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ABSTRACT. It is shown that if the first case of Fermat's last theorem fails 
for an odd prime 1, then the sums of reciprocals modulo 1, s(k, N) = 
E 1/j (kl/N < j < (k + 1)1/N) are congruent to zero mod l for all inte- 
gers N and k with 1 < N < 46 and 0 < k < N-I. This is equivalent to 
B1-I(k/N)-B, 0_= (mod/), where Bn and Bn(x) are the nth Bernoulli 
number and polynomial, respectively. The work can be considered as a result 
on Kummer's system of congruences. 

1. INTRODUCTION 

The first case of Fermat's last theorem (FLT I) for the prime / is a conjecture 
stating that there are no integers x, y, and z with the property xi +y' + z1 = C0 
provided /t xyz. 

Many criteria, going in various directions, concerning (FLT I) have been 
established; see, e.g., Ribenboim's book [21]. One of these directions deals with 
the Fermat quotients 

pl- 
q(p) = 

P 

In his famous paper [32], Wieferich showed that if (FLT I) fails for the prime 
1, then ql(2) _ 0 (modl). This result was extended to other primes p, most 
recently to all primes p up to 89 by Granville and Monagan [12]. 

The aim of this article is to replace the notion of the Fermat quotient by 
special sums s(k, N) defined by 

[(k+1 )1/N] 

(11) s(k, N)= E: jl-2 
j=[kl/N]+ 1 

for integers N and k with 1 < N < I - 1 and 0 < k < N- 1. According to 
Fermat's little theorem we have 

[(k+1)1/N] 

(1.2) s(k, N)-- E - (modl). 
j=[kl/N]+l1 
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These sums are linked to the Fermat quotients by a theorem of Lerch [17, 
equation (8)], which we state in the following equivalent form: 

N-1 

(1.3) Nql (N) - ks(k, n) (mod 1). 
k=O 

The Fermat quotient q1 (N) is therefore a "linear combination" of the sums 
s(k, N). The results quoted above, together with the "logarithmic property" 
of the Fermat quotients (see (2.1) below), show that if (FLT I) is false for the 
prime 1, then the left-hand side of (1.3) is zero (modulo 1) for all N < I with 
prime divisors of at most 89. 

In this paper we shall prove the following somewhat surprising result: 

Main Theorem. If the first case of Fermat's last theorem fails for the prime 1, 
then 

(1.4) s(k, N) 0 (mod l) 

for all 1 < N < 46 and 0 < k < N - I . 

We note that in view of (1.2) and some basic properties of the Bernoulli 
polynomials Bm (x) we can rewrite (1.4) as 

(1.5) Bl1 (k) - Bl_= 0 (modl); 

here, Bm is the mth Bernoulli number. 
The proof of our main theorem is based on the main result in [25] (see Theo- 

rem 4.6 below), which was formulated in a more abstract form. The hypotheses 
of this result are verified through extensive calculations, thus leading to our 
main theorem. 

Closely related to the main theorem is the following result of Cikainek [7]: 
There exists an integer L such that for every prime I > L for which (FLT I), 
fails, we have s(k, N)-0 (modl) for all 2 < N < 94 and 0 < k < N- 1. 

In ?2 we quote some results on Fermat quotients. Section 3 contains some 
earlier results related to the main theorem, and in ?4 we quote results from the 
literature necessary for our proofs. Section 5 contains the central part of the 
proof of the main theorem. Section 6 deals with a sequence of determinants 
and associated polynomials, which are central to this paper, and in ??7 and 8 we 
give details of the computations. Based on the main theorem, we make some 
probability considerations in ?9. In ? 10, finally, we state some consequences of 
our main theorem, partly based on further computations. 

In view of the latest developments concerning Fermat's last theorem, we wish 
to point out that the greater part of this paper is of independent interest. In fact, 
our main theorem can be stated as a result on Kummer's system of congruences, 
without reference to FLT I: 

Theorem 1.2. If T and 1 - T are nontrivial solutions (i.e., 0 0, + 1 (modl)) 
of order greater than 16 of the system (K), of congruences, then 

s(k, N) - 0 (modl) 

for all 1 < N < 46 and 0 < k < N - 1 . 
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For references concerning (K)j, see ?4. Remarks on the proof of Theorem 
1.2 can be found in ?5.3. 

2. FERMAT QUOTIENT CRITERIA 

Throughout this paper, I denotes an odd prime. We also use the notation 
(FLT I), for the first case of Fermat's last theorem for the prime 1. 

We recall that for integers a not divisible by 1, the Fermat quotient ql(a) 
of I with base a is defined to be the integer 

al-l _ 
q1(a) = I 

The following "logarithmic property" was first observed by Eisenstein [10, p. 
41; Werke, p. 710]: If a and b are integers not divisible by I, then 

(2.1) q1 (ab)-- q (a) + q1 (b) (mod 1) . 

Wieferich [32] was the first to use Fermat quotients in a criterion for 
(FLT I); he proved the following celebrated result. 

Theorem 2.1 (Wieferich, 1909). If (FLT I), is false, then qj(2)= 0 (mod 1). 

This theorem was extended by Mirimanoff [18] and Vandiver [29]. 

Theorem 2.2 (Mirimanoff, 1910). If (FLT I), is false, then q1(3) 0 (mod 1). 

Theorem 2.3 (Vandiver, 1914). If (FLT I), is false, then q1(5) 0 (mod /) and 

I I I 
~= 0(modlI). + 2 + 3 + + [l/5]-- 

These results have since been further extended by several authors (see [21]). 
More recently, the following result was proved in [12]. 

Theorem 2.4 (Granville and Monagan, 1988). If (FLT I), is false, then ql(p) _ 
0 (modl) for all primes p < 89. 

Using their result together with a method proposed by Gunderson [ 14], Gran- 
ville and Monagan [12] show that (FLT I), is true for all odd primes up to 
7 x 1011 and a little beyond. Still using Theorem 2.4, but now by improving 
Gunderson's method, Tanner and Wagstaff [28] got a new bound larger than 
1.56 x 1017, and then Coppersmith [8] made significant changes in Gunderson's 
method to get the following result: 

Theorem 2.5 (Coppersmith, 1990). If (FLT I), is false, then 

(2.2) 1 > 7.568 x 1017. 

3. RELATED RESULTS 

We assume throughout that N is an integer, 1 < N < 1 - 1. First we show 
that the cases 1 < N < 6 of the main theorem are easy consequences of the 
results quoted in the previous section. Indeed, we note that for all odd primes 
I we have 
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this follows easily from the fact that the summands in (1.2) run through the 
sequence 1, 2, ... , / - 1 (mod I). It is also easy to see from (1.2) that for 
O <k <N-1 we have 

(3.2) s(k, N)- =-s(N -1- k, N) (modl); 

we note that (3.1) is an immediate consequence of (3.2). 
Taking into account these relations as well as Lerch's formula (1.3) and the 

"logarithmic property" (2.1), we obtain from the theorems of Wieferich, Miri- 
manoff, and Vandiver the following result. 

Theorem 3.1. If (FLT I), is false, then s(k, N) 0 (mod/) for 1 < N < 6 
and 0 < k < N - 1. 

Remarks. (a) This result was observed for N = 2, 3, 4, and 6 by Emma 
Lehmer in 1938 [16] in her investigations of ql(2) and ql(3) modulo 12. 

(b) Lerch's formula (1.3) for N = 2 can be easily obtained from the following 
formula observed by Eisenstein (1850) ([9, p. 21], or Math. Werke, p. 710): 

(3.3) 2q,(2) 1- I 
+ 

I 
- + l - l 1 (modl) 2 3 _-2/-i (md) 

A further result in the direction of our main theorem is due to the second 
author [25, Theorem 5.5]. 

Theorem 3.2 (Skula). If (FLT I), is false, then s(k, N) 0 (mod I) for N E 
{2, 3,..., 10}U{12} and 0 < k < N- 1. 

In [25] a theory concerning the sums s(k, N) was developed; the Main The- 
orem (4.14) there (see Theorem 4.6 below) was used to prove the above result. 
The necessary calculations were done "by hand". In the present paper we use 
the same theorem from [25], amended by a more recent result of Granville [13], 
to prove our main theorem; here the calculations were done with computers. 

Next we prove a representation of s(k, N) as sums of inverses modulo / 
that differs from (1.2). For any integer n we denote by t(n) the least positive 
residue n/l (mod N). 

Proposition 3.3. For 1 < v < N we have 

(3.4) s(q(v) - 1, N) -NE - (mod/), 

where the sum runs through all n, 1 < n < I - I, with n _ v (mod N) . 

Proof. (i) Let L= {1, 2, ..., l- 1} and 

A(v) = {n E LlnEv (modN)}, 
B(v) = {j E 7Z(q(v) - 1)1/N < j < il(v)l/N}. 

For n E A(v), let qi(n) denote the least positive residue of -n/N (modl) . 
Clearly, qi is an injection from A(v) to L. We show that qi is a bijection 
from A(v) onto B(v). Put 

fq for v < p, 
w q - , forv vp 
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where I= Nq+p, q and p areintegers, 1 <p< N- 1. Thenfor neA(v) 
we have n v + hN, where 0 < h < w . Since 

n=_ N (h+ 
v N( )P - (v)q) (modl), 

we have 

yV(n) =-nNI-2 2 (v)q - h + i(vXo - v (mod 1). N 
Therefore, 

qI(n) _ f(v) - h - 
v 

(mod 1) 

Since 

N(r1) - 1) < (v) - w - ( -h - (V) 

we get qI(n) E B(v). The identities 

N N 

U A(v)= U B(v) = L 
v=1 v=1 

now imply that qi is a bijection from A(v) to B(v). 
(ii) We have now 

-N n -=-N E (modl) 
n=1 nEA(v) nEA(v) 

n_-v (mod N) 

1 
= L -_ s(tl(v) - 1, N) (modl). x 

xEB(v) 

This completes the proof. 5 

By means of the identity (3.4) and Lerch's formula (1.3) we can express the 
Fermat quotient as follows. 

Corollary 3.4. For 2 < N < / - 1 we have 

q1(N) -=- E( ) (mod!). 
n n=1 

This congruence was stated (without proof) by Sylvester [27] for the case 
where N is a prime different from 1. In general, it is in fact due to Glaisher 
[1 1]. 

4. SUMMARY OF KNOWN RESULTS 

In this section we shall state the known results that will be used in the proof 
of our main theorem. Concepts that are not needed will not be explained here; 
the reader may wish to consult the original papers. 
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1. One of the cornerstones in the study of the first case of Fermat's last theorem 
is the "Kummer system of congruences" (K), introduced by Kummer [15] in 
his work on (FLT I). This system can be formulated as follows: 

(K), B2j 1Q2j(t)=_ 0 (modl), 1 < j < 2 3 

where B2j is the (2j)th Bernoulli number and (oj(t) the Mirimanoff polynomial 
(see, e.g., [21, p. 139 ff.]). In the same article [15], Kummer stated his famous 
criterion: 

Theorem 4.1 (Kummer, 1857). If x, y, and z are relatively prime integers, if 
I does not divide xyz, and if xi + y1 + z1 = 0, then any integer -T with the 
property XT _ -y (mod 1) is a solution of (K)j. (We may also add that -T is 
a solution of (o1- 1 (t) -0 (mod 1)) . 

2. Pollaczek [20] also made important contributions in this area. He proved 
the following for the integer T from Kummer's theorem 4.1 (see [12, ?4]). 
Theorem 4.2 (Pollaczek, 1917). Let i, j, and k be the orders (mod 1) of T, 1 - 
T, and T/(T - 1), respectively. Then none of the numbers ij, ik, jk is less than 
3(logl)/(loga), where a = (1 + Vd5)/2. 

In his paper [20], Pollaczek used a special matrix An(t) (in the notation of 
[12]) of size 2(0(n) x (0(n), for integers n > 2. The entries of An(t) are powers 
of t. Let p(n, t) denote the rank of An(t) for an integer t, considered over 
the Galois field Z/lZ. Then p(n, t) < (0(n). In [12, ??8, 9] this matrix was 
replaced by a new matrix A* (t), and the rank of A* (t) was calculated. From the 
definition of A* (t) in [9] it can be deduced that if A* (t) has full rank modulo 
1, then An(t) has full rank modulo 1, or td - 1 = 0 (modl) for certain t 
(see also [25, (5.1.1)], where these numbers d are explicitly determined). In 
summary, we have 

Proposition 4.3. Let t be an integer, not divisible by 1, with order greater than 
16. Then p(n, t) = (0(n) for 2 < n < 18 and n = 20, 22. Furthermore, 
p(19, t) = (0(19), with the possible exception of those t that have order 17 and 
18, and p(21, t) = (0(21), with the possible exception of t with order 17, 19, or 
20. 

3. In order to formulate the main result from [25], which will be needed for our 
goals, we have to introduce a special matrix DN(t) from [25, equation 4.13]: 
Definition 4.4. Let N be an integer, N > 3. For integers ,u and v with 
gcd(,u, N) = gcd(v, N) = 1, let r(,u, v) denote the least positive residue 
of vI/u (modN); i.e., r(ju, v) is the integer with 0 < r(ju, v) < N and 
,ur(1u, v) v v (mod N) . Then for a variable t, define the matrix DN(t) by 

DN(t) - [tr(u,v)-1 + tN-1-r(/,uv)] 

(1 < u, v < N/2, gcd(u, N) =gcd(v , N) = 1). Note that DN(t) is a square 
matrix of order (o(N)/2; here, (0 denotes the Euler totient function. 

We can now state the main theorem from [25], which will be the central 
ingredient in the proof of our main theorem. It was originally stated and proved 
for another system of congruences introduced in [24], equivalent in a certain 
sense to the Kummer system (K)j. 
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Theorem 4.5 (Skula). Let N bean integer with N > 2 and (N-2)(N-1)/2 < 1, 
and let -T be a solution of the system (K), and of the congruence (01h (t) 0 O 
(mod 1), T t 0 (modl) . Assume that the following conditions are satisfied: 

(a) detDM(T) 0 0 (modl) for each integer M with M > 3 and MIN; 
(b) p(n, T)= p(n) for each integer n, 2 < n < N/2. 

Then s(k, N) _ 0 (modl) for each O < k < N- 1. 

Remark. Using a different method, Granville [13] proved this result with con- 
dition (a) replaced by 

(a') det DN(T) 0 0 (mod 1). 
This will simplify our calculations for certain N in ??7 and 8. 

5. PROOF OF THE MAIN THEOREM 

1. Suppose that (FLT I)i is false. Then there exist integers X1, X2, X3 such 
that 

(5.1) xl+ X2+ x -0 and lIXix2x3. 

By Coppersmith's result (Theorem 2.5) we may assume that I > 7.568 x 1017. 
For 1 < i, j < 3 and i 0 j, let Tij be an integer with the property 

(5.2) XiTij=-Xj (mod1). 

Then it is easy to see from (5.2) that 

(5.3) TijTji_ 1 (modl), 

(5.4) Tij + Tik 1 (modi) (j $4 k), 
(5.5) Tij 0 0 (mod/) and Tij $ 1 (modl). 

Lemma 5.1. There exist different pairs a and b of integers i $ j, 1 i, ij < 3, 
such that the orders of Ta and Tb are greater than 16 and 

(5.6) Tb 1 -Ta (modl). 
Proof. With (5.3) and (5.4) we see that T21, T23, and T31 can be written in 
the form T, 1 - T, and T/(T- 1). Lemma 4.2 now implies that at least two of 
them have orders not less than (3(log l)/(log a))1/2, which means orders greater 
than 16, by (2.2). The same is true for the triple T12, T13, and T32; i.e., at least 
two of them have order greater than 16. In summary, out of the three possible 
values of the index i there will always be one for which (5.4) holds, such that 
the orders of Tij and Tik are greater than 16. This proves the lemma. El 

2. By Kummer's criterion (Theorem 4.1) and the discussion in subsection 
1, -Ta and -Tb are solutions of the system (K), of congruences and of the 
congruence (0lI l(t) 0 0 (mod 1) . 

Hence, by Theorem 4.5 and the remark following it, the proof is complete if 
we can verify conditions (a') and (b). Condition (b) is satisfied by Lemma 5.1 
and Proposition 4.3, unless 

td _ 1 (modl) for d = 17 or 18 and N= 39, ...,42, or 
(5.7) td -_ (modl) for d = 17, 18, 19 or 20 and N = 43, ..., 46. 

For condition (a') we will try to show that either I t det DN (t) or / t det DN (1 - t) 
for all t e Z. Hence, if there is a nonzero integer c such that 

(5.8) u(t)detDN(t) +v(t)detDN(1 - t) = c, 
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where u and v are polynomials with integer coefficients, then the proof is 
complete, with the possible exception of those / which divide c. 

However, as N gets larger, the constant c becomes increasingly difficult or 
impossible to factor. To deal with these cases, we note that it is apparent from 
the proof of Theorem 4.5 (i.e., Theorem 4.14 in [25]) that what is really needed 
is that the matrix DN(t), formed by stacking DN(t) on top of DN( 1 - t), have 
maximum rank modulo 1, namely, rank (0(N)/2 (see also [13]). Thus, we can 
choose one or more (o(N)/2 x (o(N)/2 submatrices of DN(t) different from 
DN(t) and DN(1 - t) and find a new constant c' (and, if necessary, a third 
one, c") by combining a new pair of determinants according to (5.8). The 
actual exceptional primes are then only the prime divisors of gcd(c, c') (or of 
gcd(c, c', c")). 

It turns out that the determinant of DN(t) has particularly nice, and for com- 
putational purposes useful, properties. The next section, therefore, is devoted 
to studying the polynomials det DN(t) . 

3. We now wish to show that Theorem 1.2 does not depend on the assumption 
that (FLT I)i is false. This result follows again from Theorem 4.5. Lemmas 
5.1 and 4.2 are not needed because of the assumption that T and 1 - T have 
orders greater than 16. An important computational tool throughout this paper 
is the Wieferich test, which is normally stated as a criterion for (FLT I) (see 
Theorem 2.1). However, Skula [23] proved the following version: 

If there exists a solution T of the system (K), such that pl-1(T) -0 (mod1) 
and TO O, 1 (mod l), then q,(2) -- O (mod i) . 

Hence we may continue to use the Wieferich test. In other places we deal 
with certain exceptional primes by simply stating that they are smaller than the 
Coppersmith bound (Theorem 2.5); these primes can also be dealt with using 
the Wieferich test. 

Finally, we have to explain the absence of the congruence 0lI (T) 0 O 
(mod 1) in Theorem 1.2. This is due to the following result of Agoh [1, Theorem 
1]: 

If we omit one congruence from the system of congruences (K), augmented 
by 0l-1(T) 0 (mod 1), then we obtain an equivalent system of congruences. 

In particular, we may omit the congruence in question. We thus have to 
add the hypothesis T X -1 (modl) (-1 is never a solution of l-I(T)- 0 
(mod1) , but counts as "trivial solution" of (K)1) 

6. THE POLYNOMIALS FN(t) 

1. Theorem 4.5 and ?5 indicate that the determinant of the matrix DN(t) plays 
an essential role in the proof of our main theorem. We begin with a definition. 

Definition 6.1. For an integer N > 3, put FN(t) = detDN(t), with DN(t) as 
in Definition 4.4. 

It is clear that FN(t) is a polynomial in t with integer coefficients. We derive 
now some further properties. 

Proposition 6.2. (a) The polynomial FN(t) has leading coefficient 1 and degree 
(N - 2)(o(N)/2. 

(b) FN(t) is a reciprocal polynomial. 
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Proof. (a) The entries on the main diagonal of DN(t) are all equal to tN-2 + 1; 
they have the highest degree of all the entries of DN(t). This implies (a). 

(b) We have 

t(N2)((N)2FN () = 
dettN2[tl-r(ju,v) 

+ tl+r(,uv)-N] 

= det[tN-I-r(Iu iv) + tr(u, v)-1 ]' = FN(t) f 

Proposition 6.3. The polynomial FN(t) is divisible in Z[t] by the following poly- 
nomials: 

(a) (t -_)y(N)-2- 
(b) (t + l)p(N)-2 if N is even, 
(c) (t + l)p(N)/2 if N is odd. 

Proof. (a) We subtract the first row from the others. Then the (,u, v)-entry 

has the form VI(t) = tr(u,v)-l + tN-1-r(u,v) - tv-1 _ tN-1-v ( > 1). This 

polynomial is divisible by (t - 1)2; therefore (t - 1)p(N)-2IFN(t). 

(b) If N is even, we consider again the polynomial yI(t) from (a). We may 

suppose that r(1u, v) = z > vi. Then 

tg(t) = tv- (tz - 1) - tNl1z-(tzv - 1) = (tZ-v - 1)(tv-1 tN-1-z 

Since z and vi are both odd, we have vi - 1 _ N- I - z (mod 2), and therefore 

(t + 1)21V/(t); hence (t + 1)p(N>)2IFN(t). 
(c) If N is odd, the sum of exponents of t in each entry of DN(t) is odd; 

therefore t + 1 divides each entry, and the result follows. a 

Remark. We can see from Table 1 (next page) that the powers in Proposition 

6.3 of the factors t - 1 and t + 1 are the exact powers for 3 < N < 46. Also, 

Proposition 6.3 is closely related to Theorem 6.4 below. 

2. For the next result we introduce the following notation. Let E denote the 

group of even Dirichlet characters modulo N. For X E E , put 

N-1 

(6.1) FX(t)= E X(j)tj-' 
j=1 

(j, N)=1 

Define the matrix B = [X(v)]v,x, where 1 < v < N/2 with gcd(v , N) = 1, 
and X E E. Then B is a square matrix of order (o(N)/2, and it is easy to 

see that detB $- 0 (see, e.g., [5, p. 420, Problem 5]; as domain for each even 

Dirichlet character mod N consider the quotient group (Z/NZ)* /{ 1, 1 }). 

Theorem 6.4. There holds 

(6.2) FN(t) = rj Fx (t) . 
XEE 

Proof. Fix X e E and 1 < ,u < N/2 with gcd(u, N) = 1. Then, since 

r = r(,u, vi) runs through a reduced residue system modulo N as vi does, we 

have 

N/2 N/2 

y (tr( ) - + tN I 
r(,uv))X(V) = X(p) E (tr-I + tN-1-rX)(r) 

v=1 r= I 
(v,N)=I (r, N)=1 
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TABLE 1. The polynomials FN(t) 

N d cd nd degrees of noncylo- cyclotomic factors 
tomic irreducible factors 

7 15 11 4 4 (t6 - 1)(t2 - 1)2(t - 1) 

8 12 12 0 / (t8-l )(t4_ 1) 

9 21 17 4 4 (t9 - 1)(t3 - 1)(t2 - 1)2(t + 1) 

10 16 16 0 (t12- 1)(t4- 1) 

11 45 21 24 24 (tl? - 1)(t2_ 1)4(t_ 1)3 

12 20 20 0 / (t12_ 1)(t8- 1) 
13 66 26 40 16, 16, 8 (t12 - 1)(t2 - 1)5(t_ 1)4 

14 36 20 16 8, 8 (t8 + 1)(t6 - 1)(t2 _ 1)3 

15 52 32 20 8, 6, 6 (t8 _ 1)(t5 - 1)2(t3 - 1)3(t2 + 1) 

(t +1)3 

16 56 48 8 8 (t16 - 1)2(t8 _ 1)(t4- 1)(t2 _ 1)2 

17 120 36 84 48, 24, 12 (t16- 1)(t2- 1)7(t- 1)6 

18 48 32 16 16 (tl8 - 1)(t6 - 1)(t4 + 1)(t2 _ 1)2 

19 153 41 112 84, 28 (tl8 - 1)(t2 _ 1)8(t_ 1)7 

20 72 64 8 8 (t20 - 1)2(tl2 _ -)(t4_ 1)3 

21 114 46 68 28, 16, 16, 8 (t7 - 1)3(t6- 1)(t3- 1)4(t2- 1)2 

(t +1)3 

22 100 36 64 64 (t12 + 1)(tl? - 1)(t2 1)7 

23 231 51 180 180 (t22 _ 1)(t2- 1)10(t 1)9 
24 88 88 0 / (t24- 1)2(t12- 1)2(t8 - 1)2 

25 230 102 128 64, 64 (t25 - 1)2(t5 - 1)6(t4 _ 1)(t2 1)9 
26 144 48 96 40, 40, 16 (t14 + 1)(t12 _ 1)(t6 _ 1)(t2 _ 1)8 

27 225 137 88 84, 4 (t27- 1)3(t9- 1)4(t3 - 1)(t2- 1)8 

(t+1) 

28 156 124 32 16, 8, 8 (t28 - 1)3(tl2 - 1)(t8 + 1)(t4 -1)4 

(t2 1)2 

29 378 66 312 144, 144, 24 (t28 1)(t2- 1)13(t _ 1)12 

30 112 88 24 24 (t24- 1)(t20- 1)2(t12_ 1)(t6 - 1)2 

31 435 71 364 208, 104, 52 (t30 1)(t2- 1)14(t_ 1)13 
32 240 184 56 48, 8 (t32- 1)4(t16 _ 1)2(t8- 1)(t4 - 1) 

(t2- 1)6 

33 310 108 202 104, 64, 22, 12 (t11 - 1)5(tl0 - 1)(t6- 1)(t3_ 1)9 

(t2 _ 1)2(t + 1)6 
34 256 68 188 112, 48, 28 (t18 + 1)(t16 - 1)(t6 _ 1)2(t2 _ 1)11 

35 396 144 252 80, 52, 40, 40, 22, 18 (t12 - 1)(t8 - 1)(t7 - 1)9(t5 _ 1)10 

(t2 _ )(t + 1)9 

36 204 172 32 16, 16 (t36- 1)4(tl2 _ 1)(t8 - 1)(t2 1)4 

37 630 86 544 192, 192, 64, 64, 32 (t36 _ 1)(t2 _ 1)17(t- 1)16 

38 324 68 256 192, 64 (t20 + 1)(t18 _ 1)(t2 _ 1)15 

39 444 148 296 80, 64, 64, 32, 32, 32 (t13 - 1)6(t12 _ 1)(t6 - 1)2(t4 + 1) 
(t3 _ 1)10(t2 _ 1)3(t+ 1)6 

40 304 248 56 24, 12, 12, 8 (t40_ 1)4(t20- 1)2(tl2 - 1)(t8l 1)3 

(t6- 1)(t2 1)3 

41 780 96 684 288, 144, 144, 72, 36 (t40- 1)(t2 - 1)19(t _ 1)18 

42 240 100 140 64, 40, 20, 16 (t14 - 1)3(t12 + 1)(t8 + 1)(t6 _ 1)6 

(t2 1) 
43 861 101 760 456, 228, 76 (t42- 1)(t2- 1)20(t - 1)19 

44 420 276 144 64, 64, 16 (t44 - 1)5(t12 + 1)(tl? - 1)(t4 - 1)5 

(t2 1)7 

45 516 324 192 80, 52, 40, 8, 6, 6 (t45 - 1)4(t15 - 1)4(t9- 1)3(t8 - 1) 

(t6 + t3 + 1)3(t5 - 1)2(t4 - 1)(t2 - I) 

46 484 84 400 400 (t24 + 1)(t22 _ 1)(t2 _ 1)19 
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here we used the fact that jir =_ (mod N) implies X(II)X(r) = x(v) . There- 
fore, 

DN(t)B = [x(u)Fx(t)b,x, 
where 1 <u < N/2, gcd(,u, N) = 1, and X e E. Hence, 

FN(t) det B = det B JJ Fx(t) , 
XEE 

and the proof is complete. (See also [5, p. 421] and [31, Lemma 5.26(a)]). El 

Remarks. (1) Among the polynomials Fx (t) (for a given N) there is at least one 
with rational integer coefficients. Indeed, if x = Xo is the principal character, 
then 

N-1 

Fx,(t)= ti 
i=l 

(j, N)=1 

Furthermore, if x is an even quadratic character, then Fx (t) has only coeffi- 
cients ? 1. For instance, if N is an odd prime p 1 (mod 4), then 

Fx (t) =E ptil 
j=1 

where (jlp) is the Legendre symbol. Polynomials of this kind (with X not 
necessarily an even character) are known as Fekete polynomials; see, e.g., [4]. 

We also note that the Fx(t) have other interesting properties which depend 
on the structure of the character group modulo N. A detailed study is not 
needed here. 

(2) A summary of the properties of FN(t), 7 < N < 46, is given in Table 
1. There, d stands for the degree of FN(t), cd for the total degree of its 
cyclotomic factors, and nd for the total degree of its noncyclotomic factors. 

3. The following result shows that FM(t) is a divisor of FN(t) for certain pairs 
(M, N). 
Proposition 6.5. Let M, N > 3 be integers with the same prime divisors, and 
suppose that MIN. Then FM(t)IFN(t) in Z[t]. 
Proof. We denote K := N/M, M:= {j E Zjl < j < M, (j, M) = 1}, and 
N:= {i E Zll < i < N, (i, N) = 1}. Then we can rewrite N = {j+kMIj e 
M, 0 < k < K - 1}. Now we note that an even character x modulo M can 
be extended to an even character XN modulo N by setting 

X(i + kM) = x(j) (jEM, O<k<K-1). 

Then by (6.1) we have 
K-1 

FXN(t) = ZXN(I)ti1 = z z x(j)tj+kM-I 

iEj jEM k=O 

K-1 t 
ZX(j)thZ 1 tkM= F(t)N . 

jEM k=O 

The result now follows from (6.2). a 
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4. In view of the polynomials (6.1) we need some information on the structure 
of Dirichlet characters. For details, see, e.g., [30, Chapter 7]. We write N in 
its canonical representation 

N = 2 p a,1 p2a2 * a (k a1 a2 ak 

For the sake of simplicity we first assume that a = 0 or 1; this is sufficient for 
our purposes. For j = 1, ... , k define 

Cj :- (PJ(p.) = (P1j -1)PC1 

and let gj be the smallest primitive root modulo PjX. Furthermore, let ej, 
1 < <k, be any (not necessarily primitive) cjth root of unity. Then 

(6.3) X 
){g g12 ...Vk if(a, m)=1, 

0 ~~if (a, m)> 1 

where v1, v2, ...k, v are defined by 

(6.4) a gvl (modp 'a),... a-gkk (modplk) 

is a Dirichlet character modulo N. Conversely, any Dirichlet character modulo 
N is of the above form. 

Now, for the character x in (6.3) to be even, we need x(-1) = 1. By (6.4), 
a = -1 corresponds to 

Vi =2f(PjRJ) j=1,...,k. 

But then, with (6.3) we see that only an even number of the ej, j = 1, ... k, 

can be primitive cjth roots of unity; the others have to be (cj/2)th roots of 
unity. 

5. Finally, suppose that N = 2c, a > 2. Let e = 1 or -1, and -o any 
(2a-2)th root of unity (not necessarily primitive). Then the function 

(6.5) x) ee if (a, N)=1 
0 if (a, N) 1,I 

where v and vo are (uniquely) defined by 

(6.6) a -= (-I1)V 5VO (mod 2a), 

is a Dirichlet character modulo N = 2a. Conversely, any Dirichlet character 
modulo 2c (a > 2) is of the above form. 

Again, for the character x in (6.5) to be even, we need x(-I) = 1. By (6.6), 
a = -1 corresponds to v = 1, vo = 0, and by (6.5) we have X(-1) = E = 1. 
Hence the even characters modulo N = 2c (a > 2) are given by 

e0 if (a, N) = 1 
wtif (a, N)d > 

with -co and vo as before. 
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7. THE COMPUTATIONS, PART I. (N = 11, 13, 14, 15, 16, 18, 
20,21,24,28,30,36,40) 

1. The possible exceptional primes 1 can be calculated in two ways: 
(i) by finding the constants c in equation (5.8); 
(ii) by using the polynomial factorization in Theorem 6.4 and evaluating 

resultants, and using, if necessary, other submatrices of DN(t) . 
In this section we shall deal with those cases for which method (i) is practi- 

cable. First we note that if we have 

(7.1) uij(t)Fi(t) + vij(t)Gj(t) = cij, 1 < i < m 1 < j < n, 

with uij, vij E Z[t] and Cij E Z, then there are polynomials u, v E Z[t] such 
that 

m n m n 

(7.2) u(t) 11 Fi(t) + v(t) 11 Gj(t) = 17 17 ci. i 
i=1 j=1 i=1 j=1 

Indeed, if 
u(t)F(t) + vj(t)Gj(t) = cj, j = 1, 2, 

then by multiplying these two equations together we get 

(u2F + uv2G2 + uv1G1)F + (vIv2)GIG2 = c1c2. 

The assertion (7.2) is now obtained by induction. 
By (7.2) it suffices to consider pairs of factors of the polynomials FN(t), 

FN(1 t). Also, by Lemma 5.1, cyclotomic factors of order < 16 can be 
disregarded. 

2. As an example, we describe in detail the calculations for the case N = 14. 
We have ( 1+t'2 t2+t'O t4+t8 

D14(t)- t4 + t8 1 + t2 t2 + t'I 
t2+t'0 t4+t8 1+t'2 

and 

F14(t) = detD14(t) 

= 1 - 2t6 - 3t'0 + 4t12 + 3t16 - 6t18 + 3t20 + 4t24 - 3t26 - 2t30 + t36 

= (t - 1)4(t + 1)4(1 + t + t2)(1 - t + t2)(1 + t8)f1(t)f2(t), 

where 

f1(t)=1 + t2 + 2t4 + 2t6 t8, f2(t) = 1 + 2t2 + 2t4 + t6 + t8. 

We note that the cyclotomic factors of F14(t) all have order < 16, so they can 
be ignored in what follows. We compute now gj(t) := fj(l - t): 

g1(t) = 7 - 30t + 71t2 - 104t3 + 102t4 - 68t5 + 30t6 - 8t7 + t8 

g2(t) = 7 - 26t + 57t2 - 84t3 + 87t4 - 62t5 + 29t6 - 8t7 + t8. 

Using an algorithm for finding the g.c.d. of fi (t) and gl (t) (e.g., the routine 
"gcdex" on MAPLE), we now determine polynomials uII, vI1 E Z[t] such that 

ul(t)fi (t) + vI I (t)g (t) = cl I . 
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We get 
uiI(t) = -205242 + 1215982t - 2545873t2 + 3059783t3 - 2336540t4 

+ 1139405t5 - 328485t6 + 43798t7, 

vII(t) = 42838 + 9854t + 809t2 - 70943t3 - 33840t4 - 88257t5 

- 21899t6 - 43798t7, 

and 
cl, = 94582 = 2 x 192 x 131. 

Similarly, we find u12, v12, u22, v22, and 

C12= 688383001 = 43 x 181 x 241 x 367, C22 = 58519 = 139 x 421. 

Now, the exceptional primes are the factors of the cij, namely, 2, 19, 43, 131, 
139, 181, 241, 367, 421. But (FLT I) is certainly true for these prime expo- 
nents (e.g., since they are all below the bound (2.2)). This concludes the proof 
of the main theorem for N = 14. 

3. We dealt with the other cases for N (namely, 11, 13, 15, 16, 18, 20, 21, 
24, 28, 30, 36, 40) in exactly the same way. The symbolic manipulation pack- 
age MAPLE was used to evaluate the determinants, to do the polynomial cal- 
culations, and to factor the numbers cij . Most prime factors are less than the 
bound (2.2). Those larger than that bound are listed in Table 2; for these primes 
1 we checked that the Fermat quotient q1 (2) - 0 (mod 1) . This completes the 
proof of our main theorem for the N under consideration in this section, with 
the exception of N = 40. 

TABLE 2. Exceptional primes 
N exceptional primes 
13 1938181974650674321837 

19191612013754634535261 
1997528240063703162013213 

17 5183067295728321937749072289499100236729 

19 186753445089142195483237 
40044374254508727298193233551591581900063398423321 

21 1591527325421298297187 
279467626079514592617511 
52444347498467623057551343 
29190929127722102286697462699 
55281209602509156697788324469 

22 138201523840689613021 
496211772675056448667976526203221 

25 3382717282842812911 
11264419067017355423982481 
47169095692986175634770467431853731 

26 1558482696940606437939347755803338623072153 
5529415957782663330858444568572985814525443 
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TABLE 2 (continued) 

27 8369570580199826563 
447188548098899056249 
2243639403438608190839800687778260106659 

28 7165864476521984353 

29 1407041578912351747 
161116934598291994141 
7233792339589498171710947993 
16474862057340134605674539552845938468575009603 
p194, p238 

32 8857981054094232409 
172638455754479209193 
282845710352878213354031 
204567046234917427903951873 
1255908649935437621237569409 
3603903670030124084210450753 

35 398676446216314985455123 
64618453953282251628471635368241821 
1102348262107796100707505045701952373 
11674513443951972931250312022805887230114781826869045784609 

38 112212614137195861183 
1682893332363994051509013274889429169 
p113, p339 

41 170968182972200382919081 

43 74139191281466608291 
204571727151308695753 
2634070735318559967109 
1278405528360764121347 
293799614546642512895796736189899139 
81382952490730746402310717889745964057 
11681277008957350992192583814684956295599117 
p202 

45 573133270034835821071 
11481509342383088945915281 
8176155859804804748228991842790607168693 
6513431778778821460015784739812883452701 
473160280496208747290815444003838119003839559258257749328115574828929 

46 33029556661758142729 
830745790997622094332763631 

4. For N = 40 we have to exclude the cases listed in equation (5.7). This 
is done by taking the resultants of t'7 - 1 and t'8 - 1 with the noncyclo- 
tomic polynomial factors of F40(1 - t) and with the cyclotomic factors of order 
> 16. These resultants are easy to factor, and all prime factors are less than 
Coppersmith's bound (2.2). This takes care of condition (a') of Theorem 4.5. 
To deal with condition (b), we assume that t has order 17 or 18. The case that 
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1 - t has also order 17 or 18 will be excluded by taking the resultants of t17 - 1 
and (1 - t)17 - 1, of t'7 - 1 and (1 - t)'8 -1, and of t'8 -1 and (1 - t)'8 - 1 
(or by finding the corresponding numbers c in (5.8)). Only with respect to the 
prime divisors of these numbers are the orders of both t and 1 - t possibly 
less than 19; but these primes are easy to determine and to exclude, using the 
Wieferich test. This completes the proof for N = 40. 

5. One other detail remains to be discussed. The prime factors obtained 
in most factorization algorithms are only "probable primes". Although they 
are extremely likely to be primes, we need to address the possibility that they 
are composite. The following proposition shows that this eventuality poses 
no probelm if instead of the "straight" Wieferich test (i.e., testing for q1 0 0 
(mod 1)) we check whether gcd(l, q1 (2)) = 1, for a "probable prime" 1 . 

Proposition 7.1. Let n be a pseudoprime to base 2 (i.e., a composite number such 
that 2n-I = 1 (mod n)) and p a prime divisor of n. If qn(2) 0 0 (modp), 
then also qp(2) 0 (modp). 
Proof. Write n = mpk, where pt m, k > 1 . By Fermat's (little) theorem we 
have 

2P = 2P k-+,(pk) = 2P k-(1 + bpk) 

for some integer b. Then 

2n-1 = 2mpk_1 - 2mpk'-l1(1 + bpk)m. 

Since n is a pseudoprime to base 2, the left-hand side of this last equation is 
_ 1 (mod n) and therefore also modulo p . The second term on the right-hand 
side is also _ 1 (modp); hence, 

(7.3) 2mpk'-l = 1 + ap 

for some a E Z. Now we rewrite 

(7.4) 2n-1 - 2mpk-=1 - 1 
(2Mpk-I_I)p 

To obtain a contradiction, suppose that qp (2) _ 0 (modp); i.e., 2P-1 = 1 +c p2 
for some c E Z. Then with (7.3) and (7.4) we get 

2n-1 = (1 + cp2)(1 + ap)P = 1 + dp2 

for some d E Z. This contradicts the hypothesis, and the proof is complete. 0 

Remark. In computing 21-1 (modj2) for the Wieferich test, straightforward 
exponentiation should be avoided because of the large size of the primes 1. 
(MAPLE, e.g., has a "smart" modular exponentiation routine.) 

8. THE COMPUTATIONS, PART II. (N = 17, 19, 22, 23, 25, 26, 
27, 29, 31-35, 37, 38, 39, 41-46) 

1. From the discussion in ?5.2 it is clear that we have to show that the matrix 
DN(t) has maximal rank (modl). To do this, it suffices to exhibit two sub- 
matrices of DN(t) such that the resultant of their determinants is not divisible 
by 1. If this resultant is easy to factor, then the prime factors are considered 
exceptional primes and can be eliminated by applying the Wieferich test. The 
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computations are done in three main steps: 
(a) Because of the convenient factorization (6.2), we first choose the two 

submatrices DN(t) and DN(1 - t) . 
(b) If any resultants from (a) remain unfactored, we combine DN(t) with 

the "next easiest" submatrix of DN(t) obtained by taking DN(t) and replacing 
its first row by the first row of DN( 1 - t) . Only the prime factors of the gcd of 
the resultants from (a) and (b) remain exceptional primes. 

(c) If this gcd cannot be factored, we combine DN(t) with some other 
(o(N)/2 x (o(N)/2 submatrix of DN(t), and take the gcd of this resultant with 
the unfactored numbers from (b). In some cases, this step may have to be 
repeated with a different submatrix if the gcd is still too large. 

The details follow in the remainder of this section. 

2. It is clear from Proposition 6.3 or from (6.1) (using basic properties of 
Dirichlet characters) that the polynomials F,(t) have some cyclotomic factors. 
We clear the F,(t) of all cyclotomic polynomials of orders < 16 and rewrite 
(6.2) as 

,p(N)/2 

(8.1) FN(t) = FN(t) 7 fN,j(t) = FN(t)FN(t), 
j=1 

where the fN, j(t) are the corresponding F. (t) cleared of cyclotomic factors of 
order < 16, and FN(t) is the product of all these factors. Then by the dis- 
cussion at the beginning of ?7 it suffices to determine the constants c obtained 
from 

(8.2) u(t)FN(t) + v(t)FN(l - t) = c. 

3. By [12, Lemma 20] the constant c in (8.2) divides the resultant of Fy(t) 
and F (1 - t) . By (8.1) and multiplicativity of the resultant we have 

,p(N)/2 ,p(N)/2 

(8.3) Rt(F$(t), FN(1 - t)) = j j Rt(fN,i(t), gN,j(t)), 
i=1 j=1 

where gN,j(t) := fN,j(l - t). Since the f's and g's do not, in general, have 
integer coefficients (but have coefficients in the ((o(N)/2)th cyclotomic field; see 
subsection 6 below), we take the norm on both sides of (8.3) and obtain 

(8.4) N[Rt(FN(t), FN(1 - t))] = 111 N[Rt(fN, i(t), gN, j(t))], 

where the double product is as in (8.3), and the norm is understood as the norm 
in the ((o(N)/2)th cyclotomic field. We note that the left-hand side of (8.4) is 
the (o (o (N)/2))th power of the left-hand side of (8.3), since the latter is already 
a rational integer; however, this is of no further consequence. The factors on 
the right-hand side of (8.4) are now rational integers, and it is clear that each 
prime factor of c in (8.2) is a prime factor of some term 

(8.5) N[Rt(fN,i(t), gN,j(t))]. 

Hence, it suffices to compute these terms and their factors. 

4. Next we note that different terms (8.5) may have identical values. Since 
Rt(f(t), g(t)) and Rt(g(t), f(t)) differ at most in sign, it suffices to consider 
the cases 1 < i < (9(N)/2 and i < i < (9(N)/2. Furthermore, the resultant is 



380 KARL DILCHER AND LADISLAV SKULA 

an algebraic integer in the (p(N))th cyclotomic field (or in a cyclotomic field 
of smaller order), as is clear from ??6.3, 6.4. Then the norm, as product of this 
algebraic integer and its conjugates, will usually coincide with other terms (8.5). 
Details of this will be given in the discussions of the individual cases. 

5. A special case occurs when in ?5.1 we have z _ 2 (modl); in this case 
the set {rij 1 < i, j < 3, i :$ j} consists of only three distinct (modl) el- 
ements, namely {2, -1, 1/2}. Although this case is included in all previous 
discussions, it will sometimes be useful to treat it separately. It is responsible 
for some of the smaller factors of the constant c and can therefore be used in 
the necessary factorization (see Step 15 in the next subsection). 

6. For the actual computations, we distinguish between three different cases: 
(i) N = pa or N = 2p, a a> 1 , p > 3. This covers N = 17, 19, 22, 23, 

25, 26, 27, 29, 31, 34, 37, 38, 41, 43, 46. 
(ii) N= 2a, ca > 2. This covers N= 32. 
(iii) The remaining cases N = 33, 35, 39, 42, 44, and 45. 
We begin with case (i); fix such an N. By ?6.4 we have 

(8.6) X (a)={ if(am)=1, 
0 if (a, in)> 1, 

where e is a dth root of unity (not necessarily primitive), d := (p - 1)p- , 
and v is given by 

a--gv (modpa), 

with g a primitive root (say, the smallest one) modulo pa. The definition of 
v can be rewritten in index notation (see, e.g., [30]) as 

v = indg a (modpc), 

so that with (6.1) and (8.6) we obtain 

N-1 

(8.7) FX(t) = E g2indgj (modp')ti-1 

j=1 
(j, N)= 1 

Now, as e runs through all dth roots of unity (d of them), x runs twice 
through all even characters modulo N. A convenient way of creating the rele- 
vant dth roots of unity is to fix one primitive dth root of unity e and to take 
g2, 84 -... E 1 . This also gives us a way of numbering the even characters 
and thus the polynomials (8.7). We denote now 

N-1 

(8.8) Fk(t) =E g2k indg; (modp(k)tj1 , k = 1, 2, ... , d, 
j=1 

(j, N)=I 

where e is a fixed primitive dth root of unity. (Note that this is different 
from FN(t), as defined in Definition 6.1.) For the computations it is important 
to note that one can avoid complex arithmetic (and the explicit use of, say, 
e = e27ild) by doing all computations symbolically and reducing modulo qd$(e) 
the polynomials in e that arise, where qd is the dth cyclotomic polynomial. 
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We are now ready to summarize the algorithm used. 

1. Given N of the form pa or 2pQ, determine the smallest primitive root 
g (modpc), d = (p - 1)pa-1, and Od(0). 

2. Compute the polynomials Fk(t) according to (8.8), k = 1, 2, ... , d/2. 
3. Reduce these polynomials modulo d (e)0. 
4. Divide the polynomials -by -all cyclotomic factors (in t) of order < 16; 

let fk(t), k = 1, ..., d/2, be the polynomials thus cleared of small 
cyclotomic factors. 

5. Determine gk(t), k = 1, ... , d/2. 
6. For j = 1, ... , d/2 and k = j, ..., d/2, compute the resultants 

Rt(fj(t), gk(t)); before this is done, it should be determined which 
sets of pairs (j, k) would give identical norms of the corresponding 
resultants (see ??8.3 and 8.6). Denote rj,k(e) = Rt(fj(t), gk(t)); they 
are polynomials in e. 

7. Reduce the rk (e) modulo /d (e) tokobtain rk(e); these are polyno- 
mials in e of degree at most qi(d) - 1 . 

8. Find the norms of the rj, k(e). This is best done by computing the 
resultants Re (ri, k (e), /d (()). 

9. Try to factor these last numbers; the prime factors are the exceptional 
primes, or possible factors of the constant c in (5.8). 

10. If Step 9 is successful, apply the Wieferich test to all prime factors 
exceeding Coppersmith's bound. This completes only the cases N = 17 
and N=26. 

11. In all other cases, compute the noncyclotomic factors with rational in- 
teger coefficients of FN(t) by multiplying together appropriate factors 
Fk(t) (in (8.8)) and reducing modulo kd(0)* Include cyclotomic factors 
of order > 16, and denote them by VI (t), ... , yA(t). (Their degrees 
are listed in Table 1.) 

12. Set up the matrix obtained from DN(t) by replacing its first row by 
the first row of DN(1 - t); evaluate its determinant and remove small 
cyclotomic factors. 

13. Evaluate the resultants Pi, ...p, , of the polynomial in Step 12 with 
the polynomials IU (t), ... (t) . 

14. Find gcd(pi, rj,k(e)) for all appropriate triples (i, j, k) . It turns out 
that most of these numbers, except at most s of them, are very small. 

15. Try to factor the numbers obtained in Step 14. (After dividing by an 
appropriate Vi (2), i = 1, . .. , s, most are squares.) 

16. If Step 15 is successful, enter the primes exceeding Coppersmith's bound 
into Table 2 and apply the Wieferich test. This completes the cases 
N = 19, 22, 25, 27, 29, 38. For N = 43, go to Step 20. (Although 
the cases N = 17 and N = 26 were already settled in Step 10, we 
carried out Steps 1 1-16 for these cases as well; this reduced the number 
of exceptional primes in Table 2). 

17. If Step 15 is not successful for N, choose another q(N)/2 x (N)/2 
submatrix of DN(t) and compute its determinant. To label these, de- 
note by DN(al, a2, ... , ap(N)/2) the matrix whose jth row is the jth 
row of DN(t) if aj = 1 and is the jth row of DN(l - t) if aj = 2. 
Remove small cyclotomic factors. 
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18. As in Step 13, evaluate the resultants p*, ... , p* of the determinant 
in Step 17 with the polynomials VI (t), ..., yVs(t) of Step 11. 

19. Take the gcd of the resultants PJ with the numbers obtained in Step 14. 
We are done if the gcd is 1 or a small prime. We first tried the matrix 
DN(1, 2, 1, 2, ...) in Steps 17-19; this was successful in the cases 
N = 23, 31, 3 7, and 41. In the remaining cases we had to try again with 
different matrices. Successful choices were D34(2, 1, 2, 1, 2, 1, 2, 2) 
and D46(1, 2, 2, 1, 1, 1, 2, 2, 2, 2, 1). 

20. For N = 41, 43, and 46 we have to take equation (5.7) into account; see 
also ?7.4. This leads to 1, 6, and 2 new exceptional primes exceeding 
the bound (2.2), respectively. They are also entered in Table 2, and the 
Wieferich test is applied. 

7. One may ask why the above method was not used also for the cases covered 
by ?7. The reason lies in the fact that the resultant in (8.3) is often vastly larger 
than the constant c in (8.2). For the same reason, in some cases in this section 
a mixed approach was chosen. It can be described as follows: 

1. To avoid the evaluation of the determinant det DN(t) and the factoring 
of the polynomial FN(t), equations (6.2) and (6.1) (or, in practice, 
(8.8)) were used to obtain FN(t) and, by combining appropriate factors 
F,(t), the irreducible (over Q) factors were found. 

2. As far as practicable, the MAPLE routine "gcdex" was used to find the 
constants cij, as in ?7. 

3. Now the method described in the previous subsection was employed to 
find the terms (8.5). 

4. By taking the gcd's of pairs of numbers cij and numbers of the type 
(8.5), factors of the cij are sometimes found, which may lead to a 
complete or almost complete factorization. 

This approach will be illustrated in the next subsection. 

8. As an example, we treat the case N = 22 in some greater detail. First we 
note that d = 10, qd (e) = e4 _ e3 +2 -e+ 1, and g = 2 (see also Table 3). 
We can now compute from (8.8) the polynomials Fk(t), k = 1, ..., 5. For 
example, 

F1(t) = 1 + e8t2 + e4t4 + e2t6 + e6t8 + 6t12 + 2t14 + 4t16 + 8tl8 + t20 

Since e satisfies MO (e) = 0, we reduce modulo /d (e) and obtain 

Fi (t) = 1 -_e3t2 -+ (-1 + e _ -2 + e3)t4 + e2t6 _-et8 _-et12 +e62t14 

+ (-1 + g _ g2 + C3)tl6 
3 
13t8 +20; 

similarly for F2(t), ... , F5(t) . Here F5(t) has only rational integer coefficients, 
as expected. Now we factor the Fk(t), and get 

F1(t) = (t- 1)2(t + 1)2{1 + (2-_3)t2 + (2 +e- _ e2 _ - 3)t4 

+ (2 + 2e -2 _3)t6 + (2 + 2e _ 82 _ -3)t8 

+(2 + 2e -2 - 3)t10 + (2 + , _ C2 _ -3)tl2 

+ (2 - e3)tI4 + t16} 
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TABLE 3. Distinct resultants 
N d kd(9) g distinct resultants 
17 16 88 + 1 3 (1, 1)(1, 2)(1, 3)2(1, 4)(1, 5)2(1, 6)(1 , 7)2 

(1, 8)(2, 2)2(2, 4)2(2, 6)4(2, 8)2(4, 4)4 

(4, 8)4(8, 8)4 
19 18 86 - e3 + 1 2 (1, 1)(1, 2)(1, 3)(1, 4)(1, 6)(1, 8)2(1, 9) 
22 10 84 - e3 + E2 - e + 1 2 (3, 3)3(3, 6)6(3, 9)3(9, 9)6(1, 1)(1, 2)(1, 4)2 

(1, 5)(5, 5)4 
23 22 g10 - e9 + - e + 1 5 (1, 1)(1, 2)(1, 3)(1, 5)(1, 7)(1, 10)2(1, 11) 

(11, 11)10 
25 20 88 - g6 + e4 - g2 + 1 2 (1, 1)... (1, 6)(1, 8)(1, 9)2(1, 10)(2, 2)(2, 4) 

(2, 5)(2, 8)2(2, 10)(5, 5)4(5 10)4(10, 10)4 
26 12 84 - 92 + 1 2 (1, 1)... (1, 4)(1, 5)2(2, 2)(2, 3)(2, 4)2(3, 3)2 
27 18 86-e3+1 2 -asforN= 19- 
29 28 812 - 10 +. 2 + 1 2 (1, 1) (1, 4)(1, 6)..(1, 10)(1, 12)(1, 13)2 

(1, 14)(2, 2)(2, 4)(2, 6)(2, 7)(2, 12)2(2, 14) 
(7, 7)6(7, 14)6(14, 14)6 

31 30 88 + e7 - e5 - e4 - e3 3 (1, 1).(1,3)(1, 4)2(1, 5) ...(1, 7)(1, 9) 
+e + 1 (1, 10)(1, 11)2(1, 12)(1, 14)2(1, 15)(3, 3)2 

(3, 5)(3, 6)2(3, 12)4(3, 15)2(5, 5)4(5, 10)8 
(5, 15)4(15, 15)8 

32 16 88 + 1 - -asforN= 17- 
34 16 88 + 1 3 - as for N = 17 - 
37 36 812 - e6 + 1 2 (1, 1) ...(1, 10)(1, 12)(1, 14)(1, 15)(1, 16) 

(1, 17)2(1, 18)(2, 2)(2, 3)(2, 4)(2, 6)(2, 8) 
(2, 9)(2, 12)(2, 15)(2, 16)2(2, 18)(3, 3)3 

(3, 6)3(3, 9)3(3, 12)3(3, 15)3(3, 18)3(6, 6)3 
(6, 12)6(6, 18)3(9, 9)6(9, 18)6(18, 18)6 

38 18 86 - 3+ 1 2 -asforN= 19- 
41 40 816 - '12 +e8 - -4 + 1 6 (1, 1) ...(1, 6)(1, 8)(1, 9)2(1, 10)(1, 11)2 

(1, 12) ...(1, 16)(1, 18)(1, 19)2(1, 20)(2, 2)2 
(2, 4)2(2, 5)(2, 6)2(2, 8)2(2, 10)2(2, 16)2 

(2, 18)4(2, 20)2(4, 4)2(4, 5)(4, 8)2(4, 10)2 
(4, 16)4(4, 20)2(5, 5)4(5, 10)4(5, 15)8(5, 20)4 
(10, 10)8(10, 20)8(20, 20)8 

43 42 812 +e11 _ 99 _ 98 + 6 3 (1, 1) ...(1, 7)(1, 8)2(1, 9)(1, 10)(1, 12) 
- ,E4 - 3 ++ 1 (1, 13)2(1, 14)(1, 15)(1, 18)(1, 20)(1, 21) 

(3, 3)2(3, 6)2(3, 7)(3, 9)2(3, 18)4(3, 21)2 

(7, 7)6(7, 14)12(7, 21)6(21, 21)12 
46 22 ,E10-e9 +,E8 -e + 1 5 - as for N = 23 - 

similarly for F2(t), F3(t), F4(t). Let fk(t), k = 1, ..., 4, be the respective 
terms in braces. We also get 

F5 (t) + t + t2 + t3 + t4)(1-t + t2 t3 + t4)(1 + t4)(1 -t4 + t8). 

The four factors are cyclotomic polynomials of order 5, 10, 8, and 24, respec- 
tively. The first three factors may be disregarded (since the orders are < 16); 
we set 

f5(t) = 1 - + t8. 
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Next we determine gk(t) = fk(l - t), k = 1, ... , 5. For example, 

g1(t) = (16 + 8e - 5 2 - 7c3) + (-128 - 646 + 40c2 + 56c3)t 

+ + (122 - _3)t14 - 16t15 + t16. 

Before computing the various terms of type (8.5), we determine which sets of 
pairs (j, k) would give identical values. We introduce the following notation: 

[j,5 k] := Rt(fj(t) 5 gk(t)) 5 N(j,5 k) := N([j 5 k]). 

From the fact that c2, g4, g6, and 68 are all primitive 5th roots of unity, while 
-10 = 1, we find with (8.8) and the definition of the norm in the cyclotomic 
field of order 5 that 

N(1, 51) = [1, 1][2, 2][3, 3][4, 4], 

and therefore 
N(1, 1) = N(2, 2) = N(3, 3) = Y(4, 4). 

Similarly, we have N(1, 2) = [1, 2][2, 4][3, 1][4, 3], which implies N(1, 2) = 

N(1, 3) = N(2, 4) = N(3, 4); N(1, 4) = [1, 4][2, 3][3, 2][4, 1], hence 
N(1, 4) = N(2, 3), and we expect this number to be a square; N(1, 5) = 
[1, 5][2, 5][3, 5][4, 5], hence N(1, 5) = N(2, 5) = N(3, 5) = N(4, 5). 
Finally, N(5, 5) = [5, 5]4; i.e., N(5, 5) is a fourth power. This covers all 
N(j, k) with 1 < j < k < 5, so we have to compute only a set of representa- 
tives, say N(1, 1), N(1, 2), N(1, 4), N(1, 5), and N(5, 5). This is denoted 
in Table 3 as (1, 1)(1, 2)(1, 4)2(1, 5)(5, 5)4; here, (i, j)k means that N(i, j) 
is a kth power of an integer. 

The resultants [j, k] were computed using MAPLE. For example, 
Rt(f1(t), gi(t)) is a polynomial in e of degree 87, namely, 

r1j1(e) = 923093284287916500122098117549805625 

+ - 523398183742251345117184c87. 

Reduced modulo 05 (e), this is 

rll(e) = 187861240755070540672588378908420225 

- 455396484434167522733374972091035660c3. 

Finally, to find the norm, we compute Rej(rj k (6), 5b5 (9)). This is a number of 
143 digits. The numbers N(1, 2), N(1, 4), and N(1, 5) have 140, 139, and 70 
digits, respectively. N(5, 5) was not computed, but rather Rt(f5(t), g5(t)) = 

N(5, 5)1/4. In a first attempt at factoring, using the MAPLE routine "ifactor" 
with the "easy" option, we obtained 

N(1, 1) = 56 x 612 x 1912 x 556812 x C121, 

N(1, 2) =56 x C136, 

N(1, 4)1/2 = 26 x 53 x C66, 

N(1, 5) = 54 x 37441 x 241561 x P62, 

N(5, 5)1/4 = 28 x 34 x 52 x 72 x 241, 
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where Cn, resp. Pn, denotes a composite number, resp. a prime, of n digits. 
Using the method described in subsection 7, we have further factored C121, 

yielding a composite C71 . The cofactor C61 can be discarded since it is a factor 
of the resultant in (8.3) but not of the essential constant c in (8.2). Then the 
elliptic curve method was used to attempt factoring C66, C71, and C136. After 
using several curves, the first two numbers were completely factored, while only 
a prime factor PI, of C136 was found, leaving the composite cofactor C125 
still unfactored. Hence, we continue with Step 11 of subsection 6. 

The polynomial F22(t) has only one noncyclotomic factor in Z[t], namely, 
the product V'1 (t) = F1 (t) ... F4(t). There is also a cyclotomic factor of order 
24. Hence, 

z11(t) = 1 + 7t2 + 28t4 + 84t6 + + 84t58 + 28t60 + 7t62 + t64 

2 (t) = 024(t) = t8- t4 + 1. 

The determinant in Step 12 is a polynomial of degree 100. We clear it of the 
factors (t2 - 1)6 and obtain 

2 - 20t + 200t2 - 1240t3 + - 1260t85 + 196t86 - 20t87 + t88. 

The resultant Pi (Step 13) has 228 digits, while P2 = 28 x 36 x 54 x 72 x 1 18 x 
73 x 241 x 2521 x 963121. We now evaluate gcd(p1, N(i, j)), j = 1, 2, 4, 5. 
For j = 2, 4, and 5 this is very small. For j = 1 it turns out that the gcd is 
divisible by 

/1(2) = 138 201 523 840 689 613 021 

and that the quotient is a square. The square root is then easy to factor: 

(gcd(pl, N(l, 1)) )1/2 

V /1 (2) J 
53 x 61 x 191 x 55681 x 2292221 x 127238511434 x P33 

where P33 is a prime of 33 digits. V'1 (2) is also a prime. This completes the 
proof of the main theorem for N = 22, with the possible exception of these two 
primes which are entered in Table 2 and eliminated by applying the Wieferich 
test. 

9. Case (ii) of subsection 6, i.e., the case N = 32, is very similar to Case (i); 
only the remarks in ?6.4 have to be taken into account when setting up the poly- 
nomials corresponding to (8.7). The mixed approach discussed in subsection 7 
was used; the norms of the resultants were used to factor the numbers obtained 
by the method of ?7. 

10. Now we consider the case (iii) of the beginning of subsection 6, i.e., N = 
33, 35, 39, 42, 44, and 45. There are no entries in Table 3 for these N since 
the polynomials F,(t) cannot be numbered as in (8.8). 

If N = 33, we have p, = 3, P2 = 11, cl = 2, c2 = 10, c1 is a "second 
root of unity" (?I), and c2 is a 10th root of unity. It follows from ?6.3 that 

(i) if el = 1, then e2 must be a 5th root of unity; 
(ii) if c1 = -1, then c2 must be a primitive 10th root of unity. 
Similarly, for N = 35 we have cl = 4, c2 = 6, c1 is a 4th root of unity, 

and c2 is a 6th root of unity. Then 
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(i) if e1 = 1 or -1, then e2 must be a 3rd root of unity; 
(ii) if 81 = i or -i, then 82 must be a primitive 6th root of unity. 
The remaining cases are set up in a similar manner. In practice, the poly- 

nomials F,(t) in all these cases are computed similarly to (8.7), but taking 
the above remarks and (6.3) into account. From these one can proceed almost 
exactly as before. 

The cases N = 33, 35, and 45 are completed in Step 16. For N= 39, 42, 
and 44 we have to continue to Step 19, using the matrices D39(l 1, 1, 2, 2, 2, 
1, 1 1,2 1, 1), D42(2, 1, 1,2,2,2), and D44(1, 2, 1,2, 1,2, 1,2,1,1), 
respectively. Step 20 for N = 39, 42, 44', and 45 yields only small additional 
exceptional primes, i.e., primes below Coppersmith's bound (2.2). 

9. PROBABILITY CONSIDERATIONS 

1. The main result in [12] (see Theorem 2.4 above) is an extremely restrictive 
condition on a prime / for which (FLT I), fails. This fact was translated into 
a probability statement in [12, ? 11]. Similarly, we will use our main theorem 
to derive an improved (heuristic) probability result for (FLT I) to fail. 

We assume in this section that 1 > 7.568 x 1017 (see (2.2)), and that 1 < N < 
46. Our main assumption is that the values of the s(k, N), 0 < k < N - 1, 
are randomly distributed (mod 1), subject to the three conditions (3.2), (1.3), 
and (2.1). For example, (3.2) implies with N = 1 and k = 0 that s(0, 1) 0 
(mod l) . With N = 2 and k = 0 we have s(0, 2) _ -s(1, 2) (mod l) . 

2. We will calculate the probability fl(N) of the statement "s(k, N) 0 
(mod 1) for each 0 < k < N - 1 provided that s(k, M) _ 0 (mod 1) for each 
integer M 1 < M< N, MIN, andforeach 0< k < M- 1". 

Since there are / residue classes (mod 1), we have 

(9.1) P/(N) - I-b(N) 

where b(N) is a nonnegative integer. By the remarks at the end of the previous 
subsection, we clearly have b(1) = 0 and b(2) = 1. If N is an odd prime, 
N = p, then conditions (1.3) and (2.1) pose no further restrictions. Hence, 

(9.2) b(p) = (P - 1 ) = 2 0(P) 

for an odd prime p. 
If N is composite, then the situation is a little more complicated. According 

to condition (3.2) we need to consider only the sums s(k, N) for 0 < k < 
(N- 1)/2. Let ko = 0, and 1 < kA < k2 < < km < N be integers with 
gcd(ki, N) > 1 (then m = N- 1 - v(N)). 

If N is even, then we have the following homogeneous system of linear 
congruences with unknowns s(k, N): 

ki+1 - I 0 N<y o(N)_ 
Z s(k, N)-0 (modl) 0 < i < - 2 1; 

k=ki 
N/2-1 

E (N - 2k - 1)s(k, N) 0 (mod /) 
k=O 
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and similarly when n is odd. The first system (N even) has I (p (N) - 1 free 
unknowns, and the other one (N odd) has '(p(N) - 2 free unknowns. This, 
together with (9.2), gives b(1) = 0, b(2) = 1, and for N > 2 

o(N) if N is prime, 

(9.3) b(N) (N)- 1 if N is even, 

(p(N) - 2 if N is odd, composite. 

3. Let p(N) denote the probability of the assertion "s(k, M) 0 (mod l) for 
all 1 <M <N and for all 0< k <M- 1". Then we have with (9.1), 

N N 

(9.4) p(N) = /3 fl(M) = l-y(N) y(N) E b(M). 
M=1 M=1 

With (9.3) we now compute y(46) = 284. 
Let B be an integer larger than all exceptional primes for 1 < N < 46. Then 

the probability that (FLT I), fails for at least one / > B is 

Z 1-284 < x-284dx = 28B 283. 

j dx = 283 

Here we can clearly take B = 7.568 x 1017 (Coppersmith's bound), and we 
obtain a probability of less than 0.7 x 10-5062 for (FLT I), to fail for a prime 
1. This probability is essentially lower than what one can obtain by means of 
Fermat quotients. For instance, Granville and Monagan's result (Theorem 2.4) 
gives the term 1-24. 

10. CONCLUDING REMARKS 

1. The criterion (1.5) can be rewritten in terms of generalized Bernoulli num- 
bers. Indeed, let B , n be the nth generalized Bernoulli number belonging to 
the residue class character X modulo N. Then the well-known connection with 
the ordinary Bernoulli polynomials gives 

(10.1) B = Nl-2 E X(k)B () 
k=O 

Since :N- IX(k) = 0, we have 

Bxll = Nl-2 , X (k) B_ lk-N - Bl- I } 0 (mod 1) 

by (1.5). Hence we have 

Corollary 10.1. If (FLT I), fails, then we have BX,Ii- _ 0 (mod/) for all 
nontrivial Dirichlet characters X modulo N, 3 < N < 46. 

Remarks. (1) Since B,n = 0 for odd characters X and even numbers n, 
Corollary 10.1 is meaningful only for even characters X. 

(2) Corollary 10.1 is in fact true for the wider class of generalized Bernoulli 
numbers belonging to a periodic arithmetic function f with period N and 
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satisfying f( 1) + + f(N) = 0. These numbers can be defined by (10.1), with 
f in place of X. 
2. Eisenstein's formula (3.3) and the Wieferich criterion (Theorem 2.1) imply 
that if (FLT I), is false, then the alternating sum on the right-hand side of 
(3.3) is congruent to zero (mod 1). The following corollary can be considered 
as a generalization; it follows immediately from Proposition 3.3 and the main 
theorem. 

Corollary 10.2. If (FLT I), fails, then 

E f(nn 0 (mod 1) 
n=1 

for all periodic arithmetic functions f with period N, 1 < N < 46. 

3. In view of the criteria of Wieferich and others (see ?2), the Fermat quotients 
q1 (a) (with l t a) have been studied quite extensively, mainly in connection with 
the congruence q1 (a) _ 0 (mod 1). In the remainder of this section we will 
discuss some computations done with the sums s(k, N), in relation to Fermat 
quotients. 

First we consider the case a = 2. An odd prime / with the property q1 (2) _ 0 
(mod 1) is called a Wieferich prime. At present, only two such primes are 
known: 1 = 1093 and 1 = 351 1. 

Lerch's congruence (1.3) shows a close relationship between the Fermat quo- 
tients and the sums s(k, N). We can use this to prove the following 

Proposition 10.3. Let 1 be an odd prime. Then the following are equivalent: 
(a) 1 is a Wieferich prime; 
(b) s(0, 2) 0 (mod/); 
(c) s(0, 4) _0 (modl1); 
(d) s(l, 4) _0 (modl1); 
(e) s(l1, 6) _0 (mod l) . 

Proof. From (1.3) we get, with N= 2, 

(10.2) s (1, 2) 2q1 (2) (mod 1), 

and (3.2) gives 

(10.3) s(0, 2) -2q,(2) (modl). 

Now we consider N = 4. First, by definition of the s(k, N) we have s(O, 2) = 
s(O, 4) + s(1, 4), and therefore, with (10.3), 

(10.4) s(O, 4) + s( 1, 4) -- -2q,(2) (mod l). 

Furthermore, by (3.2) we have s(2, 4)_-s(l, 4) (modl) and s(3, 4)_-s(O, 4) 
(mod 1); hence (1.3) with N = 4 gives 

(10.5) 3s(0, 4) + s(1, 4) _ -4q1(4) -8q1(2) (mod l), 

where we have used the logarithmic property (2.1). By subtracting (10.4) from 
(10.5) we obtain 

(10.6) s(0, 4) - -3q1(2) (modl), 
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and with (10.4) we get 

(10.7) s(1, 4) _ q1(2) (mod l). 

Next we consider N = 6. The congruences (1.3) and (3.2) give 

(10.8) 5s(0, 6) + 3s(1, 6) + s(2, 6) -6q1(6) -6q1(2) - 6q1(3) (modi) . 

We rewrite (10.3) as 

(10.9) s(?' 6) + s(1, 6) + s(2, 6) _ -2qi(2) (modi), 

subtract (10.9) from (10.8), and divide by 2, to get 

(10.10) 2s(0, 6) + s(1, 6) _ -2q1(2) - 3q1(3) (modl). 

Now (1.3) and (3.2) with N= 3 give 

(10.11) 2s(0, 3) -3q1(3) (modl), 

which can be rewritten as 2s(0, 6) + 2s(1, 6) _ -3q,(3) (modl). Subtracting 

(10.10) from this, we finally obtain 

(10.12) s(1, 6) - 2q1(2) (mod l). 

This completes the proof, with (10.3), (10.6), and (10.7). 0 

Remark. With (10.11) we see that Proposition 10.3 has an obvious analogue 
connecting the "Mirimanoff primes" (see Theorem 2.2) with s(0, 3). 

For a Wieferich prime / we also have 

q1 (8) _ q1 (1 6) _ q1 (32) _ 0 (mod 1) . 

In [24] it was mentioned that for the two known Wieferich primes we have 

s(k, 8) # 0 (modl1), 0 < k < 3. 

By computer calculations we found that the same is true also for N = 16 
(O < k < 7) and N = 32 (0 < k < 15). In fact, we found that among the 
sums s(k, N), 2 < N < 46, 0 < k < (N- 1)/2, only the cases mentioned 
in Proposition 10.3 are congruent to zero (mod 1093), while for / = 3511 we 
have in addition s(9, 33) _ 0 (mod 351l1). 

4. Apart from the two Wieferich primes, we investigated the known pairs 
(N, l) for which q1(N)-0 (mod/) with 3 < N < 46 and N < 1. A table of 
such pairs, where N is prime, is given in [22] (p. 276; also with references to 
the sources). A similar table for composite N can be found in [6] and in the 
recent update [19]. 

According to these tables we have q1(3) _ 0 (mod/) for / = 11 and / = 

1006003; therefore, by (10.11), s(0, 3) _ 0 (modl) for these two primes. 
However, no other sums s(k, N) (0 < k < (N - 1)/2, N < 46) were found 
to be congruent to zero (modl) for any pair (N, 1) from the tables, although 

q, (N) _ (modl1) . 

5. The sums s(k, N), 2 < N < 46, 0 < k < (N- 1)/2, were computed 
for all odd primes / < 2000 (N < 1). For each such N, with the exception 
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of N = 5, there exist 0 < k < (N- 1)/2 and a prime / < 2000, N < 

1, such that s(k, N) -0 (modl). On the other hand, we found only three 
instances where for the same / and N two sums are 0 (mod 1). These are: 
s(3, 40) s(9, 40) - 0 (mod131); s(0, 24) _ s(4, 24) _ 0 (mod137); and 
s(1, 17) s(5, 17) (mod l381). 

6. We call a prime / > 7 a Vandiver prime (see Theorem 2.3) if s(0, 5) _ 0 
(mod/) or s(1, 5) 0 (modl), i.e., if 

[1/5] 1 [21/5] 1 

E Z _ 0 (modl) or E . = 0 (modl). 
j=1 j=[l/5]+l 

We also note that according to the main result in [26], we have for 1 > 5 

2 1 

where Fn is the nth Fibonacci number (Fo = 0, F1 = 1, Fn+2 = Fn+l + Fn 
for n > 0) and (5/i) is the Legendre symbol. 

P. L. Montgomery [19] reports no solution of Fl-(s/l) 0 (modl2) with 
/ < 232. We inspected s(0, 5) (modl) and s(1, 5) (modl) with / < 200000; 
no solution of s(1, 5) _ 0 (mod 1) was found. The values (mod 1) appear to 
be randomly distributed. A curious case occurs at / = 24179, where s(0, 5) 
1 (mod l) . (In this case, s(1, 5) _ 11776 (mod l) .) 

7. Next we derive a result, similar to our main theorem, which involves a 
substantially shorter interval of summation. 

Proposition 10.4. If (FLT I), fails, then 

[1/45] 1 

(10.13) E .0 (modl). 
j=[1/46]+1 

Proof. By the main theorem we have s(0, 45) _ s(0, 46) _ 0 (mod/) if 
(FLT I), fails. The sum (10.13) is the difference of these two sums and is 
therefore congruent to zero (mod 1) as well. 

We computed the sums (10.13) for all primes / < 2 x 106; note that even 
the largest primes in this range have less than 1000 terms in the corresponding 
sums. Also, the sum cannot be zero unless it has at least three terms; i.e., 
[1/45] - [1/46] > 3. This is certainly true when 1/45 - 1/46 > 2, i.e., / > 4140. 
Hence it is sufficient to begin with the following prime, / = 4153. No zero sum 
was found. 5 

8. Finally in this section, we remark that the numbers BI-, (k/N) - BIB1_ I 
in (1.5) have recently been subject to some investigation; see [2] and [3]. In 
[3], for example, a von Staudt-Clausen type result is derived. It should be 
noted, however, that these results concern the denominators of the numbers in 
question, while (1.5) is a condition concerning the numerators. 

On the other hand, some remarkable congruence results for the left-hand side 
of (1.5), involving linear recurrence sequences, were discovered very recently; 
see [33]. 
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