
43.931016
44 .185537
44.498836
44,528049
44.555395
b4 .623365
46.061000
46.318401
46.383977
46.603428
47.056779
47.9414632
50.830684
56.577752
58.906326
59.427494
59.645260
60.890196
68.365783
70.858608
73.631615
76.983796
77.481690
79.382625
80.241034
86.708519
95.332920
97.134901
98.755790
101.562999
107.614069
110.689262
112.647119

12
10
14
12
14

[
14
12
14
10
14
16

8
12
14
10
16
10
14

6

8
12
14

8
12
6
12
10
6
8

10
10

N NN NN W WA W NN W R R NN O8N

~ e~
wviwnwn
~ o~

(5)
5)
5)

5)
5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
(5)
5)
(5)
5)
(5)
(5)
(3)
s)
5)

-
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2. EARLIER WORK

The paper of Langevin [4] forms the basis of this investigation. He also
showed that c(n/2) > 1.08 in [5, p. 63]. Earlier, Schinzel [10] had obtained
c(0) = $(1 ++/5) = 1.61803399 .

The spectrum Spec(6) = {Q(P) : P has all zeros in |argz| < 0} is also of
interest. In [11] the second author studied Spec(0). Mignotte [7], in an inter-
esting application of a well-known result of Erdés and Turan on the uniformity
of distribution of the arguments of zeros of certain sets of polynomials, showed
that, for 6 > 0 the smallest limit point of Spec(n — ) is at least 1+ cd3, for
an effective positive constant c.

3. PROOF OF THE THEOREM: OUTLINE AND SEARCH

The proof of the Theorem can be regarded simply as finding the functions f
and g and proving that they have the values and properties claimed for them
in the Theorem. The function g is found by a search, which we will outline
shortly. The function f is obtained by semi-infinite linear programming, using
the polynomials found in the search. This is described in §4. .

A necessary condition for the exact evaluation of ¢(6) by our method is to
actually find the polynomial P with all zeros in |argz| < 6 for which Q(P) is
in fact minimal for that sector. In any event, even if the smallest Q(P) we find
is not minimal, it clearly gives an upper bound for c(#). The list of Table 4
and the corresponding staircase function g(6) are the result of our search for
such smallest Q(P), for varying 6 .

Our search for polynomials P, with small Q(P) and zeros in a given sector,
started with exhaustive searches for polynomials of degrees 3 and 4. For degrees
5 and 6, ad hoc searches were made, from which it became clear that the best
polynomials were usually reciprocal. Further nonexhaustive searches were then
made for good reciprocal polynomials of degrees 8 and 10. As a result of this
extensive preliminary work, it became clear that the good polynomials were not
only reciprocal, but also of one of six special types:

2"Q(z+z7'-k)  (k=3,2,1,0) (Typesl,2,3,4)

@) 2"S(z+2z71-2), (Type 5)
where S(x) = Q(1)x"Q(1 + 1/x), and
z"(Q(z) + Q(1/2)) (Type 6).

Here, Q is a degree-n monic polynomial with small coefficients, with also
Q(1) = £1 for the fifth type. The reason for polynomials of these types giving
good polynomials appears mysterious, however.

A systematic search was therefore conducted, using small-coefficient Q of
degree up to 11, for polynomials of the six types. The range of coefficients of
Q searched over varied with degree and polynomial type. This is how most
of the polynomials P(z) in Table 4 were obtained. The corresponding small-
coefficient polynomials Q are shown in Table 5. This table excludes polynomi-
als of the sixth type, since, for these polynomials, the coefficients of Q are the
same as the highest half coefficients of P, sothat P itself has small coefficients.

The polynomials P of the sixth type w1th large angle ¢(P) = {max|argz|:
P(z) = 0} were taken from Boyd’s tables [3]. It should be recalled, however,
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that his tables are the result of a search for polynomials of small relative mea-
sure, and so are unlikely to be the polynomials P of smallest absolute Mahler
measure for the corresponding |arg z| < ¢(P). Indeed, we do not expect that
all of the unstarred polynomials P in Table 4 have minimal Q(P) for their
corresponding angle ¢(P). Rather, we publish the table in order to provide a
target for any other enthusiasts to aim at!

We note in passing that Lehmer’s polynomial L(z) = z1042%—z7 - 26— 2z5
z4—z34z+1 [6, 1, 2], although having the smallest known relative measure > 1,
does not have the smallest absolute measure for its sector (Q(L) = 1.016368,
zeros in |argz| < 160.61°), being beaten by polynomial 97 of Table 4.

4. PROOF OF THEOREM: COMPUTATION OF THE FUNCTION f(6)

Langevin’s proof [4] of his Q(P) > ¢y result, mentioned in §1, has three
basic ingredients:

(i) The observation that the set ¥; = V' N {z € C: |z| < 1} has transfinite
diameter less than 1.

(ii) A result of Kakeya to the effect that for any set W of transfinite diameter
less than 1 and symmetric about the real axis there is a nonzero polynomial A
with integer coefficients such that Sup,cy |4(z)| < 1.

(iii) Deduction of Q(P) > ¢y from (i) and (ii) using W := {z: z € V' and
zeV}.

For the computation of f(6) = max}_, fi(6), we use, for each f;, an auxil-
iary polynomial A asin (ii). We choose such A of the form z?R(z), where a
is a positive integer and R is a reciprocal polynomial of degree r with integer
coefficients. To A4 is then associated the function

m(8) = sup |A(2)]'/@+.
ZEW,

Then Langevin’s argument of (iii) above, which we now reproduce, shows that

(3) Q(P)>1/m(6) if ged(P, A) =1
for P irreducible, of degree d, with integer coefficients. For, if a;, ..., ag
are the zeros of P, then, since R(z) = z"R(z~!), we have

d

1< |[TefR@)| = I lafR(ai)l - [T lef*Rie; ")l
i=1 || <1 |, |>1
= II lefR@)l- T 1e7")*Ra7 D= IT i
Jei|<1 e |>1 |ei|>1

< m(a)(2a+r)dM(P)2a+r
whence Q(P) > 1/m(0).

Each f;(6) was then defined, as in equation (1), to be the function 1/m(6)
corresponding to an auxiliary function A chosen so that f(6;) > g(6;), and so
that the length of the interval [0;, 6/] over which f(f) > g(6)) was as long as
we could find. Thus, if g(6;) = Q(P.) (Table 4), then Q(P.) < fi(6;). From
equation (3) it follows that P, is a factor of 4 and that, among polynomials
with all conjugates in |arg z| < 6;, only factors of 4 can have absolute measure
less than f;(6;). Now P, does indeed divide A, and in fact has the smallest
absolute measure among factors of 4 of measure > 1. It follows that Q(P)
is the smallest value of the absolute measure for polynomials having all zeros in
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|argz| < 0 for 6 € [6;, 0]]. Hence, c(0) = Q(P,) for these 6. Furthermore,
Q(P) > f(6;) = g(6;) + b; = c(6;) + b; for any P having all its roots in the
sector |argz| < 6;, i.e.,
c(0i—) —c(6:) 2 bi.
The polynomial A is taken to be of the form
A(z) = z°R(z) = z°Py(2)® - - Pp(2)%,

where the polynomials P; are chosen either to be cyclotomic or to have both
absolute measure close to g(6;) and all zeros in |argz| < 6; + ¢, where ¢ is
small (not more than a few degrees). Table 3 shows the actual polynomials
chosen.

It was for finding the best choice of exponents a, e;, ..., ¢, that semi-
infinite linear programming was needed. This was used in a similar way to our
earlier papers ([8; 9; 11, II; 12]; see [11, II] for a brief outline of the method).
However, in this case the computation was more complicated, since the region
over which optimization was taking place was (the boundary of) a sector instead
of a real interval, as previously. Table 2 gives the final exponents obtained.

5. IMPROVING THE FUNCTION f

For simplicity of presentation (and so, at least in principle, checking by the
reader!) of our results, we have given f as the maximum of only nine functions
fi, each chosen, as described above, to be large around the corresponding critical
angle 6;. In fact, we tried many other auxiliary functions 4 which we chose so
that the corresponding function would be large at other angles 6. In no case,
however, was f(0) > g(0), so that c(8) could not be evaluated exactly over
any more intervals. We would, however, obtain a better lower bound f*(0) for
¢(6) than that given by f(0) = max;_, f;(8). For example, Table 6 shows two
values of 6 where c(6) was “nearly” evaluated exactly. Further computation
is needed to determine whether the failure of the method for these # was due
to a suboptional choice of A4, or to the fact that the polynomial P with truly
smallest Q(P) for that 6 had not been found.

TABLE 6. Two examples where an improved auxiliary function
A(z) = z°]]; Pj(z)% is used to compute f*(6) and hence ob-
tain narrow bounds f*(6) < c(68) < g(8) for ¢(0)

5} £*10) g(e) Polynomials P

3 Exponents e 3 a

18.8635 1.606109 1.61055890 P1 P2 P3 P4 P5 21588 05779 00188 00188 00030 20513
50.9000 1.299013 1.30074315 P1 P9 P10 P11 20083 00752 00228 14495 12253
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