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IMPRIMITIVE NINTH-DEGREE NUMBER FIELDS 
WITH SMALL DISCRIMINANTS 

F. DIAZ Y DIAZ AND M. OLIVIER 

ABSTRACT. We present tables of ninth-degree nonprimitive (i.e., containing a 
cubic subfield) number fields. Each table corresponds to one signature, except 
for fields with signature (3,3), for which we give two different tables depend- 
ing on the signature of the cubic subfield. Details related to the computation 
of the tables are given, as well as information about the CPU time used, the 
number of polynomials that we deal with, etc. For each field in the tables, we 
give its discriminant, the discriminant of its cubic subfields, the relative poly- 
nomial generating the field over one of its cubic subfields, the corresponding 
(irreducible) polynomial over Q, and the Galois group of the Galois closure. 
Fields having interesting properties are studied in more detail, especially those 
associated with sextic number fields having a class group divisible by 3. 

1. INTRODUCTION 

The computational time required for the construction of tables of number 
fields, using the methods known at the present time, grows exponentially with 
the degree of the fields under consideration. 

For this reason, extensive tables of number fields exist only for degrees up to 
six ([1, 2, 5, 6, 10, 11, 12, 14, 19, 21, 22, 23, 24, 29]). 

Martinet's generalization [20] of the Hunter-Pohst theorem [26] has made it 
possible to study the relative extensions using the same methods as those used 
in the primitive case. As a result, many extensive tables have been constructed 
for sextic fields ([21, 22, 23, 24]), as well as the first minima for discriminants 
of totally imaginary [9] and totally real [27] octic fields. 

All relative extensions known up to date are either relative extensions of a 
quadratic field (the task in this case is easy because the ground field is abelian), 
or are quadratic extensions of a number field (and in this case, class field theory 
can be used, avoiding most of the calculations [27]). 

What will be studied here is the case of imprimitive ninth-degree number 
fields, i.e., relative cubic extensions of a cubic field. To do this, tables of cubic 
fields with a sufficient amount of arithmetic data are needed. The advantage of 
working with relative extensions is that the computation only involves relative 
cubic polynomials (i.e., having only 3 coefficients). 

Recently, A.M. Odlyzko advised us that H. Fujita [15] discovered the first 
three imprimitive totally real number fields of degree nine. 
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TABLE I 

signature subfield minimal discriminant 

(9, 0) real 1 62403 85609 = 493 . 1 38041 

(7, 1) real -26681 61671 = -493 * 22679 

(5, 2) real 467890073 = 493 * 41 * 97 

(3, 3)R real -1645 90951 - -493 1399 

(3, 3)? complex -110852311 = -313 612 

(1, 4) complex 32206049 = 233 * 2647 

In this paper, six tables of imprimitive ninth-degree fields are presented. Each 
table corresponds to one signature, except for signature (3,3), for which two ta- 
bles are given, one for each conjugacy class of the Frobenius at infinity: Table 
(3, 3)R contains number fields having a real cubic subfield; table (3, 3)c con- 
tains number fields having a complex cubic subfield; naturally, the intersection 
of these two tables is not empty. 

Minimal discriminants of imprimitive ninth-degree fields are given for each 
signature in Table I. 

In ?2, Martinet's theorem mentioned previously is stated and some expla- 
nation concerning its use in the study of the relative extensions is also given. 
Special emphasis is placed on the algorithms used to obtain faster computations. 

The description of the six tables is given in ?3. The CPU time needed to 
compute the table and the number of polynomials studied are also specified. 

Section 4 contains a more detailed analysis of several interesting fields found 
in the tables. In particular, the existence of some nonisomorphic fields having 
the same discriminant is proven as well as the relation between these fields and 
certain sextic fields with a class number divisible by 3 or 9. 

Finally, in ?5, the Galois group of the Galois closure of each field appearing 
in the tables is computed. 

The complete tables are available on floppy disk (source TEX); contact the 
authors by e-mail. 

2. RELATIVE CUBIC EXTENSIONS OF A CUBIC FIELD 

For a number field L, its ring of integers is denoted by ZL and its discrimi- 
nant by dL. Throughout the paper, K will denote an imprimitive ninth-degree 
number field. Because K is assumed imprimitive, it contains, at least, one 
cubic subfield denoted by k. So, K/k is a relative cubic extension, and we 
denote its relative ideal discriminant by 3. 

According to the formula dK = (-1)SIdkI3Nk/Q(J), where (r, s) is the sig- 
nature of K and Nk/Q the norm of the extension k/Q, the inequality Idki < 
dK 1/3 is valid for all the possible subfields k of K. 

There are three Q-embeddings of k into C , denoted by a,, U2, a3; each 
of them can be extended in three different ways to give a Q-embedding of K 
into C; we denote by ai, j = 1, 2, 3, the Q-embeddings of K in C whose 
restriction to k is ai, i= 1, 2, 3. 
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For each 0 E K, the 'relative trace' Tri for K/k is defined as the trace 
of a/ (0) E a/ (K) relative to a,(k) for i = 1, 2, 3. Thus, we have Tr,(0) = 

al()+ ai()+ v30 
The following theorem is essential: 

Theorem 1 (Martinet [20]). There exists an integer 0 E ZK, 0 ? k, such that 

( E ?1v'(0)1< 7 ITr (0)l2 + ( 64IdKI) 1/6 
i=1 j=1 8! 

Moreover, if 0 satisfies (*), the same is true for all integers having the form 
0+a with ae?Zk as well as for -0. 

If the element 0 E ZK whose existence is asserted in Theorem 1 is not a 
primitive element of the extension K/Q, then K must contain at least two 
different cubic subfields. Fields having this property can be easily computed 
directly from tables of cubic fields. Thus, it can be assumed in what follows 
that K = Q(0) = k(0), where 0 is a root of a monic irreducible relative cubic 
polynomial P(X) = X3 + aX2 + bX + C E Zk[X]. 

Let us define 

a,(p(X))= Pi(X) = X3 + ai(a)X2 + ai(b)X + ai(c) = X3 + aiX2 + biX + ci 

for each i = 1, 2, 3. Then f(X) = P1 (X)P2(X)P3 (X) is the minimal polyno- 
mial of 0 over Q . 

For 1 < r < 9, r odd, and s = (9- r)/2, let Br > 0 be an upper bound 
depending on the signature (r, s) (the reasons for the choice of the value of 
these constants will be explained in the next section). Let us suppose that r is 
fixed, and denote Br by B. To construct all the fields K of signature (r, s) 
satisfying IdKI < B it is necessary to consider every cubic field k having a 
discriminant dk such that IdkI < B113. Moreover, the signature (r', s') of k 
must be compatible with the signature of K, i.e., we must have s > 3s'. For 
such a cubic field k, let {1, al, ,3 } be an integral basis. 

To compute a field K belonging to the table is equivalent to computing an 
irreducible polynomial P(X) = X3 +aX2 +bX+c E 7Zk[X] such that K = k(0) 
and P(0) = 0 . The coefficients a, b, c of this polynomial can be determined 
in the following manner. 

Define T2(0) = >3= I _3= lIa(0)12. Martinet's theorem shows that every 
field K with IdKI < B contains an integer 0 such that 

1 '3it _ 64B \1/6 
T2(0) < - Zaj2 + C withC' 81= d) 

The second part of the same theorem asserts that the first coefficient a of 
P(X) can be chosen as a = X1 +X2C? +X33 with x1, X2, X3 E {0, 1, -1} and 
satisfying 1OOxI + lOx2 + X3 > 0; there are only 14 possible choices for this 
coefficient. 

If the value of a has been fixed, the value of T2(0) is bounded by a real 
constant C = C(a) depending only on the given value of a. The following 
lemma is very useful from a practical point of view. 
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Lemma 1. For every field K containing a cubic subfield k there exists a E Zk 
such that 

(i) P(O) =0 and K =k(O); 
(ii) E3= jail2 + Cl 

- 
C is minimum. 

Proof. From Theorem 1, the value of a can be chosen among 14 values. If 
0 is a root of P(X) generating the extension K/k, then the integer 0 + y 
with y E Zk is also a primitive element of K/k . Define -a' = TrK/k(O + Y) = 

-a+3y; because EZ3 1 lja(a')l2 is a positive definite quadratic form, there exists 
y minimizing it (the value of y can be obtained by a back-tracking method) 
and the value of a has to be replaced by this minimum and the value of C is 
C= 3 Zil 1ail2 + C. 

Once a suitable value of a in P(X) has been determined, there exists in K 
an integer for which T2(0) < C. Let us define 

3 

s2(0) = -2b + a2 = Zai(0)2 = Yi + Y2a + Y38 
j=1 

(where a' for j = 1, 2, 3 are the k-isomorphisms from K into C), and 
3 3 3 

S2(O) = E a,(s2(O)) = E E o i (0)2. 
i=l i=1 j=1 

From the inequalities 1S2(0)l < EZ3= loi(s2(0))l < T2(0) < C and 

3 /32 

Iri (S2(0)) 2< I ( i(S2 (0))l) < C2 

an upper bound is obtained for the values of a positive definite quadratic form 
in the variables Yi, Y2, and y3 and among all the integral solutions in this 
bounded convex body, only those for which the variables yi have the same 
parity as the x 's, where a2 = xI + xfca + xf3, have to be considered. Finally, 
one can easily deduce all the possible values for the coefficient b in P(X) . 

Let us now assume that a and b have been fixed, and let c = z1 + z2&a + Z33 

be the expression of c in Zk . From the formula ICI = 13=_1 l a(0)l and the 
inequality between arithmetic and geometric means we obtain 

3~~~~~~~~~~~~~ 

IC12 < 21 E Iaj(0)12) 

and we can deduce the ineclualities 

>1 a(c)l 2 _27 27 

The expression is still a bounded positive definite quadratic form in the variables 
zI, Z2, Z3, and it is possible to compute all the integral points inside the 
ellipsoid [28]. 
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Finally, a polynomial P(X) E k[X] is obtained for which it is necessary 
to test if P(X) defines a number field K having a suitable signature. If the 
cubic ground field is a complex one, it is enough to compute the sign of the 
discriminant of the polynomial a(P(X)) , where a is the unique real embedding 
from k into C. If the cubic ground field k is real, the sign of the discriminant 
has to be determined for each conjugate of P(X) 

The computation of the roots of the polynomials PI (X), P2 (X), P3 (X) was 
done using Cardano's formule, and at this point the inequality (*) of Theorem 
1 was checked. When complex places exist, this test eliminates more than 99% 
of the polynomials having the appropriate signature. However, in the case of 
totally real fields K, this computation can be avoided because in this case 
TrK/Q(02) is a rational integer. 

The next step consists in testing for the irreducibility of f(X). The polyno- 
mial f(X) is eliminated either because P1 (X) belongs to Z[X] or because one 
of the roots of f(X) is in Z . The last condition is easy to verify by using the 
approximate values of the complex roots already computed. Finally, we search 
for the possible existence of an irreducible cubic factor of f(X) in Z[X]; this 
is done by factoring f(X) over Z, using the PARI system [4]. 

For the remaining irreducible polynomials having a suitable signature and 
satisfying the inequality (*) of Theorem 1, the discriminant of K is computed 
by using the version written by D. Ford [13] of the ROUND 2 algorithm of 
Pohst and Zassenhaus [8, p. 305, Algorithm 6.1.8] implemented in the PARI 
system. 

At this stage, the constructed tables of number fields are complete (with the 
possible exception of the fields obtained as a compositum of two cubic ground 
fields) but some fields in the tables can be Q-isomorphic. In fact, practice proves 
that for small discriminants this is often true. The following lemma is useful. 

Let P(X) and Q(X) be two relative polynomials generating respectively the 
fields K and L with the same absolute discriminant. Denote by as(P) and 
as(Q) for i = 1, 2, 3 the conjugates of P(X) and Q(X), and by ao(6) and 

ao (q) for j = 1, 2, 3 their respective roots in C. 

Lemma 2 [3]. The fields K and L are Q-isomorphic if and only if there exist 
four permutations s, s1, S2, s3 E S3 such that for all h E N we have 

3 

Z (C(O))h ass(ji) () E ai(2k) for i = 1, 2, 3. 
j=1 

The most tedious case is the totally real one, where this test may require 
64 = 1296 trials; the easiest case corresponds to the signature (1,4), where 
at most 24 trials are necessary. Once a suitable permutation for the roots is 
obtained, it is easy to compute the equations with rational coefficients (the 
norm of the index [ZK: Z[0]] is the denominator of the coefficients) relating 
the roots of Q(X) and the roots of P(X). 

Whenever such a Q-isomorphism was not found, we searched for rational 
prime numbers having different decompositions as a product of prime ideals 
in K and L. The existence of different factorizations for a prime number 
in K and L is a sufficient (but not necessary) condition for these fields to be 
nonisomorphic. In all the cases considered, when the algorithm of Lemma 2 



310 F. DIAZ Y DIAZ AND M. OLIVIER 

failed to prove that the fields were isomorphic, prime numbers having different 
factorizations in these fields were always found, thus providing proof for the 
isomorphism test. 

What remains to be considered is simply the case where the integer 0 E 
K, 60 k, whose existence is asserted by Theorem 1, is not a primitive element 
for K/Q. Because the field K can only contain cubic subfields, the field k, = 
Q(6) is a cubic extension of Q and k =A k, . If k, were a conjugate of k, the 
compositum kkl would be the Galois closure of k in an algebraic closure Q 
of Q; but this is impossible because K does not contain any sextic subfield. 
This proves that the relative polynomial P(X) having 0 as a root is actually a 
polynomial with coefficients in Z. 

In this case, to find a primitive element of K/Q, the following result due to 
J. Martinet (private communication) was used. 

Theorem 2. Every ninth-degree extension K/ko of a number field can only con- 
tain 0, 1, 2 or 4 cubic extensions of ko. 
Proof. It is sufficient to prove that a field K containing more than one cubic 
extension of ko must contain exactly 2 or 4 cubic subfields. Denote by k, 
and k2 two cubic extensions of ko in a given algebraic closure ko; then we 
have K = k, k2, because the fields k1 and k2 cannot be ko-isomorphic; let d, 
and d2 be the respective discriminants of kl/ko and k2/ko (in ko* /k2); let 
N be the Galois closure of K/ko into ko, and G the Galois group of N/ko. 
Exchanging, if necessary, kA and k2, we find that the following cases cover all 
the different possibilities: 

(A) d, and d2 are perfect squares. 
(B) d, is a perfect square and d2 is not. 
(C) di and d2 are not perfect squares but d1l/d2 is. 
(D) d, and d2 are not perfect squares and d1/d2 is not. 
The group G can then be identified with a subgroup of the direct product 

S3 x S3. Specifically, in the case (A), G is isomorphic to C3 x C3, and the 
stabilizer of K is the subgroup (1) of G; so, G has four normal subgroups of 
order 3, and K contains four cyclic cubic subfields. 

In the case (B), G is isomorphic to C3 x S3, and this group can be defined 
as G= (a1,G 2, T) with the relations a13 = =T2= 1, a12 = 2a1, a1T = 
TU 2, 62T = TU2 where (T) is the stabilizer of K. Then G has two subgroups 
of order 6 containing T, say (aG, T) which is normal, and (a2, T) which is not 
normal; therefore, K contains two nonisomorphic cubic subfields, one of them 
being cyclic, but not the other. 

In the case (C), G is isomorphic to (a1, a2, T) of S3 x S3 with the relations 
13= 23 = T2 = 1, a1a2 = a2a1, a1 = Ta12, a2T = T 22, where T is the 
element in G of order 2 leaving K invariant; therefore, G has four subgroups 
isomorphic to S3, containing T, and they are not normal; so, K has four 
nonisomorphic cubic subfields which are noncyclic, associated with a unique 
common quadratic extension of ko, which is the field fixed by the subgroup 
(a1, a 2) of order 9 and index 2. 

Finally, in the case (D), the group G can be written in the form (a1, TI) X 

(a2, T2) , where (ai, Ti) is isomorphic to S3 for i = 1, 2. We may suppose that 
the stabilizer of K is the group (TI, T2), isomorphic to V4 (Klein group), and 
the only subgroups of G of index 3 containing (TI, T2) are (a1, Ti, T2) and 
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(a2, TI, T2). Thus, K contains exactly two nonisomorphic cubic extensions 
of ko; these fields are not Galois fields, and they are associated with different 
quadratic extensions of ko. 

Corollary. Let k1 = Q(01) and k2 = Q(02) be two nonisomorphic cubic subfields 
of a ninth-degree field K over (Q. Then, among the numbers 61 + 02, 01 - 

02, 01 + 202, one (at least) is a primitive element of K/Q. 

3. DESCRIPTION OF THE TABLES AND THEIR COMPUTING TIME 

First, limits for the different tables were fixed. In the case of the totally real 
fields, the bound was fixed to obtain a table which would include the composi- 
tum of the abelian cubic fields of discriminant 49 and 81. Consequently, the 
corresponding table contains all the imprimitive fields of ninth degree having a 
discriminant smaller than 6 30000 00000. There are exactly 27 number fields 
with this property, and all of them are characterized, up to an isomorphism, by 
their discriminant. 

The size of the tables, for the other signatures, was fixed depending on an esti- 
mate of the CPU time required. The table corresponding to signature (7,1) con- 
tains the 23 imprimitive fields having a discriminant larger than -70000 00000, 
and they are also characterized by their discriminant. 

The table corresponding to signature (5,2) contains the 154 fields having a 
discriminant smaller than 50000 00000, and for 5 values of the discriminant 
there is a pair of nonisomorphic fields. 

In the table corresponding to signature (3, 3)R there are 223 fields having a 
discriminant larger than -40000 00000 and there are 3 pairs and 3 quadruplets 
of nonisomorphic fields having the same discriminant. 

For the same signature, but in table (3, 3)c , there are 200 fields having a 
discriminant larger than -1000000000, including 2 pairs of nonisomorphic 
fields having the same discriminant. 

The intersection of tables (3, 3)R and (3, 3)c is not empty. These tables 
have 7 fields in common, corresponding to ninth-degree fields containing a real 
and a complex cubic subfield simultaneously. 

Finally, for signature (1,4) the table contains the 485 fields having a discrim- 
inant smaller than 5000 00000, and it includes 9 pairs of nonisomorphic fields 
with the same discriminant. 

The computation involved several phases. During the first phase we wanted to 
eliminate as many polynomials as possible either by using the signature (Sturm's 
algorithm) or by explicitly computing the value of T2(0) from the roots of the 
relative polynomials. This last procedure is called 'eliminated by trace' in Table 
II (next page). In the second phase we tested to see if the remaining polyno- 
mials were irreducible. We then computed the discriminant of the field, using 
Dedekind's criterion first, and when we were unable to decide whether or not 
the field had to be preserved, we used 'ROUND 2' to evaluate the discriminant 
of the field. In the third phase we considered all the polynomials of degree nine 
that are the cube of a cubic polynomial in Z[X], and we constructed a prim- 
itive element of the extension K/Q as shown in the corollary to Theorem 2. 
We observed that in every case the newly found polynomial generated a number 
field isomorphic to a field already found in the tables. 
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Finally, we determined whether or not isomorphisms exist between fields 
having the same discriminant. 

All the computations were performed on work stations SPARC 1 or SPARC 
2 and, except for the first phase, we used the PARI system. 

In the next table precise indications are given concerning the CPU time used 
in computations as well as the number of polynomials treated. It appears that 
most of the CPU time used concerns phases I and II; for this reason, the type 
of the SPARC work station used is also indicated. All the computational time 
is expressed in minutes. 

TABLE II 

signature (9,0) (7,1) (5,2) (3, 3)R (3, 3)C (1,4) 

subfields real real real real complex complex 

tested polynomials 15569964 1201910861 839423372 6849 14826 518209760 238886137 

eliminated by signature 154 87260 1183770376 6452 51604 1023 53452 4702 04181 222 69560 

eliminated by trace 180 78315 1939 58698 5219 12888 47968716 2165 36090 

remaining polynomials 72674 62170 2 13070 2 81848 26086 72404 

time phase 1 15 t 729 t 1742 4153 1273 4728 

reducible polynomials 30116 17972 16533 4334 10767 t 7644 t 

Dedekind's criterion 34500 35858 1 53190 2 16074 17640 47682 

eliminated by round2 5448 6182 27094 36248 5260 14851 

remaining fields 2002 2058 16252 24704 3176 9589 

time phase II 698 t 993 7242 4709 t 927 1471 t 

fields in the table 27 23 154 223 200 485 

total time used 792 1722 8984 8863 2200 6262 

tThese computations were done on a SPARC 2 work station. 

tThese computations were done during phase I. 

4. DESCRIPTION OF SPECIFIC FIELDS IN THE TABLES 

4.1. In the table corresponding to signature (9,0), the minimum discriminant 
corresponds to an extension of the cubic field ki = Q(ai) of discriminant 49. 
Here, a, is a zero of the polynomial X3 + X2 - 2X - 1, and the relative dis- 
criminant of the extension K/kl is the prime ideal p = (138041, a1 + 113260) 
of k1. 

The field of discriminant 1 69835 63041 = 198 is the maximal real subfield 
of the cyclotomic field Q(19). 

In the same table, the field of discriminant 1 75152 30173 = 76 533 has two 
cubic subfields: k, and the cubic field of discriminant 2597 = 72 2 53. 

The last field in the table is the abelian field of discriminant 6 25235 02209 = 

312 * 76; it is the compositum of the field k, and the cyclic field k2 = Q(a2) 

of discriminant 81, where a2 is a zero of X3 - 3X - 1 . This field also has as 
subfields the two nonisomorphic cubic fields of discriminant 3969 = 34 *72 
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For 5 fields in this table the norm of the relative discriminant is a square: 
dK1 = 1 64403 05941 = 372 . 2293 ; dK2 = 16983563041 = 198 ; dK3 = 

3 1381059609 = 322; dK4 = 36763077169 = 7 6. 132 .432 and dK5 = 

5 32866 43921 = 76 . 6732 . These fields KI, ... , K5 are subfields of ray class 
fields of their corresponding cubic subfields. 

4.2. In the table corresponding to signature (7,1) the minimal discriminant 
is -26681 61671 = -76 * 22679, and the relative discriminant is the ideal 
p = (22679, a, - 28) of k1 . 

4.3. The minimal discriminant for imprimitive nonic fields of signature (5,2) 
is 4678 90073 = 76 * 41 * 97, and the relative discriminant is the ideal q = 

(41, a1 + 1 1)(97, a1 - 41) of k, . We can now state the following result: 

Proposition 1. For imprimitive number fields of degree 9 and signature (5, 2) 
having a discriminant in the interval 4678 90073 < d < 50000 00000 there is a 
pair of nonisomorphic fields with the same discriminant for the following values of 
d: 1209078773 = 76.43.239, 3017579201 = 76.13.1973, 31658 16941 = 
76 .71.379, 40914 79273 = 76 .83.419 and 4794549697=76 .83.491. 
Proof. A look at the table and a straightforward computation of the relative 
discriminants. El 

Corollary. There are pairs of nonisomorphic number fields of degree 6 and 
signature (2, 2) with the same discriminant for the following values of the 
discriminant: 24675077 = 74 * 43 * 239, 61584249 = 74 . 13 * 1973, 
6460859 = 74 71.379, 83499577 = 74*83*419 and 97847953 = 74.83*491. 
All these sextic fields have a class number divisible by 3. 
Proof. The relative quadratic extensions L1 and L2 of k1 attached by Galois 
theory to the extensions K I/k1 and K2/k, have different relative discriminants 
over k, . Denote by N1 and N2 the Galois closure of the respective extensions 
K I/k1 and K2/k1. The extensions N /L, and N2/L2 are relative cyclic ex- 
tensions unramified at the finite places. Consequently, the class number of LI 
and L2 must be divisible by 3. 5 

The same reasoning can by applied to the sextic fields Li attached to the 
extensions KI/k1 for i = 3, ... , 10. 

4.4. In the table corresponding to signature (3, 3)R the minimal discriminant 
is -1645 90951 = -76. 1399 and the field having this discriminant is a relative 
extension of k, with relative discriminant (1399, al + 347). 

Proposition 2. Among the imprimitive ninth-degree number fields of signature 
(3, 3) having a real cubic subfield and a discriminant d belonging to the interval 
-40000 00000 < d < -1645 90951, there exists a pair of nonisomorphic fields 
with the same discriminant for the following values of d: -23156852676 = 
_39.76, -28386 35072 = -26.76. 13.29 and -33204 07727 = -76. 132.167. 
There also exists a quadruplet of nonisomorphic fields with the same discriminant 
for the values of d: -20455 63163 = _76. 17387, -2141094151 = _76. 
18199 and - 23867 45263 = _76 .20287. 

Proof. Only one of the fields of discriminant _39 .7 6 has an ideal of norm 43. 
In one of the fields of discriminant _26. 76 . 13 * 29 there is only one prime 
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ideal over 37 but not in the other field. Similarly, there is only one prime ideal 
over 19 in one of the fields of discriminant -76 v132 v167 and 3 prime ideals 
over 19 in the other field. 

For d = -20455 63163 the decomposition of the primes 11,17, and 19 shows 
that the four fields having this discriminant are not isomorphic. 

For d = -21410 94151, consider the primes 17, 47, and 103. 
For d = -2386745263, consider the primes 19, 31, and 37. El 

Corollary. The sextic number fields 

L1 = Q(f31), L2 = Q(32), L3 = Q(33) 

having the respective discriminants dL, = -41746187 = -74 . 17387, dL2 = 

-43695799 = -74. 18199, dL3 = -48709087 = -7 420287, where fil, /32, /33 
are zeros of the polynomials 

RI(X) = X6 -2X5 + 20X4 -27X3 + 140X2 - 98X + 343, 
R2(X) = X6 X5 + 19X4 - 13X3 + 133X2 - 49X + 343, 

R3 (X) = X6 _ X5 + 20X4 - 9X3 + 142X2 - 18X + 377, 

have a class group isomorphic to C3 x C3. 

Proof. These sextic fields are relative quadratic extensions of the cubic field k, 
of discriminant 49 and are associated with the quadruplets of relative cubic 
extensions of k1 having the same relative discriminant. The Galois closure for 
each field of degree nine in a quadruplet is an unramified relative cubic extension 
(even at infinite places) of one of these sextic number fields. According to 
class field theory, the existence of 4 unramified relative extensions proves that 
the class group of these sextic fields must have a 3-rank bigger than 1. The 
exact value of the class number of these fields was computed using the KANT 
[17] system and, in every case, the class group was found to be isomorphic to 
C3 x C3. E 

Some fields in this table also have a complex cubic subfield, and they appear 
in the table corresponding to signature (3, 3)c when their discriminant belongs 
to the interval covered by that table. The complete list of these fields is given 
in Table III. 

These fields are of particular interest because they give supplementary in- 
formation about the class number of the complex cubic subfields. The table 
corresponding to signature (3, 3)c has 7 fields in common with the table cor- 
responding to signature (3, 3)R. For 6 of these fields, the norm of the relative 
discriminant is equal to 1. For 3 other fields in Table III having a discriminant 
beyond the limits of table (3, 3)c the discriminant of the field of degree nine 
is the cube of the discriminant of the complex cubic subfield, and the relative 
extension has a discriminant of norm equal to 1. It is therefore clear that these 
complex cubic fields must have a class number divisible by 3. 
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TABLE III 

dk dk4 dK Factorization of dK 

49 -588 -203297472 -26 . 33 . 76 

81 -648 -272097792 -29 . 312 

169 -676 -3089 15776 _26. 136 

81 -891 -7073 47971 7312 . 113 

49 -931 -8069 54491 _76 . 193 

81 -108 -918330048 _26 .315 

49 -980 -941192000 _26 . 53 . 76 

81 -243 -11622 61467 _319 

361 -1083 -1270238787 _33. 196 

49 -23 -14314 35383 _76 . 233 

49 -1176 -16263 79776 -29 . 33 . 76 

81 -135 -1793613375 _315 . 53 

49 -1323 -2315685267 -39 . 76 

81 -324 -2754990144 _26 . 316 

49 -31 -35048 81359 _76 . 313 

321 -107 -35391 49227 -33 . 1074 

A comparison with Angell's table [1] of complex cubic fields of discriminant 
larger than -(4. 109)1/3 and a class number divisible by 3 shows that only the 
three nonisomorphic fields of discriminant -1228 do not appear in our Table 
III. It is nonetheless easy to verify that the ninth-degree fields containing such 
a cubic subfield are outside the limits of table (3, 3)c. When the real cubic 
subfield k of K (with the notations in Table III) is abelian, K is a relative 
cyclic extension of the complex cubic field k'. 

It can also be pointed out that between the two nonisomorphic fields of 
discriminant -23156 85267 only one field contains a complex cubic subfield. 

4.5. In the table corresponding to signature (3, 3)c the minimal discriminant 
is -110852311 = -3136 .612, and this field is an extension of the complex 
cubic field k4 of discriminant equal to -31 . The relative discriminant of the 
extension K/k4 is the ideal (61, a4-24)2, where aN is a zero of the polynomial 
X3+X-1 and k4= Q(a4). 

Proposition 3. Among the imprimitive number fields of degree 9 and signature 
(3, 3) containing a complex cubic subfield whose discriminant belongs to the 
interval - 10000 00000 < d < - 1108 52311, there exists a pair ofnonisomorphic 
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fields having the same discriminant for the values of d: -5235 82511 =-234 
1871 and -8759 38831 = -233 a 71993. 
Proof. For the first pair, consider the prime 11, and for the second, consider 
the prime 5. 0 

Corollary. There exists a pair of nonisomorphic sextic number fields with sig- 
nature (2, 2) and discriminants 22764457 = 233 . 1871 and 38084297 = 

232 . 71993. These sexticfields have a class number divisible by 3. 
Proof. These sextic fields are relative quadratic extensions of the complex cubic 
field k3 of discriminant -23 generated over Q by a zero a3 of X3 + X2 - 1, 
and they are associated with the two pairs of ninth-degree fields whose discrim- 
inants were given in Proposition 3. It is easy to verify that the two sextic fields 
of discriminant 227 64457 are generated respectively by a zero of the polyno- 
mials X6- 2X5- 22X4 + 21X3 +114X2+ 185X - 809 and X6- 29X4 - 8X3 + 
262X2 + 116X - 605. 

The generating polynomials for the sextic fields of discriminant 380 84297 
are X6 - X5 - 31X4 + 25X3 + 313X2 - 197X - 1219 and X6 - 2X5 - 27X4 + 
50X3 + 286X2 - 292X - 1127. 

As previously established in similar proofs, the class number of these fields 
must be divisible by 3. 0 

4.6. The minimal discriminant for ninth-degree number fields of signature 
(1,4) containing a cubic subfield is 322 06049 = 233 * 2647. The field K 
having this discriminant is a relative cubic extension of k3, and the relative 
discriminant of K/k3 is the prime ideal (2647, a3 + 143). 

This field as well as the next two fields in the table, of discriminants 338 60761 
= 112 234 and 35028793 = 233 - 2879, are Euclidean for the norm, and they 
were discovered by Leutbecher [1 8]. 

Proposition 4. Among the imprimitive ninth-degree number fields of signature 
(1, 4) whose discriminant belongs to the interval 322 06049 < d < 5000 00000, 
there are 9 pairs of nonisomorphic fields having the same discriminant. The 
corresponding values for these discriminants are: 94987769 = 233 * 37 . 211, 
154022053 = 233.12659, 229749461 = 234 821, 246844096 = 26.233.317, 
3298 45952 = 26 . 313 . 173, 3515 16797 = 233 . 167 . 173, 3618 83081 = 
72.233.607, 369876800=26.52.19.233, and 4744 81257 = 3.313.5309. 

Proof. For each pair of fields having the same discriminant, we can produce a 
prime number having a different decomposition in the two fields as a product 
of prime ideals. O 

Corollary. There exists a pair of nonisomorphic totally complex sextic fields with 
the same discriminant for the following values of d: -41 29903 = -232 * 37. 
211, -66 96611= -232 .12659, -99 89107 =-233 a.821, - 106 40192 = 
-26 a 312 . 173, -10732352 = -26 a 232 a 317, -15283339 = -232 . 167. 
173 and - 153 05847 = -3 a 312 a 5309. The class number of all these sextic 
fields is divisible by 3. 
Proof. The proof is similar to that already established. 5 
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Remark. The two sextic fields associated with the fields of degree 9 and discrim- 
inant 3618 83081 do not have the same discriminant. For one of these nonic 
fields the relative discriminant over k3 is the ideal (7, a2 + 4a3 + 5)(607, a3 + 
184), and the absolute discriminant of the associated sextic field is -157 34047. 
This field is generated over Q by a zero of the polynomial X6 - 2X5 + 21 X4 - 
45X3 + 1 92X2 - 188X + 488. The relative discriminant for the other nonic field 
having the same absolute discriminant is the ideal (7, a3 + 4)2(607, a3 + 184), 
and the relative quadratic extension over k3 associated with it has an absolute 
discriminant equal to -3 21103 and it is generated by a zero of the polynomial 
X6 - 3X5 + 7X4 - 9X3 + 1 1X2 - 7X + 1I1 . 

Similarly, for one of the nonic fields with discriminant 3698 76800, the rel- 
ative discriminant over k3 is the ideal (2)2(5, a2 -ac3+2)(19, a3+ 3), and the 
associated sextic field, of discriminant -160 81600, is generated by a zero of 
X6 - 4X4 - 65X2 + 475. For the other nonic field with the same discriminant, 
the relative discriminant over k3 is the ideal (2)2(5, a3 + 2)2(19, a3 + 3), and 
the associated sextic field, of discriminant - 10051 , is generated by a zero of 
x6 - 3X5 + 4X4 - 4X3 + 3X2 _ X + 1. 

We conclude this section with the following theorem whose proof is clear: 

Theorem 3. Let K denote a number field of degree 9 appearing in the tables 
for which the relative discriminant 3 of the extension K/k is not divisible by 
the square of any prime ideal of k. Let L denote the sextic field containing k. 
If IdLI = d2 * Nk/Q(3), then the class number of L is divisible by 3. 

5. GALOIS GROUPS 

Let K = Q(6) be an imprimitive ninth-degree number field, and denote by 
F the Galois group of the Galois closure of K/Q. The action of F on 0 allows 
us to consider F as a transitive ninth-degree permutation group. When this is 
the case, we will say that K is of type F. 

All the transitive groups up to degree 1 1 are known [7] and, up to conjugacy, 
there are 34 ninth-degree transitive groups. Among them, 23 are imprimitive, 
and 12 are imprimitive and even. In this section, we use the notations of [7] to 
designate these groups. For example, we denote by T5+ group T5 in [7] and the 
upper sign + means that this group is even and, consequently, the discriminant 
of a field K of type T5+ is a square. 

The following proposition is due to Y. Eichenlaub (private communication). 

Proposition 5. In each signature, the possible Galois groups for imprimitive ninth- 
degree number fields are: 

(9 50) : T1+, T2+, T3+, T4, Ts+ 5T6+ 5 T7+, T8 5 T1+o T1+, T12 5 T13 

T17, 18, T20, T21, F22, F24, T25, F28, F29, T30, F31 

(7, 1) : T28, T31 
(5, 2): T2+, T28, T29, T3+0, T1 

(3,3 ) F4, F8, F12, T13, T18, T20, F22, T24, F28, F29, F3I 
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To compute the Galois group for each ninth-degree polynomial in the tables, 
we use the classical relative resolvent method ([16] and [30]), based on the 
following property: Let us denote by G a transitive subgroup of degree n of 
Sn, and by H a subgroup of G. An H-polynomial for G is a polynomial 
F(X1, *.., Xn) E Z[X1, .-. , XnJ such that 

H-= {c E G I F(Xa(l), * *, Xa(n)) = F(X1, , Xn)}. 

If 01, ..., an denote the conjugates of 0 in C, then the G-resolvent related 
to H and associated with F is the polynomial 

R(G,H,F)(Y) = fi (Y - F(Oa(l), Oa(n))) 
aEA 

where A is a complete set of the right cosets of G modulo H (the right coset 
associated with ir E G is 7rH). 

Proposition 6. Suppose thatfor a fixed order of the roots (Oi, . O. , an) of the irre- 
ducible polynomial defining the extension K/Q, the Galois group F is included 
in G. Then: 

(1) a E G and F(Oq(l), d a(n)) ? Z implies c-r'a X H, 

(2) if F(q(l), .., q d(n)) E Z isasimplerootof R(G,H,F), then r'Fa c H. 

The Galois group of the fields in the tables are, according to the signature: 
(9, 0): two fields of type T, = Cg, one of type T2+ = C32, one of type 

T4= C3 X S3, two of type T17, one of type T20, 19 of type T28 and one of 
type T31. 

(7, 1): all the fields of type T28. 
(5, 2): 148 fields of type T28 and 6 of type T31. 
(3, 3)R: 15 fields of type T4 = C3 X S3, one of type T8 = C32 X C32, one 

of type T13, two of type T18, 3 of type T22, 189 of type T28-, and 12 of type 
T31 . 

(3, 3),: 7 fields of type T4= C3 X S3, 5 of type T12, 31 of type T20, one 
of type T29, and 156 of type T31. The seven fields with type T4 are those 
belonging to the tables (3, 3)R and (3, 3)c . 

(1, 4): one field of type T8-= C32 X C32, two of type T18, one of type T24, 

two of type T3+0, and 479 of type T31 . 
The next diagram gives the graph of all transitive imprimitive ninth-degree 

odd groups. In the right column the order of the groups is indicated, and a line 
joining two groups indicates an inclusion up to conjugacy by elements of Sq. 
The number on the line gives the number of conjugate copies pairwise distinct 
from the smallest group included in the biggest one. 

The maximal transitive imprimitive ninth-degree group is T31 , of order 1296. 
For each line in the graph of the transitive imprimitive even (resp. odd) 
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groups, the relative G-polynomials are computed using the method of [16] (cf. 
[25]). 

T34(S9) 362880 

T31 1296 

T2 9 1 T28 648 

4 T44 4 324 

T2 0 1 T2 2 162 

1 T18 3 108 

Tl 12 3 TI3 54. 

9 3a 3 36 

2 

T4 18 

We also have: 

Proposition 7. For the following ninth-degree transitive imprimitive groups, the 
minimal discriminants are, according to the signature: 

(9, 0): 1 69835 63041 for the type T>, 6 25235 02209 for the type T2+, 
1 75152 30173 for the type T4, 3 67630 77169 for the type Th7, 1 64403 05941 
for the type T20, 1 62403 85609 for the type T28 and 5 30389 58912 for the 
type T31. 

(7, 1): -26681 61671 for the type T28 
(5, 2): 4678 90073 for the type T28 and 12999 58592 for the type T31. 
(3, 3): -2032 97472 for the type T4, -35391 49227 for the type T8, 

-3573 66875 for the type T12, -23156 85267 for the type T13, -11119 34656 
for the type T18, -1108 52311 for the type T20, -12724 91584 for the type 
T22, -1645 90951 for the type T28, -5624 19575 for the type T29 and 
-1471 84199 for the type T31. 

(1, 4): 3624 67097 for the type T8, 2394 83061 for the type T18, 
4497 28821 for the type T24, 338 60761 for the type T3+0 and 322 06049 
for the type T31. 
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