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RABIN-MILLER PRIMALITY TEST: 
COMPOSITE NUMBERS WHICH PASS IT 

F. ARNAULT 

ABSTRACT. The Rabin-Miller primality test is a probabilistic test which can be 
found in several algebraic computing systems (such as Pari, Maple, Scratch- 
Pad) because it is very easy to implement and, with a reasonable amount of 
computing, indicates whether a number is composite or "probably prime" with 
a very low probability of error. In this paper, we compute composite numbers 
which are strong pseudoprimes to several chosen bases. Because these bases 
are those used by the ScratchPad implementation of the test, we obtain, by a 
method which differs from a recent one by Jaeschke, composite numbers which 
are found to be "probably prime" by this test. 

1. PRELIMINARIES 

First, we recall the following definitions: 

1.1. Definitions. Let b E N* . A number n E N* is a pseudoprime to base b 
if 

bn-I - 1 modulo n. 

It is a strong pseudoprime to base b if it is odd and if one of the following 
conditions is satisfied, with n - 1 2kq and q odd: 

b- 1 modulo n 

or 

there exists an integer i such that 0 < i < k and b2 = -1 modulo n. 

The Rabin-Miller test consists in, given an odd number n, checking if n 
is a strong pseudoprime to several bases which are either chosen randomly or 
taken in a predetermined set, depending on the implementation. If n is not a 
strong pseudoprime to some of the chosen bases, n is proved to be composite. 
Conversely, Rabin has shown in [12] that if n is a strong pseudoprime to k 
bases, it is "probably prime" with an error probability of less than 1 14k. This 
test is implemented in the Computing Algebra System ScratchPad, in which the 
bases used are the first ten prime numbers 2, 3, 5, 7,11, 13, 17, 19, 23, 29. In 

this paper, we compute a composite number which is a strong pseudoprime to 
these bases. So, this number passes the ScratchPad test. In order to show that 
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our method can be used with some other sets of prime bases, we successfully 
apply it to the set of all prime bases below 200. 

2. BIQUADRATIC RECIPROCITY 

It is an easy task, using quadratic reciprocity, to distinguish the primes p 
such that a fixed prime b is a square, or a nonsquare, modulo p. In a similar 
way, we will need sufficient conditions on a prime p congruent to 1 modulo 
4 for another given prime number b to be a square but not a fourth power, 
modulo p. For this purpose, we will use the biquadratic reciprocity law, the 
statement of which can be found in [7] and which we recall here. Instead of its 
quadratic analogue, it involves the set Z[i] of Gaussian integers. 

We say that a Gaussian integer is primary if it is congruent to 1 or to 3 + 2i 
modulo 4 and, for z, p E Z[i] with p prime, we denote by (p)4 the biquadratic 
power residue symbol of z modulo p. Note that this symbol is equal to 1 (resp. 
-1) if and only if z is a fourth power (resp. a square but not a fourth power) 
modulo p. 

2.1. Theorem [7, Chapter 9, Theorem 2]. Let 7t, p E Z[i] be two primary and 
distinct primes; then the following relation holds: 

()= (-1 4 4 ( - 

We will also use the following "complementary law" as found in [4] (or see 
[7, Chapter 5, exercise 27]): 

2.2. Proposition [4, Theorem 4.23]. Let 7r = r+ is be a primary prime in Z[i]; 
then 

2 _irs12 
4 

In order to find the sufficient conditions we referred to above, recall that a 
prime p 1 modulo 4 is the product p = Uf = r2 + 52 of two primes in Z[i], 
where 7r = r + is, and it is easily seen that 7r can be chosen primary, so that 
7t is also primary. We also know that either the prime b is the product woco 
of two primary prime Gaussian integers, or -b is a primary prime in Z[i], 
according as b is congruent to 1 or to 3 modulo 4. Since there is a canonical 
isomorphism between Z/(p) and Z[i]/(7r), the number b is a square but not a 
fourth power modulo p if and only if it is such modulo 7f. We shall therefore 
need to find primary primes 7r such that ( )4 = -1 . We now give details of 
the use of biquadratic reciprocity. 

* First consider the case where b _ 3 modulo 4. Since 7r and -b are 
primary primes in Z[i], the biquadratic reciprocity law shows that 

( b) = (-1) b241 (4() 

= (-) since b2 =1 modulo 8. 
S4 

So, 



RABIN-MILLER PRIMALITY TEST 357 

Now b is a square, but not a fourth power modulo p = N(7r), if and only if 
the above quantity is equal to -1 . So if we find a primary Gaussian integer z 
which is a solution of 

(A3) (l)(N(z) 1)/4 (Z) = -1 

then any prime 7 congruent to z modulo 4b will also be a solution of (A3), 
and thus b will be a square but not a fourth power modulo p = N(ir). 

* Next, the case where b 1 modulo 4 is studied (recall that we can write 
b = wco , with w primary). The biquadratic reciprocity law states that 

( 4) = (1b4 (4 4 and ( ) = (-l)Y 4 

The product of these equalities leads to 

(7 4 (C))4 OCt)4 

As the symbols (4 )4 and (4 )4 are the inverse of each other, the above equation 
becomes 

(b) 4 ( r i 4 

where T-r denotes the inverse of Tr modulo b . Since b is a square but not 
a fourth power if and only if the symbol (-)4 equals -1, it remains to find 
primary solutions z of the equation 

(A1) (zC) ) - 

Then, any prime 7r congruent to such a z modulo 4b will be also a solution of 
(A1), and thus b will be a square but not a fourth power modulo p = N(7r). 

3. COMPOSITE STRONG PSEUDOPRIMES TO SEVERAL BASES 

Our first aim was to find composite numbers which are strong pseudoprimes 
to the ten bases used by ScratchPad. We are now able to do this. We choose to 
focus our attention on numbers n which are products of two primes P1 and 
P2 . Moreover, we will assume that these primes are related to each other by the 
following equalities: 

pl=2q+1, P2=4q+1 withqEZ. 

As a consequence, we have n - 1 = (4q + 3)(p1 - 1) and so, by Fermat's little 
theorem, bn-I = 1 modulo Pi, provided that b is an integer prime to P1 . 
Hence, n is a pseudoprime to base b if and only if bn-I = 1 modulo P2. 

But we can also write n - 1 =P1 (P2 - 1) + (P2 - 1)/2, and so we have 

bn-l_ (A) modulo P2. 

Thus, we can state the following lemma: 
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3.1. Lemma. With the above notations, the number n is a pseudoprime to base 
b if and only if b is a square modulo P2 

From now on, we assume that the conditions of this lemma are satisfied. We 
are now looking for further sufficient conditions for n to be a strong pseudo- 
prime to base b. Thus, an investigation of the value of b 2 modulo n allows 
us to state the following: 

3.2. Lemma. Let n, P1, P2 be as in Lemma 3.1 and let 7f E Z[i] be such 
that P2 = N(ir). Then n is a strong pseudoprime to base b provided that the 
following conditions are satisfied: 

p )=-1 and (b) =-1; 

i.e., b is a nonsquare modulo Pi and a square but not a fourth power modulo 
P2. 

Proof. We first note that, as (n - 1)/2 = (4q + 3)(pi - 1)/2, we have 

b 2 = (-)-bP2 modulopi. 
Pi 

So, the first equality of the statement gives b 2 -1 modulo P1 . We also 
have (n - 1)/2 = P1(P2 - 1)/2 + (P2 - 1)/4 . This shows that (we recall that the 
conditions of 3.1 are assumed to be satisfied) 

bn_ b modulop2. 

Hence, the second equality of the statement gives b 2 -1 modulo 7f . As 7E 

and Tr are relatively prime, this is equivalent to b 2 = -1 modulo P2. Thus, 
both equalities give 

n-i b 2 = -1 modulo n, 
which is a sufficient condition for n to be a strong pseudoprime to base b. El 

We will use quadratic and biquadratic reciprocity to find sufficient conditions 
(in terms of congruences over 7r in Z[i]) for b to satisfy the conditions of 
Lemma 3.2. 

First, the case b = 2 needs special treatment. By 2.2, the second equality of 
3.2 is equivalent to i 2 = -1 if we assume that 7r = r + is is primary. This is 
equivalent to 

7r _ I + 4i or 5 + 4i modulo 8. 
Notice that f =_ 1 + 4i modulo 8 implies P2 1 modulo 16, while 7r = 5 + 4i 
modulo 8 implies P2 9 modulo 16. However, in order to also satisfy the first 
equality of 3.2, we must have Pi =3 or 5 modulo 8. Because of the connection 
between Pi and P2, only the condition f =_ 5 + 4i modulo 8 remains valid. 
We state this as a lemma: 

3.3. Lemma. Let n, P1, P2 be as in Lemma 3.1 and assume that 7( is a 
primary prime in Z[i] such that P2 = N(ir). The number n is a strong pseudo- 
prime to base 2 provided that fr is congruent to 5 + 4i modulo 8. 

We noticed in ?2 that the second equality of 3.2 can be handled by find- 
ing solutions of (A3) and (Al). In a similar way, the first equality of 3.2 is 
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TABLE 1 

forb=2: ir 5+4i modulo8 
forb=3: 7_ 7+6i modulol2 
for b=7: =_ 1+8i or 7+6i modulo28 
for b-11: = I _ 5+ 12i or 3+22i modulo 44 
for b=13: i_5+24i or 7+18i modulo52 
for b = 17: _1 + 12i or 3+2i modulo 68 
for b = 19: r 1? 28i or 3+6i modulo 76 
for b=23: I_1+32i or 3+30i modulo92 
for b=29: Ir1+56i or 3+10i modulo ll6 

equivalent to 

(-1) 2 2 b 
Because of Pi = (N(ir) + 1)/2, this becomes 

( N(7n)2Ib ( (N(7r) + 1)/2 1 

So, for any prime 7f congruent modulo 4b to a given solution z of 

(B) (-1)~~~N(z)- I b- I((N(Z) + 1)/2)_ 

we will have N(7r) N(z) modulo 8b and (N(7r) + 1)/2 = (N(z) + 1)/2 
modulo 4b. Hence, 7f will be also a solution of (B), and thus the first equality 
of 3.2 will be satisfied-. 

Therefore, a common solution z of (A3) and (B) (resp. of (Al) and (B)), 
will be such that any prime 7f congruent to z modulo 4b will make true both 
conditions of 3.2. For example, consider the case b = 7. To find Gaussian 
integers T which satisfy (7 )4 = -1 is an easy task and we can take T = 1 + i. 
Because z1 = 1 + 8i is congruent to 1 modulo 4 and to 1 + i modulo 7, it 
is a solution of (A3). Moreover, z1 is also a solution of (B). Hence, with 
the notations of Lemma 3.2, the number n is a strong pseudoprime to base 7 
provided that 7r is congruent to 1 + 8i modulo 28. The same reasoning holds 
for Z2 = 7 + 6i, which satisfies both equation (A3) and (B). 

Now, we explain the relevance of the part of the coset modulo 4 of the chosen 
z. Lemma 3.3 points out that if we want n to be a pseudoprime in both bases 
b and 2 (b $& 2), we must choose solutions z for (A3) and (B) (resp. for 
(Al) and (B)) such that z 1_ modulo 4 (as z1 in the above example). If 
we choose z _ 3 + 2i modulo 4 (as Z2), the conditions of Lemma 3.3 can no 
longer be satisfied. Moreover, we have in this case P2 5 modulo 8, so that 2 
is a nonsquare modulo P2 and by 3.1, the number n cannot in any way be a 
pseudoprime to base 2. 

In Table 1 we give, for several values of b, sufficient conditions for n to 
be a strong pseudoprime to base b, which can be found following the above 
example. 

This table shows, whenever possible, two solutions for equations (A3) and 
(B) (resp. (Al) and (B)). The solutions in the left-hand column are congruent 
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TABLE 2 
7r- 1 modulo 12 
7r _ 1 modulo 20 

to 1 modulo 4 and so are compatible with the conditions of Lemma 3.3, while 
the solutions in the right-hand column are congruent to 3 + 2i modulo 4 and 
so lead to numbers n which are not pseudoprimes to base 2. 

Unfortunately, the bases 3 and 5 cannot be handled so easily. Indeed, if 
b = 5, then P2 must be congruent to 1 or to 9 modulo 10 for 5 to be a square 
modulo P2. This makes Pi congruent to 1, 5, 6, or 0 modulo 10. As P1 is a 
prime, only the relation P _=1 modulo 10 is possible (except if P, = 5, which 
is not of interest). So 5 is therefore a square modulo P, which is contrary to 
what we want. 

The case b = 3 is somewhat less recalcitrant. One can verify that a solution 
of (A3) must belong to one of the four cosets 9 + 4i, 9 + 8i, 7 + 6i, 11 + 6i 
modulo 12. If 7 belongs to one of the first two, we have P, _ 1 modulo 12, 
and so equation (B) is not satisfied. If X belongs to one of the last two, we 
have P1 -7 modulo 12, and so equation (B) is satisfied but this no longer 
preserves compatibility with the conditions of Lemma 3.3. This explains why 
the left-hand column in row b = 3 of Table 1 has been left blank. 

Hence, this method does not allow us to find strong pseudoprimes neither to 
base 5 nor to both bases 2 and 3. 

However, a more heuristic method can handle these exceptions: the relations 
of Table 2 ensure that 3 and 5 are fourth powers modulo P2 and squares modulo 
P1, so that 

3 2 -1 modulo n and 5 2 = 1 modulo n, 

which in particular makes n a pseudoprime to bases 3 and 5. 
The eight conditions in the left-hand column of Table 1 and the two of Table 

2 are mutually compatible and, applying the Chinese remainder theorem, we 
see that they are all satisfied provided that 7r = r + is is such that 

r-rO= 11310652501 and s- so=8996896140 modulo m=25878772920. 

For example, we can take r = rO + 8m and s = so + m. In this case Pi and P2 
are prime numbers, so 

P1P2 = 1195068768795265792518361315725116351898245581 

is a strong pseudoprime to the bases 2, 7, 11, 13, 17, 19, 23, 29 and a pseu- 
doprime to the bases 3 and 5. Moreover, luckily, this number is also a strong 
pseudoprime to bases 3 and 5 (even to base 31). It passes the ScratchPad test.1 

As we pointed out, this method applies to other sets of bases. We used it to 
find the following number n (337 digits): 

1 However, after this work was completed, ScratchPad was further developed and renamed Axiom 
[9]. its primality test has improved and is no longer a plain Rabin-Miller test. Now, it would be 
more difficult to find composite numbers which pass the Axiom test. 
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80383745745363949125707961434194210813883768828755814583748891752229 
74273765333652186502336163960045457915042023603208766569966760987284 
0439654082329287387918508691668573282677617710293896977394701670823 

0428687109997439976544144845341155872450633409279022275296229414984 
2306881685404326457534018329786111298960644845216191652872597534901, 

which has the following factor P2: 

400958216639499605418306452084546853005188166041132508774 
50620473800321707011962427162231915972197335821631650853 

58166969145233813917169287527980445796800452592031836601, 

but which is a strong pseudoprime to all forty-six prime bases up to 200. We 
hope that for all prime values of b greater than 5, the conditions of Lemma 
3.2 are attainable, and we have checked the validity of this assumption up to 
2. 105. The only limitation towards finding strong pseudoprimes to more bases 
in this way seems to be the difficulty of doing computations involving such large 
numbers. 
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