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DETERMINATION OF ALL NONQUADRATIC IMAGINARY 
CYCLIC NUMBER FIELDS OF 2-POWER DEGREES 
WITH IDEAL CLASS GROUPS OF EXPONENTS < 2 

STEPHANE LOUBOUTIN 

ABSTRACT. We determine all nonquadratic imaginary cyclic number fields K 
of 2-power degrees with ideal class groups of exponents < 2, i.e., with ideal 
class groups such that the square of each ideal class is the principal class, i.e., 
such that the ideal class groups are isomorphic to some (Z/2Z)m, m > 0. 
There are 38 such number fields: 33 of them are quartic ones (see Theorem 
13), 4 of them are octic ones (see Theorem 12), and 1 of them has degree 16 
(see Theorem 1 1). 

1. INTRODUCTION 

It is known (see [9, Corollary 3]) that there are only finitely many imaginary 
abelian number fields of 2-power degrees with ideal class groups of exponents 
< 2. Moreover, it was proved in [10] that the conductors of these number fields 
that are nonquadratic and cyclic over Q are less than 6 101 1. K. Uchida 
[18] has already determined the imaginary abelian number fields of 2-power 
degrees with class number one. Here, we will determine the 2-power degrees 
imaginary cyclic number fields with ideal class groups of exponents < 2 which 
are not imaginary quadratic number fields. It has long been known (see [3]) that 
the Brauer-Siegel theorem implies that there are only finitely many imaginary 
quadratic number fields that have ideal class groups of exponents < 2, that the 
Siegel-Tatuzawa theorem implies that there are at most 66 such number fields, 
and that, under the assumption of a suitable generalized Riemann hypothesis, 
there are exactly 65 such number fields (see [12] and [20]), and the list of the 
discriminants of these 65 fields is given in Table 5 in [1]. 

Now, we sketch here our method of proof. Let K be an imaginary cyclic 
number field of 2-power degree [K: Q]. If the ideal class group CIK of K has 
exponent < 2, i.e., CIK is an elementary 2-abelian group, i.e., CIK - (Z/2Z)m 
for some m > 0, then the genus group, which is the Galois group of the genus 
field of K over Q, is also an elementary 2-abelian group. Thus, by genus 
theory, we conclude that any Dirichlet character X associated with K must be 
of the form X = XpX', where Xp is of p-power conductor for some prime p 
and order [K : Q], and X' is trivial or quadratic of conductor prime to p. 
So. for each prime D. we take the family 7 of imaginarv cyclic number fields 
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of 2-power degrees such that any Dirichlet character associated with them is of 
the above form, and consider K as a field in p for some p. Let k be the 
maximal real subfield of K. Since k/Q is a 2-extension in which only the prime 
p ramifies, the narrow class number h+(k) of k is odd; hence h+(k) = h(k), 
and we know that the 2-rank of CIK is t - 1, where t is the number of primes 
in k which are ramified in K/k. Since h(k) divides h(K), we conclude that 
ClK has exponent < 2 if and only if h(k) = 1 and h*(K) = 2t-1 , where h*(K) 
denotes the relative class number of K. Now, we separate the case p = 2 from 
the case p 54 2. In each of these two cases we describe k, we explain how to 
compute t, and thanks to explicit lower bounds for relative class numbers of 
CM-fields we manage to set upper bounds for the discriminants of the K's in $p 
such that h* (K) = 2t-1 . Finally, the computation of the relative class numbers 
of all the K's in $p with discriminants less than this upper bound provides 
us with our desired determination of all nonquadratic imaginary cyclic number 
fields of 2-power degrees with ideal class groups of exponents < 2. 

2. NOTATIONS 

By K we denote a nonquadratic imaginary cyclic number field such that 
[K: Q] = 2N = 2n with n > 2. Hence, the maximal real subfield k of K 
is such that [k: Q] = N. Next, fK and fk are the conductors of K and k, 
h(K) and h(k) are the class numbers of K and k, and d(K) and d(k) are the 
discriminants of K and k. We let X be any odd primitive Dirichlet character 
modulo fK that generates the cyclic group of order 2N of Dirichlet characters 
associated with K. Moreover, h*(K) denotes the relative class number of K. 
Finally, we let k2 be the real quadratic subfield of k. 

3. IMAGINARY CYCLIC NUMBER FIELDS K OF 2-POWER DEGREES 

SUCH THAT THEIR GENUS NUMBER FIELDS HK HAVE 

GALOIS GROUP OVER K OF EXPONENT < 2 

Let fK = Hj qnq be the factorization of fK. Corresponding to the decom- 
position (Z/fKZ)* = rj(Z/qnqZ)* we may write X = H Xq, where Xq is a 
nonprincipal primitive character of conductor fq = qnq . Let Kq be the cyclic 
number field associated with Xq, and let HK = H Kq be their compositum. 
Then HK is the genus number field of K, that is to say, HK is the maximal 
abelian number field that is unramified at the finite places over K. As K is 
imaginary, then HK/K, moreover, is unramified at the infinite places. Hence, 
from class field theory we get that the Galois group Gal(HK/K) of the extension 
HK/K is isomorphic to a quotient group of the ideal class group of K. Hence, 
Gal(HK/K) has exponent < 2 provided that the ideal class group of K has 
exponent < 2. 

Now we determine this Galois group. First, as X has order 2n, each Xq 
has order dividing 2n (say, has order 2mq with 1 < mq < n), and there 
exists at least one prime p such that Xp has order 2n. We note that this 
prime p is then totally ramified in K/Q. We set Mp = HIqp Kq . Second, 
we observe that the only prime integer that ramifies in Kq /Q is q. Thus, p 
does not ramify in Mp/Q, and we get Mp n K = Q. Since HK = MpKp = 
MpK, we get that Gal(HK/K) = Gal(MpK/K) is isomorphic to Gal(Mp/Q). 
Third, using induction on the number of cyclic number fields Kq that appear in 



DETERMINATION OF CYCLIC NUMBER FIELDS 325 

Mp, and using ramification arguments, one can easily get that Gal(Mp/Q) is 
isomorphic to Hq#Ap Gal(Kq/Q). Hence, we get that Gal(HK/K) is isomorphic 
to Hq76p Z/2Mq Z. 

Now assume that the Galois group Gal(HK/K) of the abelian extension 
HK/K has exponent < 2. Then we have mq = 1, q 54 p. From this we 
get the factorization X = XpX', where Xp is a primitive Dirichlet character 
of order 2n and of conductor fp a p-power, and X' is a primitive quadratic 
character of conductor f ' > 1 that is prime to p, or X' is trivial if f ' = 1 . 
Moreover, fK = fpf' and fk, which is the conductor of x2 42, divides fp . 
Since x has order 2n, any odd power of X has conductor fK too and generates 
the group of Dirichlet characters associated with K. 

Definition. For each prime p, let p denote the family of imaginary cyclic 
number fields K such that [K: Q] = 2N = 2n for some n > 1, such that their 
conductors fK are factored as fK = fp f', where fp is a p-power and where 
f ' > 1 is prime to p, and such that any generator X of the group of Dirichlet 
characters associated with K is factored as X = XpX', where Xp has conductor 
fp and order 2N and X' is quadratic of conductor f ' if f ' > 1, and X' is 
trivial if f ' = 1. Hence, the conductor of the maximal real subfield k of any 
number field in p divides fp,, hence is a p-power. 

Remark. Let K be in $. Let ap be in k such that Kp = Q(V-ap). Then 
K = Q(aD), where D' = X'(-1)f '. 

Indeed, the result clearly holds if f' = 1. Hence, let us assume f' > 1. 
Set E = Q(v1iD, Vai-). Then E is an abelian number field of degree 4N 
with Galois group Z/2Z x Z/2NZ and group of Dirichlet characters generated 
by Xp and X'. Hence, E has exactly three subfields of degrees 2N, namely, 
Kp, k(vKi%), and K. One can easily check that M = Q(a/pD') is a subfield 
of E of degree 2N such that M 54 Kp = Q(V/aip) (since M/Q is ramified 

above f ' which is prime to p) and M 54 k(V7Y) (for otherwise we would 
have V'fe M and M=Kp =Q(V,)). Thus, weget M=K. 

4. NECESSARY AND SUFFICIENT CONDITIONS FOR IDEAL CLASS GROUPS 

TO HAVE EXPONENTS < 2 AND RELATIVE CLASS NUMBER FORMULAS 

Theorem 1. Let K be an imaginary cyclic number field of 2-power degree with 
ideal class group of exponent < 2. Then K belongs to $ for some prime p. 

Proof. The discussion above shows that an imaginary cyclic number field of 
2-power degree belongs to some p if and only if its genus number field HK is 
such that Gal(HK/K) has exponent < 2. o 

We would like to show that knowledge of the relative class number of K 
enables us to assert whether the ideal class group of K has exponent < 2. 

Lemma (a). (i) Let k be the maximal real subfield of a number field K in any 
S7. Then, the narrow class number h+(k) of k is odd. Moreover, suppose that 
h(K) is a 2-power. Then h(k) = 1. 

(ii) Let K be a CM-field whose maximal real subfield k has odd narrow 
class number. Let t be the number of prime ideals of K that are ramified in 
the quadratic extension K/k. Then the 2-rank of the ideal class group of K is 
t- 1. 
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Proof. From [4, Corollary 12.5], and using induction on n, where [K: Q] = 2n 
we get that h+(k) is odd. Hence, h+(k) = h(k) . Since h(k) divides h(K), we 
get the first assertion. From [4, Lemma 13.7] we get the second. El 

Theorem 2. Let K be an imaginary cyclic number field of 2-power degree with 
maximal real subfield k. Then, the ideal class group of K is of exponent < 2 if 
and only if k has prime power conductor and class number one and the relative 
class number h*(K) of K is equal to 21-1, where t is the number of prime 
ideals of k that are ramified in the quadratic extension K/k. Moreover, the 
ideal class group of K is then generated by the ideal classes of the t prime ideals 
of K that are ramified in the quadratic extension K/k. 
Proof. The first part follows from Lemma (a) and Theorem 1. Now, in order to 
prove the last assertion, it suffices to prove that these t ramified prime ideals Pi, 
1 < i < t, of K generate a subgroup of order > 2t-1 in the ideal class group 
H(K) of K. Indeed, we have a group homomorphism (D: (Z/2Z)t H-* H(K) 
that sends '= (.l, ..., Et) to F(E) = the ideal class of I1 = p1' ... p It Jf 

- 

is in the kernel of D, then there exists a E K such that I1. = (a). By complex 
conjugation we get (a) = (a), so that there exists a unit q of K such that -a = 
ta. Now, q is an algebraic integer all of whose conjugates have absolute value 
1. Hence, q is a root of unity of K that is well defined up to multiplication 
by any element of EK-1, where a denotes complex conjugation. Thus, we 
have a monomorphism from Ker(D) to WK/E'-1, where WK denotes the 
group of roots of unity in K. Since EK = WKEk (Lemma (c) below), we get 
Ea 1 = WK-1 = WK2. Hence, Ker(D) has order < 2 and we get the desired 
result. El 

We will explain in Lemmas (g) and (j) below how to compute this number t 
of prime ideals of k that are ramified in the quadratic extension K/k. Now 
we explain how one can compute the relative class number of any number field 
K in 7p . We remind the reader that the relative class number of an imaginary 
abelian number field K is equal to 

h* (K) = QKWK E a(a) 
1) X odd a=l 1 

= QKWKJ7 ((1Z ) 

iedidne acx 
odd 

2(2- 
X(2)) O<a<fxl2 ) 

with WK being the number of roots of unity in K, and with QK being the unit 
index defined in Lemma (c) (see [19, Theorem 4.17] and [19, Exercise 4.5].) 
Now, we have 
Lemma (b). Let K be an imaginary cyclic number field of degree 2N = 2n, 
n > 1. Let WK be the number of roots of unity in K. Then, WK = 2, except 
when K = Q(C4) (in which case WK = 4), or when 2N + 1 is prime and 
K =Q(C2N+1) (in which case WK = 2(2N + 1)). 
Proof. Let CM be a generator of the cyclic group WK (M is even). Assume 
that we have M > 2. Since the imaginary cyclotomic number field Q(CM) is 
included in K, and since the proper subfields of K are real, we get K = Q(CM). 
Hence, we have p(M) = 2n. Moreover, since K is cyclic, we have M = 4, or 
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M= 2pk for some odd prime p and some k > 1. Thus, M = 4, or q9(M) = 
(p l)pk-1 = 2n, implying k = 1 and M = 2p = 2(2n + 1) = 2(2N + 1). o 
Lemma (c) (see [7, Satz 24]). Let K be an imaginary cyclic number field. Let 
k be the maximal real subfield of K. Let EK be the unit group of K, and let 

Ek be the unit group of k. Then, QK - [EK: WKEk] = 1. 

From (1) and Lemma (c), we get that if K E 5p, then we have the following 
useful evaluation of the relative class number of K: 

(N/2)- 1 2 

(2) h*(K)= WK Ol 1 E x( (a 2k+l)X/(a) 
k=O ~~~~~O<a<fK/2 

5. THE CASE p = 2 

We determine the number fields K with ideal class groups of exponents < 2 
that belong to the family S2. 

Theorem 3. For any 2-power 2N = 2n (n > 1) and any odd square-free positive 
integer f ', there exists exactly one field K in 92 such that fK = 8Nf '. Except 
for the field Q(i), any field in X is determined only by n and f '. Then 
K and its maximal real subfield k are given explicitly by K = Q(aK) and 
k = Q(cos(7/2N)) with 

aK=2C0co(4N) = ' -f' (2+ 2+ 

Moreover, fk = 4N, d (K) = (1 6N22f)N /2, and d(k) = (2N)N /2. 

This result readily follows from the following three lemmas: 

Lemma (d). Let X2 be any primitive Dirichlet character of order M = 2m, 
m > 2, and of conductor f2 = 2a. Then, f2 = 4M, i.e., a = m + 2. 

Proof. (Z/2cZ)* is isomorphic to Z/2Z x Z/2a-2Z and X2 is of order M. 

Hence, 2a-2 > M, i.e., a > m + 2. If we had a > m + 3, then x _ 1 

(mod2a-l) would imply x 1 (mod2a) and X2(x) = 1, or would imply 

x =1 + 2a = 5 - ym (mod 2c) and X2(x) = 1 too (with y = 52 ). 

Hence, X2 would not be primitive. o 

Lemma (e). Let F 0 Q(i) be a cyclic number field of degree M = 2m > 2 
a 2-power and of conductor fF a 2-power too. Then, fF = 4M and d(F) = 
(2M)M/2. Moreover, F = Q(cos(7r/2M)) if F is real, and F = Q(i cos(7n/2M)) 
if F is imaginary. 
Proof. The assertion concerning the discriminant of F is easily proved induc- 

tively on m using the conductor-discriminant formula. El 

Lemma (f). Let K 0 Q(i) be in E. Let X be an odd primitive Dirichlet 
character that generates the cyclic group of Dirichlet characters associated with 
K. Then x = X2X', where X2 is primitive modulo 8N and of order 2N, and x' 
is quadratic and primitive modulo f ' if f '> 1, so that f ' is odd and square- 
free and X'(m) = (i), and x' is trivial if f' = 1. Moreover, fK = 8Nf ' and 
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fK determines the field K, and we may take for X2 the Dirichlet character that 
is well defined by means of 

X2(-l) = -x'(-1) and X2(5) = exp(2i7r/(2N)). 
Hence, from (2) and [6, Lemma 1] which gives X((fK/2) - a) = x(a), we 

have 

(3) h*(K) = WK rj2E X2(a 2k+) /a 2 

k=O l<a<2Nf', a odd 

Note that according to Lemma (b) we have WK = 2, except when K = Q(i) 
(in which case WK = 4). If the ideal class group of K is of exponent < 2, 
then from Theorem 2 we have h(K) = h*(K) = 2t-1, where t is the number 
of prime ideals of K that are ramified in K/k. Now, 2 is totally ramified in 
K/Q, so that there is exactly one prime ideal in K lying above 2 that is ramified 
in K/k. If a prime ideal P of K lying above an odd prime p is ramified in 
K/k, then p divides f '. Since for each odd prime p that divides f ' there 
are at most N prime ideals of k lying above p, there are at most N prime 
ideals of K lying above p that are ramified in K/k. Hence, we get 

(4) t<1+Nco(f'), 

where w(f') is the number of distinct prime divisors of f'. We now give 
a computational technique for determining t, so that Theorem 2 provides us 
with a technique to check whether the ideal class group of K is of exponent 
< 2. 

Lemma (g). We have 

t - = , (N) where A(q, N) = Min{j > 1; j is a 2-power 
qlf I(,N 

and qJ- I (mod 4N)}. 

Here, q runs over the odd prime divisors of f '. 
Proof. The prime q = 2 is totally ramified in K/Q. Now, any odd prime q 
is not ramified in k/Q, so that it is ramified in K/Q if and only if it divides 
f '. Then, each prime ideal of k above q is ramified in K/k. Hence, t = 
1 + Eqlf gk/Q(q), where gk/Q(q) is the number of prime ideals in k lying 
above q . Now, we note that k is associated with the cyclic group generated by 
the Dirichlet character V, which is primitive mod 4N, of order N, and which 
induces x2 = X2. Hence, from [19, Theorem 3.7] we get gk/Q(q) = N/I(q, N) 
with A(q, N) := Min{j; j > 1 and yVj(q) = 1}. Since y,J(q) = yi(qJ), and 
since ,v(x) = 1 if and only if x- ?1 (mod 4N), we get the desired result. 
We note that since yi(q) is a root of unity of order dividing N, then A(q, N) 
is a 2-power. o 

Now, using the methods developed in [16], we give a lower bound for the 
relative class number of K, which will provide us with upper bounds for 
[K: Q] = 2n, n > 2, and f' whenever K E 2 has an ideal class group 
of exponent < 2. The following lemma is extracted from the proof of [16, 
Lemma (ii)]. 
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Lemma (h). Let k = Q(cos(7r/2N)) be the maximal real subfield of the cyclo- 
tomic number field Q(C4N), 2N = 2n, n > 2. Then, we have Res, (Ck) < 

(2 8(N- 1)/2. 

Theorem 4. Let K be a nonquadratic number field of degree 2N = 2n in X, 
so that fK = 8Nf ' with f ' odd and square-free and d(K) = (16N2f )N /2. 
Then, we have the following lower bound for the relative class number h*(K) of 
K: 

h*(K) 1 (1 nf4 Nlog(16N2f ) 
Hence, n > 6 implies that the ideal class group of K is not of exponent < 2. 

Proof. The Dedekind zeta function Ck2 of the real quadratic subfield k2 = 

Q(V2I) of K is negative in (0, 1) (see Lemma (k) below). Moreover, if X is 
any character of order 2N associated with K, then CK/4k2 is the product of 
the 2N - 2 L-functions L(s, Xk), 1 < k < 2N - 1 and k $ N, associated 
with 2N - 2 nonquadratic Dirichlet characters which come in conjugate pairs 
(since X2N-k = Xk), so that we have CK/4k2(S) > 0, s E (0, 1) (this is the step 
where we have to assume 2N > 4, i.e., where we have to assume that K is 
not an imaginary quadratic number field). Hence, the zeta function SK of K 
is nonpositive on (0, 1) . Lemma (h) above and [16, Theorem 2(b)] provide us 
with the following lower bound, from which we get the desired first result: 

7__8 irs (16Nf'/ N12 1 
h( 5e ex 723/) Nlog(16N2f') 

Now we assume that the ideal class group of K is of exponent < 2. Then from 
(4) and Theorem 2 we have h*(K) = h(K) = 2t-1 < 2Nao(f ') where wt)(f ') is 
the number of prime divisors of f '. Hence, from the above inequality we have 

( 16Nf' N12 

44w(f) < 1 0N log(1 6N2f'). 

Now, x F_4 xN/2/ log(Ax) is an increasing function on [1, +oo) (provided that 
we have N > 2 and A > e), and f I > fr d-f pop ... pr, where r = w(f') > 0 
is the number of distinct prime divisors of f ' and where po = 1, and (Pi)i>I 
is the increasing sequence of the odd primes (remember that f' is odd and 
square-free). Hence, we have 

(16Nf, N/2 ( 4r) < 1ONlog(16N2fr)e 

Moreover, 
fN/2 

2Nr log(1 6N2fr) 

satisfies f(r + 1) > f(r) if and only if 

( 4(Pr+1 )N/ - I) log(1 6N2r) > log(pr+l). 

Hence, we get f(O) > f(l). On the other hand, if N > 4, then 16N2fr > 44 
and x F-4 (x2- 1) log(44) - log(4x) is a positive (and increasing) function on 
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TABLE 1 

n N= 2n-1 Resl(Xk) < W(f')< f'< 
2 2 0.624 5 4. 104 
3 4 0.432 4 2. 103 
4 8 0.340 2 23 
5 16 0.272 1 3 

[(5/4), +oo). Hence, we get f(r+ 1) > f(r) for r > 1. Therefore, f(r) > f(1) 
for r>0 if N>4. Since fi =3,weget 

(12N N/2 

(4 ) /<ONlog(48N2) if N > 4. 

From this, weget N< 16, i.e., n <5. 0 
Now, by calculating the numerical values of Res, (4k) for 2 < N = 2n-1 < 

16, using the finite evaluation 

|L1 )| = ZE(k) log(sin(k7r/f)) 

which holds whenever X is a primitive and even Dirichlet character mod f, 
and by using 

2Nw(ff') >h'*(K) > 4 K 7r (2e 2)1/2N (2Nf"\ N/2 1 
- e Res, (4k) ( 2Vf' ) (ir) Nlog(1 6N2f') 

(see [16, Theorem 2(a)]), we get Table 1. (See the proof of Theorem 7 below 
to see how we get these upper bounds for w(f ') and how we then get these 
upper bounds for f '.) From these very reasonable upper bounds for f ', from 
numerical computations based on (3) and Lemma (g), from the necessary and 
sufficient condition h(k) = 1 and h*(K) = 21-1 for the ideal class group of K 
to have exponent < 2 (see Theorem 2), and noticing that the class numbers of 
the maximal real subfields of the cyclotomic number fields Q(42N) are equal to 
one for 2N = 4 and 8, we get 
Theorem 5. There are exactly 5 nonquadratic imaginary cyclic number fields in 
X and such that their ideal class groups are of exponents < 2, namely, the five 
K = Q(aK) given in Table 2. 

TABLE 2 

[K: Q] f' fK CeK h (K) 

4 1 16 -(2+Vd) 1 

4 3 48 -3(2+V) 2 

4 5 80 -5(2+V) 2 

4 7 112 4-7(2+V) 4 

8 1 32 /-(2+ 2 ) 1 
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6. THE CASE p $2 

Using the methods developed in [ 1 3] and [ 18], we determine the nonquadratic 
number fields K with ideal class groups of exponents < 2 that belong to the 
families Zp, p any odd prime. In Theorems 11, 12, and 13 we have not only 
determined these number fields, but we have taken into account the results of the 
case p = 2 in order to state in these three theorems the complete determination 
of all nonquadratic imaginary cyclic number fields of 2-power degrees with ideal 
class groups of exponents < 2. 

Remark. The real quadratic subfield k2 of K E Zp is such that k2 = Q(Q /P) 
with p =1 (mod 4) an odd prime. Now, thanks to Theorem 1 we know that 
if K has ideal class group of exponent < 2, then its maximal real subfield k 
has class number one and p is totally ramified in k/Q. Hence, thanks to [19, 
Proposition 4.1 1], we get that k2 has class number one. This will enable us to 
get rid of many occurrences of p. 

Theorem 6. For any 2-power 2N = 2n (n > 1), any odd prime p =1 
(mod 2N), and any odd square-free positive integer f ', there exists exactly one 
field K in p such that fK = pf '. Any field in $ is determined only by n 
and f ', and the maximal totally real subfield k of K is the cyclic subfield of 
degree N of the cyclotomic number field Q(Cp). Moreover, if f' > 1, then X' 
is the character of the real quadratic number field of conductor f ' if p =1 + 2N 
(mod 4N), whereas X' is the character of the imaginary quadratic number field 
of conductor f' if p =1 (mod4N). Finally, fk = p, d(k) = pN-l, and 
d(K) = d(k)fKN < (p2f/)N. 

This result readily follows from the following lemma, which is similar to 
Lemma (f). 

Lemma (i) (see [13, Lemma 1]). Let Xp be a primitive Dirichlet character mod- 
ulo fp = pk, k > 1, of order 2N prime to p. Then, we have k = I and 
p =1 (mod 2N). Moreover, Xp is even if p =1 (mod 4N), and Xp is 
odd if p =1 + 2N (mod 4N). Hence, if K with [K: Q] = 2N belongs to 
Fp, then fK = pf', where f' > 1 is prime to p, and we may take for Xp 
the primitive Dirichlet character modulo p of order 2N that is well defined by 
Xp (g) = exp(2i7r/2N), where g is a generator of the cyclic group (Z/pZ)*. 

Remark. In Lemma (f) the choice of f' modulo 4 determines the parity of 
x', hence determines the parity of X2 . Here, it is the choice of p modulo 4N 
that determines the parity of Xp, hence determines the parity of X' . 

We note that whenever X is a Dirichlet character of order 2N = 2n > 4 
such that x(2) is a root of unity of order d2 > 2 that divides 2N, then 

N-1 (N/2)-1 2 
j7 (2 _X2k+l (2)) - 17 (2 _-X2k+l (2)) (2d2/2 + l)2N/d2 d=f Fd2. 
k=O k=O 

Hence, setting Fd2 = 1 whenever d2 = 1, and setting Fd2 = 2N whenever 
x (2) = 0, then thanks to (2) we get that the relative class number h* (K) may 
be computed by means of 
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(N/2)-1 2 

(5) h*(K) = WK 17 Z Xp(a2k+l)/(a) 
d2 k=O O<a<fK/2 

Moreover, if the ideal class group of K has exponent < 2, we have h* (K) = 
2t-1 < 2No(f'). As in Lemma (g), and noticing that 42(x) = 1 if and only 
if (p-)/N = 1 (mod p), we have the following computational technique for 
evaluating this number t of prime ideals of k that are ramified in K/k: 

Lemma (j). We have 

t - 1 = ( N ) where A(p, q, N) =Min {j > I; j is a 2-power 
qlf 

and q(P- l)/N= 1 (modp)}. 

Here, q runs over the prime divisors of f'. 

Theorem 7. If K with 2N = [K: Q] > 8 belongs to 9p with p 1 (mod 2N) 
an odd prime, then 

VIP-f-l - log(p)2f (6) 7(ogp (t+ 2) < 9.3N logp)f + h*(K). 

Hence, if the ideal class group of K has exponent < 2, then we have N < 512, 
and if N is given, we can give explicit upper bounds for p and f '. Moreover, if 
the Dedekind zeta function of the real quadratic subfield Q(QJp) of K does not 
have any real zero in (0, 1), then 

Vp- f-) 
N ___ 

g__ p2 _f ___ 

(7) ( f < 9 3N log(p2) h*(K) 
V7r(log(p) + 2 + y - log(47r)) log(p) + 2 + y - log(47r) 

where y = 0.577215664... is Euler's constant. 

Proof. The relative class number formula and Lemmas (a), (b), and (i) yield 

_QKWK L(2) _fN2 L(,) 
h*(K) - 

(27)N (K)/d(k) JJ L(1, X) > 1 71 L(1, X). 

X odd X odd 

On the other hand, whenever s0 > 1 is real and X is an even primitive character 
modf > 5, we have 

IL(so, x)I <? log(f) + 1 

(see [13, Lemme 4]). Arguing as in the beginning of the proof of Theorem 

5, for 2N > 4 we get that the Dedekind zeta function of K is factored as 

SK(S) = Sk(s)L1(s) with 

(N/2)-1 

LI (s) = Jl L(s, X) fJ L(s, X2k+l )L(s , x2k+ )I 

X odd k=O 

Hence, s F-4 L1 (s) does not have any simple real zero. Thus, in the terminology 
of [18], s H-4 LI (s) does not have any exceptional zero. This is the step where 
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once again we have to exclude quadratic number fields K. Hence, from [18, 
Proposition 1] we get the following lower bound, from which we get the desired 
first result: 

h____K____>___f_N/2 (pf /)N/2 

h*(K) ? 9.37zN(og(p) + 2)N-1 log(d(K)) 9.3NiN(log(p) + 2)N-1 log(p2f ') 

Moreover, whenever x is a nonprincipal even primitive character modf, 
we have 

JL(l, x)I < 2 log(f) +2 + y-log(47) 2 
(see [15]). From the factorization 

(N/2)-1 

CK(S) = 4k2(s) 11 L(s, xk)L(s, Xk) 
k=l 

we get that any real simple zero of SK is a zero of Ck2. Hence, from [18, 
Proposition 1], if the Dedekind zeta function of the real quadratic subfield k2 
of k does not have any real zero in (0, 1), then we get the following lower 
bound, from which we get the desired last result: 

fTN/2 

9.37zN(log(p) + 2 + y - log(47r))N-1 log(d(K)) L 

Let us point out that we have the following sufficient condition for the L- 
function of the real quadratic subfield k2 of k not to have any real zero in 
(0, 1). 

Lemma (k) (see [ 13]). Let Xk2 be the character associated with a real quadratic 
number field k2 of conductor fk2 . Set 

n a 

S2(n) = EXk2(b). 
a=l b=l 

If S2(n) is nonnegative for 1 < n <fk2 then the Dedekind zeta function of k2 
does not have any real zero in (0, 1). 

Now, suppose that the ideal class group of K is of exponent < 2. Using 
h*(K) < 2No(f ') and (6), we get 

(8) (< 9.3Nlo(f) () 2W(f')7r(log(p) + 2) log(p) + 2 

Now, x _ xN/2 10g(p2x) is an increasing function on [1, +oo) (provided 
thatwe have N > 2 and p > 3), and f ' > fr d-popl ... Pr, where r = wo(f ') > 
0 is the number of distinct prime divisors of f' and where po = 1, Pi = 3, 
P2 = 4, and (Pi)i>3 is the increasing sequence of the odd primes greater than 
or equal to 5 (remember that 4 divides f ' if f ' is even). Hence, we have 

(9/ r lgp 2 93lgpN 2N 
(9) ~ ~ ~~ VP f-r +) _ log(p2fr) 

2r7r(log(p)+ 2 *3N1g(p) + 2 
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Moreover, 
{N2 

2Nr log(p2fr) 
satisfies f(r + 1) > f(r) if and only if 

((Pr+1 )N/ - 1) log(p2fr+). 

Hence, we get f(O) > f(l) > f(2). On the other hand, since we have N > 
4, log(p2r) > log(52) and x H__ (X2 _1) log(52) - log(4x) is a positive (and 
increasing) function on [(5/4), +oo), we get f(r+ 1) > f(r) for r > 2. Hence, 
we have f(r) > f(2) for r > 0. Hence, thanks to (9) and thanks to f2 = 12, 
we have 

(10) ( ~~v-3p N <~3log(12IA)< 
P 0) (27(log(p + 2)/ < 9.3Nlog(p)+ 2 < 18.6N. 

Now, p H-| Vp-(log(p) + 2) is an increasing function, and p _ 1 (mod 2N) 
implies p > 2N + 1. Hence, from (10) we get 

(11) ~ ~ ~ ~~v6-N +3 
N 

8.N ( 1) \27r(log(2N + 1) + 2) < 18j6N 

so that we get N< 512. Moreover, let us fix some N. Since p H-f J- /(log(p)+2) 
tends to infinity with p, then (10) enables us to put an upper bound for p. 
Since r H-- f(r) tends to infinity with r, then (9) enables us to put an upper 
bound for r = wo(f ') for each p . Finally, (8) enables us to put an upper bound 
for f ' for each p . 
Theorem 8. Let p be any odd prime. There is no number field K in p with 
[K: Q] = 2N such that N = 512 or 256 and such that the ideal class group of 
K has exponent <2. 

Proof. Suppose that there exists such a number field. Then thanks to the fact 
that 7681 = 1 + 15. 512 is the smallest prime which is congruent to 1 mod 512, 
we have p > 7681. However, (10) is not satisfied with p = 7681 and N E 
{256, 512}, a contradiction. 5 

Theorem 9. Let p be any odd prime. There is no number field K in $p with 
[K: Q] = 2N such that N = 128, 64, or 32 and such that the ideal class group 
of K has exponent < 2. 
Proof. Suppose that there exists such a number field. The proof is divided into 
three cases: N = 128, 64, and 32. 

(i) If N = 128, then we have p- 1 (mod256), so that we have p = 257, 
p = 769, or p > 3329. Since (10) is not satisfied with p = 3329 and since 
the real quadratic number field k2 of conductor 257 has class number 3, we get 
that N = 128 implies p = 769. Now, with N = 128 and p = 769 we first 
note that we have p -1 + 2N (mod4N), so that Xp is odd and X' is even, 
i.e., is associated with the real quadratic number field with discriminant f' if 
f '> 1. Moreover, from (8) we have 

( ' 6-9 f + 128 
log(7692f ( 769f' ) 

K~~~ 1 190.41o(62 
2w(f'),r(1og(769) + 2) log(769) + 2~ 
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From this, one can easily get that f' E { 1, 12, 60}. Now, thanks to Lemma (j) 
we have Table 3, which provides us with the values t (of the number of prime 
ideals of K that are ramified in K/Q): 

TABLE 3 

f' 1 12 60 
fK 769 9228 46140 
t 1 19 21 

(We get A(769, 2, 128) = 64, 5A(769, 3, 128) = 8, and A(769, 5, 128) = 64, 
where A(p, q, N) is defined in Lemma (j).) Hence, if the ideal class groups of 
these number fields had exponents < 2, from (6) we would have 

/ ~~~~128 9f1 ( 769f' <\ 1904log(769' 2`-1 
7r(log(769) + 2)) ? 1 l941og(769) + 2 

and this is not satisfied for f ' E { 12, 60}. Finally, using Lemma (k), one 
can easily check that the Dedekind zeta function of the real quadratic subfield 
Q(vi6) does not have any real zero in (0, 1). Now, since (7) is not satisfied 
with (p, f ') = (769, 1), we see that we cannot have N = 128, provided that 
the ideal class group of K has exponent < 2. 

TABLE 4 

q 
2 3 5 7 

p 
641 5 6 5 5 
769 5 2 5 6 
1153 4 5 6 6 

(ii) If N = 64, then we have p _ 1 (mod 128), so that we have p E 
{257, 641, 769, 1153} or p > 1409. Since (10) is not satisfied with p = 1409 
and since the real quadratic number field of conductor 257 has class number 
3, we get that N = 64 implies p E {641, 769, 1153}. First, we have Ta- 
ble 4, which provides us with the values 1og2(A(p, q, N)) (computed thanks 
to Lemma (j)). Second, Table 5 provides us with the values t (of the num- 
ber of prime ideals of K that are ramified in K/Q) for each possible pair of 

TABLE 5 

fl 
1 3 4 5 12 15 21 60 

(p, xP(-1)) 

(641,-1) 1 3 4 4 6 
(769, +1) 17 3 19 

(1153, -1) 7 
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values of p and f' such that (8) is satisfied. (Remember that the primitive 
quadratic character modf ' is of opposite parity to that of Xp, so that we have 
f _ 1 (mod4) or f '_ 8, 12 (mod 16) if Xp(-l) = -1, whereas we have 
f ' _3 (mod 4) or f ' 4, 8 (mod 16) if Xp(- 1) = + 1.) Third, there is only 
one value of fK = pf' such that (6) is satisfied with h*(K) = 2w-1, namely, 
(p, f') = (641, 1). Fourth, 

h*(K) = 345990992772409330390648373394234024449 >21-1 
for this number field. Hence, we cannot have N = 64, provided that the ideal 
class group of K has exponent < 2. We point out that thanks to Lemma (k) 
one can easily check that the Dedekind zeta function of the real quadratic sub- 
field Q(v6-4) of K does not have any real zero in (0, 1). Now, since (7) is 
not satisfied with (p, f ') = (641, 1), we could also get rid of this occurrence 
without calculating the relative class number h* (K) of the corresponding num- 
ber field. Moreover, the referee pointed out to us that we could get rid of this 
occurrence since the real quartic subfield of Q(C641) has class number five (see 
[5]). 

(iii) If N = 32, then we have p _ 1 (mod 64), so that we have 
p E {193, 257, 449, 577, 641, 769, 1153, 1217, 1409, 1601} 

or p > 2113. Since (10) is not satisfied with p = 2113 and since the real 
quadratic number fields of conductors p E {257, 577, 1601} have class num- 
bers greater than or equal to 3, we get that N = 32 implies p E { 193, 449, 641, 
769, 1153, 1217, 1409}. Arguing as in points (i) and (ii), we get that there are 
only three values of fK = pf ' such that (6) is satisfied with h*(K) = 21-1, 
namely, (p, f ') = (193, 1), (449, 1), and (449, 5). We have the following 
values of the relative class numbers of the corresponding number fields: h* (K) = 
192026280449, h*(K) = 500402969557121, and h*(K) = 232 .6977.12097. 
54415214849. Since h*(K) > 2t-1 for these number fields, we cannot have 
N = 32, provided that the ideal class group of K has exponent < 2. We 
point out that thanks to Lemma (k) one can easily check that the Dedekind 
zeta function of the real quadratic subfield Q( 449) of K does not have any 
real zero in (0, 1). Now, since (7) is not satisfied with h*(K) = 2t1- and 
(p, f ') = (449, 5), we could also get rid of this last occurrence without calcu- 
lating the relative class numbers h* (K) of the corresponding number field. 

Theorem 9 is thus proved. 51 

Theorem 10. For any odd prime p, there is no imaginary cyclic number field 
K in Y with [K: Q] = 2N = 32 such that the ideal class group of K has 
exponent < 2. 
Proof. Suppose that there exists such a number field. From (10) with N = 16 
we get p < 2593. Now, there are 21 odd primes p _ 1 (mod 32) and p < 
2593, and there are 17 among them such that the real quadratic number field 
k2 of conductor p has class number one, the smallest one being p = 97. Now, 
the left terms of (8) and (9) increase with p and the right terms of (8) and (9) 
decrease with p for f' > e4, i.e., for f' > 55. Hence, from (9) with p = 97 
we have r = o(f') < 5, so that (8) with p = 97 provides us with 

97f' 93og(972f') 
257(log(97) + 2)) ? log(97) + 2' 
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TABLE 6 

p 
97 193 353 449 673 769 929 1249 1697 

fl 
1 1 1 1 1 
3 5 2 17 
4 3 
5 2 
7 9 
8 3 
12 5 

TABLE 7 

p 
97 193 353 673 769 929 

1 1 1 1 1 
3 5 17 

hence provides us with f' < 104 . Then, there are 14 values of fK = pf' such 
that (6) is satisfied with h*(K) = 2t-1 , namely, the ones for which t is given 
in Table 6. Since relative class number computation yields h*(K) > 2t-1 for 
these 14 values of fK, we get the desired result. We point out that h*(K) = 
216 *6977* 1392481 for (p, f ') = (769, 3). Moreover, thanks to Lemma (k) 
one can easily check that the Dedekind zeta functions of the real quadratic sub- 
fields Q(Vpj) of K for p e {97, 193, 353, 449, 673, 769, 929, 1249, 1697} 
do not have any real zero (0, 1). Now, since (7) is satisfied for only 6 of these 
14 occurrences, namely, the ones given in Table 7. We could also get the desired 
result from the numerical computation of the relative class numbers of these 6 
occurrences. D 

Theorem 11. There is exactly one imaginary cyclic number field K in 17 with 
[K: Q] = 16 and such that the ideal class group of K has exponent < 2, namely, 
the cyclotomic number field Q(C17) which has class number one. For any other 
odd prime p, there is no such field in Yp . 
Proof. From (10) with N = 8 we get p < 4993. Moreover, from (9) with 
p = 17 we get r= w(f') < 6, so that (8) with p = 17 provides us with 
f' < 3. 105. Now, there are 141 values of fK = pf' such that (6) is satisfied 
with p _ 1 (mod 16) a prime (we do not require the real quadratic number 
field Q(Jp-) to have class number one), and with h*(K) = 2t-1 (the greatest 
value of p being p = 4129 and the greatest value of fK being fK = 24695). 
Since h*(K) > 2t-1 for all these values of fK :$ 17, we get the desired result. 5 

Theorem 12. There are exactly four imaginary cyclic octic number fields with 
ideal class groups of exponents < 2. Namely, the number field 

K=Q -(2 + + ) 5 
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TABLE 8 

fk f fK |h (K)| 
1 7 3 5 51 2 
1 7 4 6 8 4 
4 1 1 14 1 1 

which is such that h(K) = 1, and the three given in Table 8. 
Proof. From (10) with N = 4 we get p < 14897. Moreover, from (9) with 
p = 17 we get r = wo(f') < 7, so that (8) with p = 17 provides us with 
f ' < 3.106. Now, there are 1807 values of fK = pf ' such that (6) is satisfied 
with p -1 (mod 8) a prime (we do not require the real quadratic number field 
Q('/p-) to have class number one), and with h*(K) = 2t-1 (the greatest value of 
p being p = 13873 and the greatest value of fK being fK = 691460). Since 
h*(K) > 2t-1 for all these values of fK but the three given in Table 8, we get 
the desired result from the fact that h (k) = 1 for the quartic subfields of the 
cyclotomic number fields Q(Cp), p = 17 or p = 41. Indeed, the maximal real 
subfields Q+(Cp) of these two cyclotomic number fields have class number one. 
Hence, from [19, Theorem 10.4.(a)] we get that any subfield of Q+(Cp), p = 17 
or p = 41, has class number one. 51 

Remarks. The field K with fK = 41 is the only octic subfield of the cyclic 
cyclotomic number field Q(C41). 

If fk = 17, then k is the only quartic subfield of the cyclic cyclotomic num- 
ber field Q(C17). Hence, k = Q( /17 + 4VA77). Indeed, if ae = V/17 + 4117, 
then Q(ae)/Q is a real normal quartic number field, hence an abelian quartic 
number field, so that we only have to show that Q(ae) is included in some 
Q(Cl7n), n > 1. In order to get this result, it is sufficient to show that the 
discriminant of the number field Q(ae) is a power of 17. But this follows from 
the fact that /B= + and y + are algebraic integers of Q(a) such that 

2 2 ar3neer fQc) suhta 
d(l, ,B ,,y 6d(l, a, v/-, av/-) = -6d(1, a, a2, a3= 173 

Moreover, set 
ak = 1177(3 + v'P) + (1- v'i7) a. 

Since 34 + 211 = (-3 + VJj7)2(17 + 4V17), then thanks to [17, p. 173] we 
have 

cos(27r/17) = j 1{(1 + vh) + (5 - vT7) a + 2A'k} I 

Hence, 
Q(cos(27r/17)) = Q(v/ajk) 

and the number fields of conductors 51 and 68 given in Theorem 12 are 
Q( -3ak) and Q( A-/4k) = Q( 6/ak) . 

The cyclic quartic case. In [13, 14] we recently succeeded in proving that there 
are exactly 33 imaginary cyclic quartic number fields with ideal class groups 
of exponents < 2. Hence, we will not consider the cyclic quartic case in our 
numerical computations. Indeed, using the methods developed here, it would 
require a great amount of numerical computation in order to get the imaginary 



DETERMINATION OF CYCLIC NUMBER FIELDS 339 

cyclic quartic number fields with ideal class groups of exponents < 2. Hence, 
we simply remind the reader of our following results. 

Theorem 13 (see [13, 14]). There are exactly 33 imaginary cyclic quartic number 
fields with ideal class groups of exponents < 2. Namely, the ones with class 
numbers h and conductors f given as follows: 

h= 1 Q( -(52 )) f = 5 h =4 Q( -3(5?+2 V)) f =60 

Q( 1-(13 + 2vB)) f = 13 Q( V-(17?+4vi7)) f=68 

Q( f-(2?+ )) = 16 Q( V-21(5?+ 22V)) f = 105 

Q( v-(29 + 2v2)) f =29 Q( -7(2 + V)) f = 112 

Q( -(37?6VT7)) f = 37 Q -3(5 + )) f = 120 

Q( V-(53 + 2v35)) f = 53 Q( 1-(17 + v)) f = 136 

Q V-(61 ?+6v6i)) f = 61 Q -7(5 +2v/)) f = 140 

Q V/-29(5 + 2/)) f = 145 

h=2 Q (-(5 + V)) f =40 Q -5(29?2V')) f = 145 

Q -3(2 + ? )) f = 48 Q VF-(41 ?+4v'4)) f = 164 

Q (/-13(5?+ 2V)) f = 65 Q -3(73?8V7T) f = 219 

Q -5(13?2v')) f = 65 Q -17(13?2v')) f = 221 

Q V-5(2 + ?)) f = 80 Q -15(17?4v)) f = 255 

Q (A-17(5?+ 2/T) f = 85 

Q (+/-(13 + 3vBS)) f = 104 h =8 Q -3(13?2v)) f = 156 

Q -7(17?4V17)) f = 119 Q (/-33(5+ 2V5)) f = 165 

Q( V-11(5+2V)) f=220 

Q -21(13?2vTg) f = 273 

Q (A-57(5?+ 2v5) f = 285 
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