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ABSTRACT. The 3x + 1 function T(x) takes the values (3x + 1)/2 if x is 
odd and x/2 if x is even. Let a be any integer with a # 0 (mod 3). If 
iCa (x) counts the number of n with In I < x which eventually reach a under 
iteration by T, then for all sufficiently large x, 7Ca(X) > x 81 . The proof is 
based on solving nonlinear programming problems constructed using difference 
inequalities of Krasikov. 

1. INTRODUCTION 

The 3x + 1 problem concerns the iteration of the function T: Z -* Z defined 
by 

3X+( if x 1 (mod 2), 

(.= x if x _ (mod 2). 

The 3x + 1 conjecture asserts that, for all n > 1, some iterate T(k) (n) = 1 (see 
[4]). This paper studies, for a e Z, the function 

(1.2) 7ra(x) = #{n: inj < x and some T(k)(n) = a, k > 0}. 

It is well known that the growth of 7Ea(x) depends on the residue class of 
a (mod 3). If a 0_ (mod 3), then the preimages of a under T are exactly 
{2ka: k > 0}; hence 7Ea(x) grows logarithmically with x. Consequently, we 
assume a 4 0 (mod 3), and our object is to prove lower bounds of the form 

(1.3) 7ra(X) > x7 for x > xo(a), 

for some constant y > 0. In part I we showed one can take y = .65 using an 
approach initiated by Crandall [2] and extended by Sander [5]. 

In this paper we derive bounds (1.3) using systems of difference inequalities 
found by Krasikov [3]. For each k > 2 there is a system 5Jk of such inequali- 
ties; Krasikov [3] used >J2 to obtain y = .43 in (1.3), and Wirsching [6] used 

J3 to obtain y = .48. We extract information from the inequalities Jk, by 
constructing families of auxiliary linear programs whose entries depend (non- 
linearly) on a parameter ) := 2y . These linear programs have the property that 
a nonzero feasible solution yields a proof of (1.3) for its associated value of y. 
In this fashion, using a well-chosen linear program derived from X9, we obtain 
by a computer-assisted proof the following result. 
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Theorem 1.1. For each a 0 0 (mod 3), there is a positive constant ca such that 

(1.4) 7ra(x) > cax8l for all x > a. 

The proof of Theorem 1.1 consists of writing down the linear program and 
an explicit nonzero feasible solution. This proof is too long to write down 
conveniently, as the linear program has (39 - 1) variables. In ?3 we indicate 
how the linear program is obtained. 

The Krasikov inequality approach for bounding y in (1.3) appears superior 
to the tree-search approach studied in part I. The weakness of the tree-search 
approach is that it does not make full use of the fact that the leaves of the 
trees are somewhat well distributed in congruence classes (mod 3k), so that 
the worst-case behavior assumed in the estimate of Theorem 2.1 of [1] cannot 
occur. Krasikov inequalities capture this "mixing" effect to some degree, even 
while searching to a much smaller depth k. On the other hand, the Krasikov 
inequality approach cannot give bounds for the quantities nk(a) studied in part 
I, nor does it seem adaptable to obtain any sort of upper bound estimates. 

In ?4 we discuss Krasikov's conjecture that, for any e > 0, a bound of the 
form 

(1.5) 7ra(X) > x1 for x > xo(a, e), 
is implied by the inequalities 4k, for sufficiently large k. The numerical ev- 
idence strongly suggests that this is true. We indicate obstacles to obtaining a 
rigorous proof of (1.5). 

2. KRASIKOV-BASED LOWER BOUNDS 

Krasikov [3] developed a set of difference inequalities for counting the num- 
ber of 3x + 1 iterates below a given bound. Define 
(2.1) 

7r*(x) := #{n: InI < x, some T(i)(n) = a, all IT(')(n)l < x for 0 < i < j}. 

Note that 7ra(x) < 7Ea(X). For each residue class m (mod 3k) with m 0 0 
(mod 3), Krasikov defines the function 

(2.2) q$m(y) := inf{7r*(2ya): a _= m (mod 3k) and a is not in a cycle}. 

This is well defined because there always exists some a _ m (mod 3k) not in a. 
cycle, namely a = 21 for suitable I 1> 3, because 2 is a primitive root (mod 3k) 
for all k > 1. The definition immediately implies that 

(2.3) Om , (y) = min{I m(y), q$M +3k I(y) ,qm+23k-I(y)} 

and also that 

(2.4a) q$m(y) is a nondecreasing function of y, 

(2.4b) qk (y) > 1 for y > 0. 

'The infimum in (2.2) is actually attained by some a = 21. The infimum is attained because 
Om (y) is integer-valued, so let ao be the minimal choice of a _ m (mod 3k) attaining it, and 
let j be maximal with T(J)(n) = ao, for any n counted in 7r* (2Yao). It suffices to choose 
2l-ao (mod 3j+k) . 
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It is easy to see that 

(2.5) Xkm(y) = 02m(y _1), if m =-I (mod 3), 
and this relation can be used to express information purely in terms of q5m(y) 
with m _ 2 (mod 3). Krasikov's inequalities2 are as follows. 
Proposition 2.1. Set a = 10g2 3 1.585. Then, for all k > 2 

(2.6a) Om (y) > q4m(y -2) + k-4172)/3 (y + a - 2) if m 2 (mod 9), 

(2.6b) Omq(y) > q4m(y-2) if m 5 (mod 9), 

(2.6c) Om$(y) > 04m(y-2) + (2m-1)/3 (y+a- 1) if m 8 (mod 9). 

Proof. Let (T*)>1 denote the inverse operator to T on the domain {n: n 1 
or 2 (mod 3)}, which is 

(T*)-1(\(n f {}2n if n 1, 4, 5, or 7 (mod 9), 
l {2n, 2n'71} if n 2 or 8 (mod 9). 

The inequalities essentially encode (T*)-1 iterated the minimal number of 
times necessary to give images in the set {n: n _ 2 (mod 3)}, which is 

J {4n, 4n 2} if n 2 (mod 9), 
(T**)-1(n) = {4n} if n 5 (mod 9), 

1 {4n, 2n31} if n 8 (mod 9). 
For more details, see [3, Lemma 4]. 0 

For convenience in what follows, we use the abbreviation 
(2.7) [3k] := {m (mod 3k): m =_ 2 (mod 3)}. 

Let Jk denote the system of inequalities (2.6) for {q$m(y): m E [3k]}. We 
want to use these difference inequalities to get lower bounds for the m (y). 
These inequalities relate the functions O5m at a value y to Om' at other values 
y some of which are retarded values y' < y, while others are advanced values 
y' > y. We cannot immediately extract lower bounds, owing to the presence 
of advanced values. We can get lower bounds directly from sets of inequalities 
containing no advanced values. Property (2.4) allows us to obtain weaker in- 
equalities containing only retarded values, by replacing each y' > y with the 
value y - Iu for some Iu > 0. We call this replacement operation Iu-truncation. 

Next, note that the right sides of the inequalities (2.6a)-(2.6c) involve only 
with n _ 2 (mod 3). We can obtain new inequalities by replacing any 

term qJ (y') appearing on the right side of such an inequality by substituting 
the Krasikov inequality (2.6) for q5(y'). We call this procedure splitting the 
term. Splitting operations can be applied repeatedly, in many possible orders. 

We consider the following general method to obtain a set of inequalities start- 
ing from the 3k-1 inequalities Jk. Perform some finite sequence of splittings 
of terms for each of these inequalities, and after this, ,u-truncate each inequality 
to obtain a system of 3k- inequalities of the form 

(2.8) Om (y) > E q $j(y - ai), all m E [3k] 
iEIm 

2Krasikov actually proves the slightly stronger bound Om (y) > 04m (y - 2) + [y + a], if m _ 
5 (mod 9), but we will not make use of this. 
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Here, each Im is a different finite indexing set, and in this system of inequalities 
all arguments are strictly retarded, i.e., all a*i > 0. As an example of this method 
applied to a single inequality, start with 

+23(y) > O"3(y - 2) + O8(y + a - 1), 

split the last term to obtain 

+26(y) > 023 (y - 2) + 0(y + a - 3) + 02(y + 2a - 2), 

then split the second term to obtain 

0236(y) > 023 (y - 2) + 02(y + a - 5) + 02(y + 2a - 2) 

then ,u-truncate to get 

026(y) > ?23(y - 2) + 02(y + a - 5) + 2(y 7). 

For a fixed k, one can obtain infinitely many different systems (2.8) by this 
method. It is important that ,u > 0, to apply Theorem 2.1 below. 

Let YH denote a system of 3k-I inequalities (2.8) obtained by this method, 
where ,u indicates the value of the ,u-truncation parameter. Any such system 
potentially yields exponential lower bounds for all Om (y), of the form 

Om$(y)>ac7mAY, 
ally>0, 

where a > 0 and A > 1 is fixed, by associating to it a linear program (LA) 
given by 

maximize c2 
(2.9a) cm < Zi' c1i'-a, all m E [3k], 
(2.9b) 1c7< 33, /-= 0, 1, 2, all n E [3J], 1 < j < k- 1, 

(LA) 
(2.9c) c7, o,0 all n E [3j] , 1 < j < k,5 

(2.9d) C2 < 1. 
> 0 

The key ingredients in this linear program are (2.9a) and (2.9b), which encode 
a reversing of the inequalities (2.8) and the inequalities (2.3), respectively. 

Theorem 2.1. Suppose that the linear program (LA) associated with a system 
of inequalities (2.8) has a feasible solution with C2 > 0. Then ci > 0 for all 
n E [3j], 1 < j < k, and there exists a positive constant a such that 

(2.10) (q$y) > acinY, all y > 0, 

for all n E [3j], 1 < j < k. 
Proof. Let ,i = min{ai: i in some Im}, and note that necessarily ,i > 0 
because ,u-truncation was used. We prove, by induction on the integer 1, that 
(2.10) holds for all y E [0, Ii]. To handle the base case, define the integer M 
by 

(M- 1),u < max{ai: i in some Im} < MP. 
Since 07(y) > 1, if we choose a > 0 small enough, then (2.10) will hold for 
all y E [0, M,u]. For the induction step, suppose 1 > M and that (2.10) holds 
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on [0, li]. If y e (1if, (1 + 1),], then all y - ai E [0, li], and the induction 
hypothesis and (2.9a) give 

4)k~~~M (y) - >l( ai) 
lEIm 

> Z acmi),y-a, = aYL( CkM,-a, 
iEIm iEIm 

* ackmAy, all m E [3k]. 

It remains to treat 07 (y) having 1 < j < k . We proceed by a second, downward 
induction on j, the base case j = k being proved. Now suppose case j + 1 is 
proved; then 

07$(y) = min(qn$I (y), qn+3ij(y) qn+2$3J(y)) 

> min(acjn+,Ay, aCjn++3Ay, aCjn+23JY) 

=a%ymin(cjn+i, cn+3J cn++23J) 

> acinAy, all n E [3J], 

using the induction hypothesis and (2.9b). This completes the second induction 
which in turn completes the first induction. Finally, c2 > 0 implies that all 
cjn > 0, on using (2.9b). 0 

We now have two problems: first, for a given system YH to maximize the 
allowable value of Ai, and second, to find that system Y8 maximizing this 
quantity. We consider these in order. 

For any fixed system Y8 given by (2.8), if it has a solution with c2 > 0O it 
has one with c2 = 1 by rescaling the variables. Hence the problem of finding 
the maximal A attainable using Theorem 2.1 is just the nonlinear programming 
problem 

{ maximize ) 
(N) (LA) has a feasible solution with c2 = 1. 

Let A* () denote the optimal value of (N); note that this value is attained. 
We let ,u - 0 and consider the limiting system obtained with ,u = 0, since one 
has 

lim A* (ym) = A* (Yo) 

However, for the limiting system X0 we can only conclude via Theorem 2.1 
that there are values Cj > 0 such that for each e > 0 there is some a(e) > 0 
with 

+7(y) > a(g)cj(A* (Y))('-6)Y, all y > 0. 
To solve the system (N) for a given X0, we treat it for each fixed value of A as 

a linear programming program (LA) and see if the optimal solution3 has c2 > 0. 

Now we numerically locate an approximation A* (Y) to the maximal value 

3Since all the constraints in (L,A) are homogeneous except the last constraint c2 < 1 , and since 
taking all cJ = 0 is always a feasible solution, the optimal solution has either c2 = 0 or c2 = 1 . 
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A* (Y2) by a bisection search, starting from the a priori bounds 1 < A* < 2, 
such that 

(2.11) )*(Y) ? )*(o) ? )*(?) + 10-6. 

The a priori upper bound A* < 2 follows because a 3x + 1 tree has at most 
two branches at each node, hence no more than 2k nodes at depth k; hence 
all Om (y) < 2y . We discard any system X0 having A* < 1. 

It remains to choose X0 to maximize A* (X0), over all systems X0 derivable 
from Krasikov's inequalities Jk. This seems to be a difficult problem which 
very likely does not have a nice answer. The splitting procedure and the ,u- 
truncation operation interact in a complicated fashion, as we now show. 

3. SOLVING LINEAR PROGRAMS 

We consider several splitting procedures based on heuristic splitting rules. 
The simplest case to consider is No Splitting: directly ,u-truncate the original 

inequalities (2.6). The resulting values A* (YO) appear in Table 3.1, up to k = 9. 

TABLE 3.1. Krasikov lower bounds: No Splitting 

k Yk 
2 1.330924 0.412428 
3 1.455956 0.541967 
4 1.506537 0.591237 
5 1.523923 0.607790 
6 1.543372 0.626086 
7 1.553768 0.635771 
8 1.561429 0.642867 
9 1.568114 0.649031 

This table gives also the corresponding value for y in (1.3), which is computed 
for A=)**(Zo) by 

(3.1) y = 120() = Aogi 
log 2' 

In Table 3.2 we give an optimal solution to the linear program (LA) for k = 2 
and 3, for A = A* (O)X 

TABLE 3.2. Optimal L. P. solution: No Splitting (k = 2, 3) 

c22= 1.771362 c2 = 2.516443 C35 = 1.037679 c8= 1.489515 
C5 = 1.000000 c I1 = 2.119809 C34 = 1.187108 C7 =2.679816 

c8 =1.564538 c20 = 2.199682 C23 = 1.000000 c26= 1.961256 
depthk = 2 depth k = 3 

A theoretical upper bound for the value of A* (y) attainable using the No 
Splitting rule on 4k for any k is A - 1.596823, the positive root of 

(3.2) 1 = j2+(2 2+ 1), a=log23. 
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To show this, note that (2.9b) implies that 

(3.3) Ckn1 < I 
(Ckn + Ckn+ + Ck+23 k). 

The No Splitting inequalities (2.9a) are 

(3.4a) Cm < C4m + c(4m-2)/3 A -2 if m 2 (mod 9), 

(3.4b) Ckm < c4m if m-5 (mod 9), 

(3.4c) Ck ? Cm + c(2m-1)/3 if m 8 (mod 9). 

Let 
Ck= Z ck. 

mE[3k] 

Then, adding up all the inequalities (3.4) over {m: m E [3k]} and substituting 
(3.3) on the right side of the resulting inequality yields 

Ck < CkA 2 + lCk(,a-2 + 1). 

Since ek > 0, the upper bound (3.2) on A follows. The k = 9 bound in Table 
3.1 is quite close to the upper bound A - 1.596823. 

Next we consider the effect of splitting some terms in (2.6). We start with 
Advanced Splitting: if a term cj(y') is advanced, i.e., y' > y, then split it. 
Do this until no more splitting is possible, which occurs when all remaining 
advanced terms are c2. Advanced Splitting appears reasonable because ,u- 
truncation only weakens advanced terms. The resulting optimal values A*(Yo) 
and exponents y for Advanced Splitting appear in Table 3.3. It shows that 
splitting terms helps in getting better exponent bounds, and these bounds exceed 
the theoretical limit possible using the No Splitting rule. 

TABLE 3.3. Krasikov lower bounds: Advanced Splitting 

k A* 
k | Ak | Yk | 

2 1.330924 0.412428 
3 1.454167 0.540193 
4 1.533045 0.616400 
5 1.598484 0.676704 
6 1.651222 0.723534 
7 1.688407 0.755663 
8 1.716310 0.779311 
9 1.738468 0.797817 

In Table 3.4 we give optimal solutions to the linear program (LA) for k = 2 
and 3 for A = A*(YO) 

TABLE 3.4. Optimal L. P. solution: Advanced Splitting (k = 2, 3) 

c2 = 1.771362 c2 = 2.665871 c5= 1.193517 c8= 1.809290 
c5 = 1.000000 cl = 2.114611 c4 =1.260696 c7 =2.661316 

c8 = 1.564538 c32 = 2.523814 c23 = 1.000000 c26= 2.061603 
depth k = 2 depth k = 3 
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TABLE 3.5. Krasikov lower bounds: 8 (mod 9) Splitting 

k k | Yk | 

2 1.353400 0.436589 
3 1.527333 0.611015 
4 11.583694 0.663294 
5 1.641865 0.715335 
6 1.674310 0.743566 
7 1.702186 0.767388 
8 1.727744 0.788890 
9 1.746603 0.804552 

This splitting rule is not optimal. In the case k = 2 it fails to do as well 
as Krasikov's bound y = .43, which he analytically derived from the k = 2 
inequalities. 

We next consider 8 (mod 9) Splitting: split every term cin(y) having n- 
8 (mod 9), and also split any advanced term that can be split. For k = 2 
this agrees with the splitting rule that Krasikov [3] implicitly used. The bounds 
we obtain for A* (YO) for 8 (mod 9) Splitting are given in Table 3.5; they are 
superior to the Advanced Splitting bounds. 

In Table 3.6 we give the optimal solutions for k = 2 and 3 for the linear 
program (LA) for A = A*(,o), and in Table 3.7 we give the value for k = 4. 
We notice a regularity in these optimal solutions, namely that all cn = 1 when 
n _ 8 (mod 9). It seems nonintuitive that splitting all 8 (mod 9) functions, 
even when they have a retarded argument, yields a larger value of A* (sO) than 
that obtained by not splitting terms with a retarded argument, but it so proves. 

TABLE 3.6. Optimal L. P. solution: 8 (mod 9) Splitting (k = 2, 3) 

c2= 1.831692 c 2 = 2.701465 C5 = 1.064138 c8 
- 1.000000 

c5 = 1.000000 c 1 = 2.332747 c34 = 1.158062 c17 = 1.000000 2 1.000 31 3 
c8 = 1.000000 c20 = 2.482365 c23 = 1.000000 c26 - 1.000000 
depth k = 2 depth k = 3 

We experimented with Partially Optimized Greedy Splitting: for each given 
inequality, compute which single terms will increase A* when split individually, 
then split all of these simultaneously for all inequalities, and iterate until either 
A* does not increase or else no more single terms improve A* when split. In 
fact this procedure continued to improve A* in smaller and smaller increments 
with no sign of terminating, so we halted the process when A* increased by less 
than .0001 in one step. This method improves on 8 (mod 9) Splitting for all 
k > 4 that we tried. However, the regularity in an optimal solution of (LA) 
that all cj= 1 when n _ 8 (mod 9) does not hold. For k = 9 it gave the 
exponent y = .810454 when we halted it. The resulting linear program4 gives 
a proof of Theorem 1.1. 

4Implementations of Partially Optimized Greedy Splitting are sensitive to roundoff error in 
implementing the decision rule for which terms to split, so that our particular computation may not 
be easily reproducible. The splitting rule used in 8 (mod 9) Splitting avoids this issue, allowing 
the exponent .804 to be more easily checked. 
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TABLE 3.7. Optimal L. P. solution: 8 (mod 9) Splitting (k = 4) 

c2 = 3.179753 c5 = 1.313029 c8 = 1.000000 
c29 = 2.790878 c32 = 1.434117 c35 = 1.000000 
c56 = 3.354117 c49 = 1.237611 c62 = 1.000000 

ci1 = 2.588165 c44 = 1.337320 c47 = 1.000000 
c38 = 2.647338 c41 = 1.267799 c44 = 1.000000 
c65 = 2.508088 c68 = 1.112751 c71 = 1.000000 

c20 = 3.293192 c23 = 1.031927 c26 = 1.000000 
c47 = 3.596892 c50 = 1.055520 c43 = 1.000000 

c74 = 3.104038 c77 = 1.000000 c80 = 1.000000 

2 (mod 9) 5 (mod 9) 8 (mod 9) 

Finally we considered Ultimate Splitting: continue splitting until all terms 
are c2 for various values of j. At each level there remain theree variables 
CJ2+ J,cJ2+2 3J, and the latter two are then eliminated by substituting the 
inequalities (2.3) for them. In this way we get a linear program (LA) that in- 
volves only the k variables {cj: 1 < j < k}. Table 3.8 gives the values of 
A* (Y) and y obtained, up to k = 6. It seems evident that the exponents y 
are converging to a limit below 1. This procedure splits an exponential num- 
ber of times and, empirically, Table 3.8 indicates that this discards too much 
information to get y -- 1 as k -- oc. 

TABLE 3.8. Krasikov lower bounds: Ultimate Splitting 

k k Yk 

2 1.353400 0.436589 
3 1.527463 0.611137 
4 1.530090 0.613616 
5 1.530094 0.613620 
6 1.530094 0.613620 

4. KRASIKOV'S CONJECTURE 

Krasikov [3] conjectures that, for any e > 0, bounds of the form 

(4.1) 7ra(x) > x1-6 for x > xo(a) 

can be derived from the Krasikov inequalities (mod 3k), for sufficiently large 
k. This seems undoubtedly true. The result could potentially be rigorously 
proved by guessing a feasible solution to a suitable family of linear programs 
(LA) derived by the method of ?3. To do this, one hopes to find systems of 
inequalities (2.7) such that (LA) has regularities in the optimal solutions of 
such linear programs. 
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TABLE 4.1. Krasikov lower bounds: No truncation of advanced 
terms 

k k | kX 

2 1.353400 0.436589 
3 1.527595 0.611262 
4 1.612286 0.689108 
5 1.662760 0.733580 
6 1.694451 0.760818 
7 1.720191 0.782569 
8 1.744963 0.803196 
9 1.761532 0.816831 

What is the limit of the linear programming method using just the Krasikov 
inequalities Jk of level k ? Consider the following linear program (LkNT) which 
does no truncation: 

maximize cl 
cm7 < c4mA-2 + C(4m-2)/3).-2 if m 2 (mod 9), 

Ckm c Ck4mA-2 if m_5 (mod 9), 
(NT) ckm < Ck4mA-2 + C(2ml1)/3A1 if m 8 (mod 9), 

|jn Cy cy++ I all n E [3j], / = 0, 1, 2; 1 < j i k-1, 

nCJ >?0, all ne[3'], 1 <j< k, 
c2 < 1. 

Now maximize A where (LNT) has a feasible solution with C2 = 1 . Approxi- 
mations A* (LkT) to the resulting quantities A* (LkT) are given in Table 4.1, for 
2 < k < 9. The values in Table 4.1 exceed all the lower bounds in ?3. 

It seems intuitively reasonable that the bounds A* (LNT) should be theoretical 
upper bounds for the optimal value of A for any linear program (LA) obtained 
by splitting from (2.6) with fixed k, with no truncation done. So far, we cannot 
prove this, although it is true on all examples we computed. However, we 
also have examples showing that, for linear programs (LA) derived by splitting 
alone, with no truncation done, splitting a term can sometimes increase A* . For 
definiteness we state a weaker conjecture. 

Conjecture 4.1. For any linear program (LA) derived by repeated splitting from 
the Krasikov inequalities fikj (possibly using also J1 for 1 < 1 < k) and then 
truncating, one has 

A*(LNT) > A*(L,). 

We note that A* (LNT) are strictly increasing in k. This property is easy 
to prove, for a feasible solution to (LNT) can be constructed from a feasible 
solution to (LNTI) by letting 

m cm+3k1 - m+2-3k-I m 
Ck fCh k t Ck f s Ckan 

for all m E [3k]. Furthermore, this feasible solution can be shown to be not 
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optimal5 for (L T), hence 

(4.2) k > kl) 

The nontruncated linear program (LNT) is of a particularly simple form. If 
Conjecture 4.1 is true, then a necessary condition for Krasikov's Conjecture to 
hold is 

(4.3) A*(LNT) - 2 as k - oo. 

Now consider (LNT) and introduce the averaged variables: 

(4.4) Cjk 1 m. 
mE[3Y] 

Adding up all the Jk-equations in (LNT) yields 

(4.5) Ck,k < Ck,ki + 3Ck-l,k(,- + a2) 

At an optimal solution of (LkT), all of the m -= 2, 5, 8 (mod 9) inequalities in 
(LkNT) must hold with equality; hence (4.5) then holds with equality. Conversely, 
if (4.5) holds with equality for a feasible solution of (LkT), so must all of 
the m = 2, 5, 8 (mod 9) inequalities in (L NT). It follows that a necessary 
and sufficient condition for (4.3) to hold is that (L T) have optimal solutions 
satisfying 

(4.6) Ck-l,k-, 1 ask- . 
Ck ,k 

Can any of the splitting methods of ?3 be used to prove Krasikov's Conjec- 
ture? By (3.2), the No Splitting inequalities are not strong enough to yield (4.1). 
A proof of (4.1) definitely requires that some kind of nontrivial splitting rule 
be used. Both Advanced Splitting and 8 (mod 9) Splitting empirically appear to 
retain enough information to derive (4.1). However, there is no obvious pattern 
in the optimal solutions to such (LA). 

One can experiment with splitting rules that yield optimal solutions to (LA) 
having a nice structure. For example, 8 (mod 9) Splitting had optimal solution 
with cem = 1 for all m _ 8 (mod 9). We checked that splitting all terms 
that were 5 or 8 (mod 9) and forcing the solutions to have cim = 1 for all 
m - 5 or 8 (mod 9) by adding extra equality constraints led to little loss 
on the exponent: we obtained y = .788 for k = 9, compared with .804 for 
8 (mod 9) Splitting. In this approach splitting is essentially being used to 
eliminate variables in the linear program. The results for Ultimate Splitting 
demonstrate that there are limitations to the amount of elimination of variables 
allowed using this approach. 

These experiments show that the bounds implied by systems of difference 
inequalities for nondecreasing functions have a surprising complexity. It seems 
a fruitful area for further study. 

5This holds because some inequality in 34k is strict for these values. Otherwise, all cm l = 
m+k- = +3k-2 cm+3 m+2 , and by downward induction on k, all Ckm are equal, which contradicts 

optimality for k = 2. 
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