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ON A NEW FACTORIZATION ALGORITHM FOR POLYNOMIALS 
OVER FINITE FIELDS 

HARALD NIEDERREITER AND RAINER GOTTFERT 

ABSTRACT. A new deterministic factorization algorithm for polynomials over 
finite fields was recently developed by the first author. The bottleneck in this 
algorithm is the last stage in which the irreducible factors of the polynomial are 
derived from the solutions of a system of linear equations. An efficient approach 
to the last stage was designed by the second author for the case of finite fields 
of characteristic 2. In this paper, we describe a different approach to the last 
stage which works for arbitrary fields of positive characteristic. In particular, 
we obtain in this way an acceleration of the factorization algorithm of the first 
author which makes this algorithm polynomial time for fixed characteristic. 

1. INTRODUCTION 

A deterministic factorization algorithm for polynomials over finite fields that 
is based on new principles was recently developed by Niederreiter [9, 10]. The 
idea of this algorithm is to linearize the factorization problem by using differ- 
ential equations in the rational function field over the finite field. The solutions 
of an appropriate differential equation, or of an equivalent system of linear 
equations, lead to all monic squarefree factors of the given polynomial to be 
factored. Niederreiter [11] and Niederreiter and Gottfert [13] demonstrated 
that the system of linear equations can be obtained efficiently and in a direct 
manner from the given polynomial. Some links between this factorization al- 
gorithm and the classical Berlekamp algorithm were analyzed by Fleischmann 
[2], Lee and Vanstone [5], Miller [8], and Niederreiter and G6ttfert [13]. For a 
recent survey of other factorization algorithms for polynomials over finite fields 
we refer to the book of Shparlinski [1 5]. 

The theory of the new factorization algorithm has been developed to the point 
where the only bottleneck in the algorithm occurs in the last stage in which we 
already know the finite-dimensional solution space of the differential equation 
and we want to derive from it the desired factorization. If this stage could be 
done in polynomial time, then the whole factorization algorithm would run in 
polynomial time. In the present paper, we concentrate on the last stage of the 
algorithm and we describe a procedure which, for fixed characteristic, handles 
this stage in polynomial time. Our approach is different from that of Gottfert 
[4], who has designed such a procedure for the case of characteristic 2. 
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Since a survey of the new factorization algorithm is available in [12], it will 
suffice to describe very briefly the setting in which we operate. The method in 
this paper works, in fact, for arbitrary fields of positive characteristic, although 
the principal practical applications are to finite fields. Throughout this article, 
1Fq denotes the finite field of order q. Let F be an arbitrary field of positive 
characteristic, and suppose that F contains the finite field Fr as a subfield. 
Let f E F[x] be a monic polynomial of positive degree; in the applications to 
factorization, f is the polynomial to be factored. Let gl, ... , gm cE F[x] be 
the (unknown) distinct monic irreducible factors in the canonical factorization 
of f over F. We assume that gl, ... , gm have only simple roots, i.e., that 
gcd(gi, g1') = 1 for 1 < i < m. Let Lr(f) be the F,r-linear subspace of the 
rational function field F(x) with F,r-basis 

(1) Bo- 9m 

In the last stage of the factorization algorithm we need to resolve the following 
computational problem. From the previous stage of the algorithm we know a 
basis 

(2) B hi hm 

of the vector space Lr(f) over Fr, and we are asked to obtain from it the 
distinct monic irreducible factors g1, ... , gm of f . This is the concrete form 
of the problem that we discuss in the present paper. We note that if F is a 
finite field, then a basis B can be obtained in polynomial time by methods of 
linear algebra (see [10, 11, 13]). 

Our procedure for solving the above problem is described in ?2. In ?3 we 
carry out a complexity analysis, which shows that, for fixed characteristic, the 
procedure has a polynomial-time arithmetic complexity. For finite fields F the 
overall factorization algorithm is then polynomial time for fixed characteristic. 

2. DESCRIPTION OF THE PROCEDURE 

We are given a basis B of the vector space Lr(f) over Fr as in (2). We 
operate under the standing hypothesis that the distinct monic irreducible factors 

, 5 ... gm of f satisfy gcd(gi, g1') = 1 for 1 < i < m, and we note that 
this condition holds automatically if the underlying field F is perfect, so in 
particular if F is a finite field. 

In the first step of the procedure we bring all rational functions in (2) into 
reduced form, thus obtaining 

(3) B, 
Ul um 

with gcd(ui, vi) = 1 and v, monic for 1 < i < m. 
We note the following simple principle. For any u/v E Lr(f) with gcd(u, v) 

= 1 and v monic, let 

u 
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be the representation in terms of the basis Bo in (1). Then, since gcd(gi, g,') = 
1 for 1 < i < m, a comparison of both sides shows that 

m 

(4) v= J g, 
j=1 

aj so 

where as usual an empty product is assumed to have the value 1. In particular, 
v is always a monic factor of g := g... gm and all denominators vi in (3) 
are monic nonconstant factors of g. 

In the proofs we shall make use of the basis representations 

(5) vi aij gj for 1 < < m 

where all acij E Fr. Since B1 is a basis, the matrix A = (aij)i<i,j?m is non- 
singular. A simple consequence of this is the following lemma. 

Lemma 1. Each gj, 1 < < ? m, divides at least one of the polynomials 
VI, ... , Vm. 

Proof. The nonsingularity of A implies that for each 1 < j < m there exists 
an i = i(j) such that acij : 0. Since ui/vi is in reduced form, it follows from 
(4) that gj divides vs. O 

Now we describe what we call the basic splitting step in our procedure. We 
are given a monic nonconstant factor w of g = g, ... gm. By renaming the 
monic irreducible factors of g suitably, we can write w in the form 

w =gl1.. gk , 

where 1 < k < m. The aim of the basic splitting step is to find either a 
nontrivial factor of w (if k > 2 ) or a proof for the irreducibility of w (if 
k = 1). We start the basic splitting step by computing gcd(w, vi) for 1 < i < 
m. If one of these gcd's is a nontrivial factor of w, then the aim of the basic 
splitting step has been achieved. 

Otherwise, we have gcd(w, vi) E {1, w} for 1 < i < m. Since Lemma 1 
shows that gcd(w, vi) : 1 for at least one i, the set 

I(w) = {1 < i < m: gcd(w, vi) = w} = {1 < i < m: w I vi} 

is nonempty. For i E I(w) and ,B E 1Fr we consider 

(6) gcd (ui + flw' i, vi). 

The following result is crucial. 

Lemma 2. Suppose that gcd(w, vi) E {1, w} for 1 < i < m. Then the gcd 
in (6) is always a factor of w . If k > 2, i.e., if w is reducible, then for some 
i E I(w) and A6 E Fr the gcd in (6) is a nontrivialfactor of w. 
Proof. By the product rule we have 

w 
k 

i 
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and so for any i e I(w) and A6 E Fr we get 

ui +flW'V1/W = Ui +/3A_ =Z(aij + A) gj + E a!j j 

vi vi 
w 

j=1 
g 

j=k?1 
g 

in view of (5). The monic denominator of the reduced form of the left-hand 
side is 

k m 
vi II fl g m lg gcd(ui + fJw'vi/w, vi) j=l j=k+1 

ai,+fl:x? aiS 7x? 

by (4). Using again (4) and w I vi, we can write 
m 

vi = W II gj, 
j=k+1 
aij540 

and so we obtain 
k 

(7) gcd (ui+/wYw'2, Vi) = fJ g1 

ai,+fl=O 

This proves the first part of the lemma. Now let k > 2. For 1 < i < m with 
i I I(w) we have gcd(w, vi) = 1, hence aij = 0 for 1 < j < k. Since 
A = (aij) is nonsingular, its first two columns cannot be identical; thus there is 
an i e I(w) with a1il : ai2 . With this i and with ,B = -a1il, it follows from 
(7) that the corresponding gcd is divisible by gl, but not by g2, and so is a 
nontrivial factor of w. O 

We remark that we need not calculate the gcd in (6) for ,B = 0 since we 
already know that gcd(ui, vi) = 1 for 1 < i < m. Therefore, we may restrict 
,B to the set F* of nonzero elements of IFr . 

We can now summarize the basic splitting step for the polynomial w as 
follows: 

Step 1. Calculate gcd(w, vi) for i = 1, 2, ..., m. As soon as this leads to a 
nontrivial factor of w, stop. If only trivial factors of w are obtained, proceed 
to Step 2. 
Step 2. Calculate gcd(ui + /Jw'vi/w, vi) for i e I(w) and ,B E IF* . This gcd 
is always a factor of w by Lemma 2. As soon as it yields a nontrivial factor 
of w, stop. If only trivial factors of w are obtained, then w is irreducible by 
Lemma 2. 

This computational scheme always achieves the desired aim of the basic split- 
ting step for w . In the case where w is reducible, it is convenient to include in 
the basic splitting step for w also the calculation of the complementary factor 
of the obtained nontrivial factor of w. 

By a repeated application of basic splitting steps, we can now derive the 
monic irreducible factors gl, ... , gm of f from the basis B1 in (3), thereby 
solving the computational problem stated in ? . We start from g = g... g 
which can be obtained from (3) since 

(8) g = lcm(vl, ...,vm) 
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by Lemma 1. Then we carry out the basic splitting step for g, thus obtaining 
a nontrivial factor of g and its complementary factor (provided that m > 2 ). 
We continue by applying the basic splitting steps for these two nontrivial factors 
of g, and so on. Whenever this procedure leads to an irreducible factor of g 
(which can be recognized by a basic splitting step), then this irreducible factor 
is saved. After finitely many basic splitting steps, this yields gi, ... , gm . The 
following simple result provides an upper bound on the total number of basic 
splitting steps that need to be applied in this procedure, where we exclude the 
trivial case m = 1. 

Lemma 3. If m > 2, then starting from g = g1 ... gn , at most 2m - 3 basic 
splitting steps have to be applied to obtain gl, ... , gm. 

Proof. Proceed by induction on m. The case m = 2 is trivial. If m > 3, then 
one basic splitting step breaks up g into a product of two monic nontrivial 
factors. Each such factor is either irreducible (which is recognized after one 
basic splitting step) or the induction hypothesis can be applied to it. O 

In fact, the upper bound 2m - 3 for m > 2 in Lemma 3 is in general best 
possible, as can be seen by considering the conceivable situation in which the 
procedure splits off one monic irreducible factor at a time. 

3. COMPLEXITY ANALYSIS 

We analyze the worst-case arithmetic complexity of the procedure described 
in ?2. The given monic polynomial f E F[x] is assumed to have degree 
d > 1, and we state the bounds in terms of d, although for most polynomial 
operations occurring in our procedure only the degree of the squarefree part 
g... gm of f matters. The most expensive operation in the procedure is that 
of computing gcd's for polynomials over F, and so we count these polynomial 
gcd 's more carefully, whereas for the numbers of other operations we just record 
their orders of magnitude, with the implied constants in the Landau symbols 
being absolute. We note that the case m = 1 is trivial since then g1 = v1 , e.g. 
by (8), and so we may assume m > 2 in the following result. 

Theorem 1. Given a basis B of Lr(f) as in (2) with m > 2, the procedure 
in ?2 to obtain the distinct monic irreducible factors g1, .., gm of f e F[x] 
requires at most rm(2m - 3) +2m - 1 polynomial gcd 's and O(rm2) polynomial 
multiplications / divisions, in all cases for polynomials in F[x] of degree <d = 
deg(f), as well as O(rm2d) arithmetic operations in F. 
Proof. The analysis of a basic splitting step (compare with the summary in 
?2) reveals that it requires at most rm polynomial gcd's, O(rm) polynomial 
multiplications / divisions, and O(rmd) arithmetic operations in F. In view of 
Lemma 3, we get at most rm(2m - 3) polynomial gcd's, O(rm2) polynomial 
multiplications / divisions, and O(rm2d) arithmetic operations in F for all 
basic splitting steps together. If we also take into account the first step of 
the procedure, i.e., the calculation of the reduced forms ui/vi in (3), and the 
computation of g by (8), then this adds 2m - 1 polynomial gcd's, whereas 
the orders of magnitude of the other operation counts stay the same. E 

Using standard bounds on the arithmetic complexity of polynomial gcd's 
and polynomial multiplications/ divisions (see e.g. [1, Chapter 8], [15, p. 5]), 
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we can convert the result of Theorem 1 into the following statement about 
arithmetic complexity (the case m = 1 can be included again). 

Theorem 2. Given a basis B of Lr(f) as in (2), the procedure in ?2 to obtain 
the distinct monic irreducible factors g1, ..., gm of f E F[x] with deg(f) = d 
requires O(rm2d(log d)2 log log d) arithmetic operations in F . 

Thus, for all perfect fields F containing the fixed finite field Fr the proce- 
dure in ?2 is of polynomial-time arithmetic complexity. In particular, if we 
choose r to be prime, then we get that for all perfect fields F of fixed positive 
characteristic the procedure in ?2 has a polynomial-time arithmetic complex- 
ity. If we further specialize F to be a finite field and we take into account that 
the average order of magnitude of the number m of distinct monic irreducible 
factors of f is logd (for fixed d) according to [7, pp. 239-241], then we 
see that for random polynomials over F the procedure in ?2 has an arithmetic 
complexity which, for fixed characteristic, is only slightly larger than linear time. 

We now return to the general case and note that Step 2 in the basic splitting 
step can be very time-consuming if r is large. This problem will be somewhat 
alleviated by the following approach, which leads to an a priori restriction on 
the f8 E Fr that need to be considered in Step 2. Indeed, for fixed i E I(w) it 
suffices to look at those f8 E Fr for which 

gcd (ui + ,Bw' i, vi) : 1. 

But these ,B are exactly the roots in Fr of 

C(z) = RX ui(x) + zw'(x) w(x), Vi(X) 

where the right-hand side denotes the resultant of the two polynomials viewed 
as polynomials in x . From the representation of this resultant as a determinant 
we infer that C(z) is a polynomial over F in the indeterminate z of degree 
< d, and C(O) :$ 0 shows that C(z) is a nonzero polynomial. Therefore, if 
r > d, then this reduces the number of choices for ,B from r - 1 to at most 
d. If again r > d, then an alternative method of calculating C(z) is based on 
interpolation in d + 1 distinct elements of Frr, which has the advantage that 
possible roots of C(z) at the interpolation nodes are immediately recognized 
(compare with [6, p. 158]). 

Thus, for r > d we get a reduced set of possible choices for fi in Step 2, 
and this set consists of the roots of C E F[z] in Fr . If F is a finite field, this 
set can be determined by a standard rootfinding algorithm (see [6, ?4.3 ]). In 
fact, we may observe that for i E I(w) there is at most one ,Bo E Fr with 

gcd (ui +flow' i, vi) =w, 

which can be efficiently computed by determining the unique solution ,go mod- 
ulo w of the polynomial congruence 

flow' - -ui modw w 
and checking whether ,Bo E Fr. Thus, for our purposes it suffices to find out 
whether there is a root ,B $= ,Bo of C in Fr. Unfortunately, there are no 
theoretical results which affirm that finding roots in Fr is significantly faster 
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than polynomial factorization over F. However, the currently best complexity 
bounds for polynomial factorization over finite fields (see [3, 14], [15, Chapter 
1 ]) allow us to state that, in the case where F is a finite field, the above approach 
based on resultants reduces the dependence on r in Theorem 2 from r to r1/2 
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