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THE K-OPERATOR AND THE GALERKIN METHOD 
FOR STRONGLY ELLIPTIC EQUATIONS 

ON SMOOTH CURVES: LOCAL ESTIMATES 

THANH TRAN 

ABSTRACT. Superconvergence in the L2-norm for the Galerkin approximation 
of the integral equation Lu = f is studied, where L is a strongly elliptic 
pseudodifferential operator on a smooth, closed or open curve. Let uh be 
the Galerkin approximation to u. By using the K-operator, an operator that 
averages the values of Uh, we will construct a better approximation than uh 
itself. That better approximation is a legacy of the highest order of convergence 
in negative norms. For Symm's equation on a slit the same order of convergence 
can be recovered if the mesh is suitably graded. 

1. INTRODUCTION 

In this paper we shall study a way of increasing the order of local convergence 
in the L2-norm for the Galerkin approximation to the solution of strongly ellip- 
tic pseudodifferential equations on a smooth, closed or open curve in R2. This 
kind of integral equation is of importance in solving interior or exterior bound- 
ary value problems of potential theory. The most common example is Symm's 
first-kind integral equation with logarithmic kernel (see [6, 7, 12]). Other appli- 
cations are hypersingular integral equations and singular integral equations of 
Cauchy type, which occur, e.g., in elasticity (see [18]). 

For general Petrov-Galerkin methods when smoothest splines are used as trial 
and test functions, local error estimates were proved in [11] for smooth closed 
curves and in [16] for smooth open curves. Consider, for example, Symm's 
equation. With piecewise constant functions used as trial and test functions, 
it was proved that the local L2-error converges with order 0(h) in the case 
of smooth closed curves [11] and with order 0(h1/2) in the case of smooth 
open curves [16]. However, it is well known that the highest orders of global 
convergence achieved (in negative norms) are 0(h3) for the closed smooth case 
[5] and 0(h) for the open smooth case [4, 13]. The purpose of this article is 
to construct, from the Galerkin solution, a better approximate solution which 
inherits the highest possible orders of global convergence to give best local con- 
vergence in the L2-norm (e.g., in the example mentioned above, order 0(h3) 
for the closed case and 0(h) for the open case can be achieved locally in the 
L2-norm). That better approximation is constructed by averaging the values of 
the Galerkin solution, using the K-operator. 
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The K-operator was proved to be an effective postprocessing method in the 
finite element environment [1, 2, 14]. Its salient features are well elucidated 
in [17]. It produces an easily computed new approximant in the form of a 
convolution of the Galerkin solution with a special kind of spline with small 
support. That spline function is a combination of B-splines chosen so that it 
reproduces certain polynomials under convolution. 

In the boundary integral equation literature, the K-operator method has been 
used for the qualocation approximation to strongly elliptic integral equations 
on smooth closed curves [15]. In that paper, the global L2-error is investigated 
with an essential condition namely that the mesh be uniform. Uniformity is an 
indispensable requirement because the method relies on, besides other factors, 
the translational invariance of the trial space. 

In the present article, we will only require that the mesh be uniform in some 
subarc of the curve (closed or open) and can be quasi-uniform (or even graded 
in the case of open curves) on the remainder of the curve. What we will examine 
in this situation is the local L2-error. This study is particularly interesting when 
the curve is open. It is known that solutions of Symm's equation on the interval 
[-1, 1] do not belong to L2(- 1, 1) and that (because of this defect) the highest 
order of convergence (which occurs in the H-I-norm) is no greater than 0(h) . 
It is also known that by using mesh grading one can recover convergence of 
order 0(h312) in the energy norm (i.e., H-1/2-norm) [10, 19]. We will deduce 
from that result (with a suitable mesh grading) a convergence of order 0(h3) 
in the H2-norm, and therefore by using the K-operator will be able to obtain 
local convergence of the same 0(h3) order in the L2-norm. 

It is worth noting that for Fredhom integral equations of the second kind, 
Chandler [3] has used a method anologous to the K-operator (which he referred 
to as 'superinterpolation') to obtain superconvergence. The mesh used there is 
uniform and only global errors were investigated. 

This paper contains five sections. Section 2 gives some notations to be used 
and a review of the global and local properties of the Galerkin approximation. 
The definition and some properties of the K-operator are also recalled here. Its 
application to the case of smooth, closed curves can then be found in ?3. Section 
4 is devoted to a consideration of a special kind of equation on open curves: 
Symm's equation on a slit. Both quasi-uniform and graded meshes (graded at 
the ends of the slit) are discussed in this section. A numerical experiment is 
considered in ?5. 

2. NOTATIONS AND SOME PRELIMINARIES 

Notations introduced in this section are to be used in ?3 for the study of 
the smooth, closed curve case. Let F be a plane smooth, closed curve given 
by a parametric representation y: [0, 1] -* R2. In boundary element methods, 
F is the boundary of a given domain associated with some boundary value 
problem. Via the parametrization we have one-to-one correspondence between 
functions on r and 1-periodic functions. We thus restrict ourselves without 
loss of generality to equations of the form 

( * ) Lu=f, 

where u and f are 1-periodic functions. Each periodic function u has a 
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Fourier expansion 

u(x) E (n)e27rinx, 
nEZ 

where the Fourier coefficients are given by the formula 

&i(n) = 1 u(x)e 2 xinx dx, 

provided u is in LI(O, 1). For s E R we define the norm 

IIuI12 = 1((0)12 + E nI2sIU1n)I2. 

n#O 

The Sobolev space Hp consists of all periodic distributions u for which the 
norm Ilulls is finite. If I' is an open subset of I = [0, 1], we also consider the 
space Hs(II) with norm denoted by 11 * Ils,II (see, e.g., [9]). The inner product 
in L2(I) is denoted by (, ). 

The operator L is assumed to be of the form 

L = Lo + L1 
where the principal part Lo is defined by 

(2.1) Lou(x) = E [nf](n)e27rinx, 
nEZ 

with a E R and [n],, defined either by 

(2.1a) [] 11 for n =0, 
1InI12a for n$0, 

or by 
(2.lb) [n]~ 11 for n =0, 
( (sign n) InI2 for n $ 0. 

In either case, Lo is a pseudodifferential operator of order 2ca, and is an isom- 
etry from Hp to Hp-2a for all s E ]R. The operator L1 is assumed to be 
bounded from Hp to p for all s E ]R and some positive number a 
to be specified later. We then have Lo Lj bounded from Hp to Hp+ and 
compact on Hs for all s E R. We also assume that L is 1-1, and thus by the 
Fredholm alternative 

(I+L -'LI) lHps ,Hps 
is bounded for all s E R. 

Since the boundary integral operators associated with regular elliptic bound- 
ary value problems on smooth closed curves are pseudodifferential operators of 
integer order (see [ 18, Theorem 2. 1]), we assume for simplicity in the sequel that 
the operator L has integer order 2a , even though our results are still correct 
for any real a. 

Let Io, .. , I1 and I* be intervals such that Ii C Ij+ C I* Cc I* C I= 
[0, 1], where i = 0, ... , 3, and X C Y means the closure of X is contained 
in the interior of Y. Let A = {Xk}, xk < xk+I for k E Z , be a set of points 
on the real axis such that Xk+N = Xk + 1 for some N E N and all k E Z. We 
consider for r > 2 the space Sh of 1-periodic splines 'p E Sh such that 'p is 
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a polynomial of degree at most r - 1 in every subinterval (Xk, xk+1) having 
continuous derivatives up to order r - 2. Here, h is the maximum value of 
the stepsizes. The space Sh means the space of 1-periodic piecewise constant 
functions. The order r is assumed to be chosen so that the conformity condition 
ShrC HpI is satisfied, i.e., a < r - 1/2, and so that u, the exact solution to (*), 
belongs to Hpr. We shall also consider the following spaces: 

Shr' (Ii) = {rp E Shr: SUPP (5II) C Ii} I 

Sh(Ih) = {V E Hp: vli = qIi, for some E S}, i = 0,... 4. 

We shall assume that the mesh is uniform in the interval I*. Then there exists 
an ho > 0 such that for any h E (0, ho], for i = 0,... 3, and for j = 
1, ... -2a 

(2.2) Th (OeSh'0(I+i ) Vo E Sh'(IOi, 

where Th denotes the translation operator Thv(x) = v(x + h) and ThV = 

Th(Th-v) for j=2, rr- 2. 
Let Uh E Sh satisfy 

(2.3) (Lu ,q5)=(Lu,q5) forany qeSh. 

It is known that [5] for 2a - r <1t <s < r and t < r 2 

(2.4) hlUh - ullt < chS-tllUllh. 

In particular, in the L2-norm we have 

huh - ullo < chrllUhIr, 

whereas in the most extreme negative norm we can obtain 

(2.5) lUh 
- 

U112a-r < Ch2(r-a)IuhllrI 

Instead of Uh , we will now define Kh * Uh as an approximation to u (where 
* denotes the convolution, and the function Kh is to be defined later) in such a 
way that if 2a - r < 0 and if u is smoother than previously assumed in some 
subinterval of I, i.e., u E Hri (I*) n Hp, for some r1 > r to be specified later, 
then 

htKh * Uh -ujjO, ? Ch2(r a)U(1|t Uttr, ,, + | hUIr). 

The function Kh is defined as follows: Let ,(l) be the B-spline of order / 
symmetric about 0, and with integer or half-integer knots, i.e., 

- X * X* * with 1 - 1 times of convolution, 1 > 1, 

where 
-Ir if-I< x <? 

%(X)=S 2 ifX=2 2 

- t O otherwise. 
Let q, 1 be arbitrary but fixed positive integers. For 0 < h < 1 we define 

(2.6) Kh(x)=K^q,(X)X = Kh k(X) = h h 
j=-(q-1) 
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with kj, for j = -(q - 1), ..., q - 1, suitably chosen such that for any v 

(2.7) |v -Kh * vIIo,Io < chsIIvIs,,i for O < s < 2q. 

For more details of the definition and properties of the K-operator, the reader 
is referred to [1, 2, 14, 15, 17]. 

In the next section we will need the following version of local estimates, 
which is slightly different from that of [11]. 

Theorem A. Let v E Hp n Hs(I*), a < S < r, andVh ESh(I*) satisfy 

(2.8) (L(Vh -V), () =O forall 9 E Sh'0(I*). 

Then for any ?I < a, with ?I arbitrary but fixed, we have 

IVh -V |It, Io < c(h |I|V IIs, I. + ha lVh -V llv1), 

with 2a-r<t<s<r, t<r- and 

O' ift < a, 
{a-t if a<t. 

This result was proved in [16]. It is different from the local estimates of 
Saranen [11] in that now Vh needs to be a spline only on the subinterval I*; 
therefore, the defining equation (2.8) is just a kind of 'interior equation'. This 
modification is necessary in the application of the K-operator, since we will 
consider the translate of the Galerkin solution uh, which is no longer a spline 
on the whole interval I, whereas it is a spline on the subinterval I* if the 
mesh is uniform on I* . Theorem A is useful not only in the application of the 
K-operator but also in the analysis of local estimates for integral equations on 
open curves [16]. 

Throughout this paper, c denotes a generic constant which can take different 
values at different occurrences. 

3. THE CASE OF SMOOTH CLOSED CURVES 

We shall in this section exploit the highest order of convergence in negative 
norm given by (2.5) to further develop the order in the L2-norm. It is therefore 
sensible to consider only the case r - 2a > 0. 

Theorem 3.1. Let the mesh A be uniform in the interval I*. Assume that u E 
Hr' (I*) n Hpr with r1 > 2(r - a). Assume further that L1 is bounded from Hp 
to Hp-2a+fl for any s E R and for some fl > r - 2a. If Kh is defined by (2.6) 
and (2.7) with 1 > r - 2a and q > r - a, then there exists an ho- > 0 such that 
for h E (0, ho] 

(3.1) IIKh * uh - u11o,16 < ch2(ra)(IIuIri ,J* + Ilu|lr). 
Proof. By the triangle inequality we have 

(3.2) IlKh * Uh - U11Io,16 < IKh * U - U11Io,1 + IIKh * (Uh -U))Io,1 = I + II- 

We will prove separately that I and II satisfy (3.1). The result for the first term 
comes easily from (2.7), the conditions q > r - a and r1 > 2(r - a): 

(3.3) I < ch2(r-a)IIuU12(r..a)JI < ch2(r-a) uII,. ,I*. 
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For the second term, since 1 > r - 2a, it is possible to differentiate Kh up to 
the order r - 2a. Therefore, by using [2, Lemmas 2.2 and 5.3] we are able to 
go from the L2-norm down to the H2a-r-norm and then obtain 

r-2a r-22a 

II < c I ID'Kh * (Uh -U)112a-r,Ii < c Z lk,hj(Uh -U)112a-r,Ii 
j=0 j=o 

r-2a 
(34) <c E: |Ia9j(uh u + L- LI(Uh-U))112a-r,I, 

j=0 
r-2a 

+ c 2_; llOij Lo1L1 (Uh- U)1l2a-r,Ii 
j=0 

=III+IV. 

Here, ahj is the forward difference operator defined by Oh'v = (h)Jv. The 
term IV is easily estimated by noting that llOv It, < Iv llv 1+j for any v and that 
L- 1LI is bounded from Hps to Hp3+6 for any.s E R: 

IV < cLO-1Li(uh - u)11o < CIIUh - Ullfl. 

Since B > r - 2a we then deduce from (2.5) 

(3.5) IV < CIIUh l-U2arr ? Ch2(ra)llUllr. 

For the term III let us note that from (2.3) we have 

(3.6) (Lo(uh-u+Lo L1(uh-u)), () =O forany ( EShr'?(I2). 

We shall prove that for any j = O, ..., r- 2a 

(3.7) (LoOhj(Uh-U+Lo1L1(Uh-U)), () =O foranyp (EShr'(I1). 

From the definitions of a9h , Lo and Th and from (3.6) there follows 

(L0ah, (Uh - u + Lo 1 L1 (Uh-U)),(o) 

hJ (i) (LoTh (uh-u + L Ll(Uhh-u) ), 1o) 

= i?1 (i) (Lo(UhU + Lo Ll (Uh -u)), Th(o) 
1=0 

Equation (3.7) now follows from (2.2) and (3.6). It follows in turn that for any 
E Sh we have 

(LO {[O,h Uh- ]]-[OhJ(u -Lo L1(uh-u))-']},0) =O V9EeShr'(I1). 

This equation, together with the boundedness of L-1LI from HIp to Hp+f 
with ,B > 0 and the condition (2.2), assure that we can use Theorem A with 
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V=aO(u+L-'Ll(u-uh))- , Vh=9uh-U , t=2a -r and s=r-1/2-e 
with e > 0, to obtain for the jth term III; of III 

111j = Il[a,uh a-] - [9h(u -L Ll(uh-U)) 4]112a-r,Ii 

< c{h2(r-a)-l/2-E IIoh(u - LL(uh- u)) - Ir-1/2-, I2 

+ IVg(uh-u + LQ Ll(uh -u))11Z} 

s -{h2(r I jr-1/2-E,I2 + 1IOhjL0 Ll(Uh - U)Ir-l/2-,I2) 

+IIa,~'(Uh - u + Lo 1 (LU - U))IIa} 

? c{h2(r-a)- 1/2-E (IIwk2OhU - Cjr-l/2-e + (ILo Ll(Uh - U)Ilr-1/2-E+j) 

+ NlUh -U+L1L1 (Uh - u)111+j} for arbitrary C E Sh, 

where Cw2 is a cutoff function satisfying 02 E CO (I3) and 02 1 on I2. 
Therefore, 

III1 < c{h2(r-a)-l/2-E (IIt2ohjU 
- Cllr-l/2-E + lUh -Ullr-1/2,) 

+ flUh - UII+r-2a} for any j = O, ..., r- 2a. 

Here again we have used the boundedness of Lo 1L1 from Hp to Hp+ for 

any s E R with ,B > r - 2a . Lemma 2.5 of [11] assures us that we can choose 
4 so that 

IwI20hU - Cllr-1/2-e ? Chl/2+E II0hjIIrjI3 ? Chl/2+hIIUIIr+jI3 

< chlI2+EhIUII2(ra)J,I3 for j = 0, ... , r - 2a. 

The estimate (2.4) and the assumption r1 > 2(r - a) then imply, for any j = 

0, ..., r-2a, 

(3.8) IIIj < C{h2(r OU(IjrI,4J + hlUlir) + jUh - UII,+r-2,a}. 

Summing up the result in (3.8), combining with inequalities (3.2)-(3.5), we 

infer 

hIKh * Uh -UIo,Io ? C{h2(' a)(IIUIlr ,Ij + hlUlIr) + U h - UjII+r-2a}. 

Let j = 4a - 2r. The desired result then follows from (2.5). 0O 

Remark 1. If L is the operator associated with Symm's equation on a smooth 

closed curve, then Lo is given by (2.1) and (2.la) with a = -1/2, and L1 is 

bounded from Hp to Hp for any s, t E R (see e.g. [12]). The condition of 
Theorem 3.1 on L1 is obviously satisfied. If L is the operator associated with 

the Dirichlet boundary value problem for the Helmholtz equation, then L1 is 

only bounded from Hp to Hp+3 for any s e R (see [8]). Nevertheless, if we 
use piecewise constant functions to approximate the solution u, the condition 
on L1 is satisfied with f, = 2 (since 2a = -1), and hence the K-operator 
method is applicable to this problem. 

Remark 2. As can be seen from the proof of Theorem 3.1, the parameter 1 in 
the definition of the function Kh is determined by the order of the Sobolev 
norm which gives best convergence order for the Galerkin approximation (i.e., 
2a -r for the smooth case discussed above, or -1 for Symm's equation on a slit) 
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whereas the parameter q is determined (via (2.7)) by the rate of convergence 
to be achieved for the K-operator. 

4. THE CASE OF SMOOTH OPEN CURVES 

In this section we will study a special case of equations on open curves: 
Symm's equation on the interval r1= 1I, 1]. The method is, however, appli- 
cable to any pseudodifferential equations on -any smooth open curve, provided 
that negative norm error estimates are available. The equation is defined as 

(4.1) Vry/(X):-- |logJx - yJv(y)ds(y) = 2g(x) for x EF. 
r 

A physical interpretation of y/ is that it is the jump in the normal derivative of 
the solution of a Dirichlet problem for the Laplacian in R2 \ r with boundary 
values g on F and vanishing at infinity [131. It is known that [13, Theorem 
1.5] Vr: HT(F) -# HT+l(17) is a continuous bijective mapping for -1 < T < 0, 
where HS(r) is the dual space of H-S(F) for s < 0. 

Let A = {xi}, with x < xi+, i=1, ...,N, N E N, be ameshon F. 
Let Sh = Sh(A) be the space of piecewise constants on F with breakpoints A, 
where h = 1 /N. The Galerkin approximation for the solution of equation (4. 1) 
is defined as: V/h E Sh such that 

(4.2) (Vrylh , q)L2(r) = (g, P)L2(r) for any ( E Sh. 

Quasi-uniform mesh. If the mesh A is quasi-uniform, the following global 
error estimates hold (see [4,13]): 

IIV/ - YVlhll < ch t'IIIVIHI for - 1 < t < z < 0. 
Ht(F) H?(r) 

The condition T < 0 is necessary because in general y/ ? H(IF) - L2(17). 
Therefore, for any e > O, provided that the boundary data are sufficiently 
smooth, we have 

(4.3) Ilv - vhllHi-'(r) < ch c I -2H,11y/ 

As proved in [16], the local L2-error converges as 

(4.4) - Y V/h iiL2(Fo) < ch I/2(I iVIIHI/2(r.) + 1iv/iii e(r)) 

for some e > 0, even though the global L2-norm of / - Y/h is not defined. 
Here and in the sequel we use nested subintervals 

FiC]i+ Cr* Cr* CI fori=0,1,2. 

We are led by Remark 2 following Theorem 3.1 to use a Kh spline of order 
1, i.e., I = 1, in the hope that Kh * Uh is an approximation to y/ which gives 
local convergence of order 0(h) in the L2-norm. That function Kh, defined 
by (2.6) and (2.7), is 

Kh(x) = Kh,1(X) = hX (h) 
To define the convolution, we extend each function v on F by 0 onto R \ F 
and denote it by v&. The K-operator acting on V/h is now given by 

(4.5) Kh(Vh) = Kh * lh- 



THE GALERKIN METHOD FOR STRONGLY ELLIPTIC EQUATIONS 509 

Theorem 4.1. Assume that the mesh is uniform on I" and that u E Hi- (F* ) n 
H-E(F) for some e > 0. Let ho > 0 be such that T?h0(F1) = {x ? ho) x E 
F,} c F* . Then for h E (O, ho] 

(4.6) IlKh(Vlh) - YfIIL2(r,0) < chl 2(11V11HIH-E(r.) + "H E(T)) 

Proof. Following the line of the proof of Theorem 3.1, we shall prove (4.6) by 
using (2.7) and the fact that the forward difference of Vlh approximates that of 
V/ (in some sense). However, now that / ? L2(R) it is not useful to define 
Kh(VI) as in (4.5). We will make use of the function /* = w, where w* is 
a cutoff function satisfying 

cl)* - 1 on F* and cl* E CO?(P()I 

By noting that V/* = V/ on Fo and using the triangle inequality,, we obtain 

(4.7) IIKh OK'h) - VIIL2(ro) ? IIKh * I- *L2(T0) + IIKh * (@h-*)IIL2(rT) = I+II- 

That I satisfies (4.6) comes from the local smoothness of V/ and inequality 
(2.7). To obtain the same estimate for II, again we use [2, Lemmas 2.2 and 
5.3], SO obtaining, with (4.3), 

II < C(h - V*IH-'(r1) + llah(Vh -V*)11H-1(rj)) 

(4.8) < C(Ih - VIIH-1(rT) + 1Iah( Vh - )IIH-1(rl)) 

<c(hl2EIIV/IH + II'h('/'h - )IIH-1(r1)) for 0 < h < ho. 
H-E(T)11- (~) 

In the second-to-the-last step we have used the assumption T?h(rlF) C F* to 
obtain ah V/* = 'h . To estimate the last term of (4.8), let f be a smooth 
closed curve containing the interval [-2, 2] and define Vfj by (4.1) with F 
replaced by F. We extend @h - @ and ah(@h - @) by 0 onto F\ [-2, 2]. 
Then by using the equation (4.2), and by noting that / and @h vanish outside 
F=[-I, ], weobtain,forany 9E Sh?(F2) and h E (O, ho] with h< 1, 
(4.9) 

(JVf a(h h p- ) X)L2(f) = hL{2(f rTh( - 0 - (f'-h )L2(f -} 

-nh LlogIx - y(lh - )(y + h)t (x)dydx 

njjh 
j log Ix - yY(@ h - (y)(D (x - h) dydx 

- h(Vfr'(@lh -@ T-hh9)L2(f) 

- h-(Vr(V - V/h), T-hP)L2(r) 

Since the mesh is uniform on * ,we have T-h E Sho(F3) c Sh for any ( E 

Sh(F2). Equations (4.2) and (4.9) then imply 

* ( r4l(@h - M)) ')L2(f) = 0 for any ( E Sho(F2). 

The one-to-one correspondence between functions on F and 1-periodic func- 
tions (via an appropriate parametrization of r) now allows us to use Theorem 
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A to obtain 

IIOh(Y'h - @)IIH-'(r1) < c(h'l2EIIh@I1H-E(r.) + II0h('lh - @)IIH7(f)) 

? c(h l-26 IWIIH-(r*) + WII'h - Cl 7H+1(f)) 

? c(hl-2E IIy IIH1-e(r*) + IIY h - VIIHI1+' (r)) 

Choosing ? = -2 and using (4.3) again, we get the desired estimate and hence 
the theorem is proved. O 

Mesh grading. To recover the order 0(h3) of the smooth case, mesh grading 
is necessary. We note that in the proof of Theorem A, the mesh is required 
to be quasi-uniform only in some subinterval of I (e.g., on * ). Hence a 
consideration of mesh grading on F \ P* is permissible. For example, in the 
case r= [-1 , I we can define a mesh which is uniform on [-3/4, 3/4] and 
graded on the other subintervals. More precisely, we can define A = {Xk: k = 
0,... ,N} as 

-1 + 4Q-1(kh)0 if 0< k < N/8-1, 

Xk -1 +kh if N/8 < k < 7N/8- 1, 

1-4-1(2 - kh)0 if 7N/8 < k < N, 
where N = 8n, n E N, h = 2/N and L o 1. Note that XN/8 = -3/4, 
X7N/8 = 3/4 and that the mesh is uniform when Lo 1. 

For the application of the K-operator in this case, the availability of the 
error estimate in the deepest negative norm is necessary. By slightly modifying 
a result of von Petersdorff [10, Satz 3.7] and using the a priori estimates given 
in [13, Theorem 2.3], we obtain 

Lemma 4.2. Let e > 0 be given. Then 

J 1)/2(r) if 1 < Q < 3, 

IIV - /hIij-1/2(r) < ch3/2(logjj)1/2IIgIIH2+,(r) if L =3, 

ch312 ||g||H2+,(r) ifLo > 3. 

Following the line of reasoning in [4] in using Nitsche's trick, we can prove 
the following: 

Lemma 4.3. Let e > 0 be given. Then for 1/2 < s < min(Q+1, 2 + e) there 
holds 

J chs+(0-l)/2 if 1 < < 3, 

II llH - () <H ? ch3(1+0)/2 (log 1)(1+o)/2 if Lo 3 
H ch3(1+0)/2 if e > 3, 

where 0 = 2(s - ')/(3 + 2E). In particular, when o > 3 we have 

(4.10) 11chYIhII7j2(r) ?ch3E. 

Following the Remark 2 coming after Theorem 3.1, we will now use the 
spline Kh = Khq I with 1 = 2 and q = 2 to establish the new approximant. 
That function Kh has the form (see [1, 2, 15]) 



THE GALERKIN METHOD FOR STRONGLY ELLIPTIC EQUATIONS 511 

(4.1 1) K(X) = { l{v,(2)(x/h - 1) + ,(2)(x/h + 1)} + v(2)(xlh) 

Replacing (4.3) by (4.10) and using the same argument as in the proof of The- 
orem 4.1, we can prove 

Theorem 4.4. Let p > 3. Assume that V' E H3-, (r*) n H- (F) for some e > 0. 
Let ho > 0 be such that T?2h0o(IF) c r*.. Then for h E (0, ho] 

IIKh( 'h) - V/uIL2(ro) = 0(h3)- 

5. NUMERICAL EXPERIMENTS 

Experiment 1. We tested the K-operator method when L is the logarithmic- 
kernel integral operator arising from the boundary value problem 

AU=0 inQ, 
(5.1) U=F onf, 

where F = O9iQ is the ellipse 16x2 + 64y2 = 1 and F(t) = t1 + t2 with t = 

(tl, t2) . It is known that by using the direct method the problem (5.1) can be 
reformulated as 

(5.2) 'log It - slz(s) di, = F(t) - ]( log It - s)F(s) dls, t E F, 

where z = 0 U/On is the directional derivative of U with respect to the out- 
ward normal vector n . Using a parametrization y: [0, 1] -1R2 for the curve 
F, we can rewrite (5.2) in the form 

(5.3) Lu(x) = f(x) forx E [0, 1], 

where 

u(x) = (27r)-1z[y(x)lIy'(x)I, 
(5.4) { 

Lu(x) = -2 log(ly(x) - y(y)j)u(y) dy, 

and where f is obtained from the right side of (5.2) by using the parametri- 
zation. It is known that (see, e.g., [12]) L = Lo + L1 with Lo expressible 
as 

Lou(x) = u(0) + I y!l i(n)e2rinx, 
n#O0 

and with L1 bounded from Hps to Hp for any.s, t E R. 
There being no need to consider a nonuniform mesh, we used a uniform 

mesh and investigated the global errors in this example. We chose piecewise 
constants as test and trial functions in the Galerkin approximation for (5.3), 
and used Kh = Kh2,2 given by (4.1 1) to average the values of Uh (see Theorem 
3.1 and Remark 2). The empirical orders of convergence obtained for IIu - Uh Ilo 
and for IIKh * uh - ullo were 0(h) and 0(h3), respectively (see Table 1 on next 
page), which match the analysis. 
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TABLE 1. Errors and empirical orders of convergence for Experiment 1 

N |luh - UIIo | tKh * Uh -uUo 

8 9.04e-02 4.49e-03 
16 4.49e-02 1.00 4.5 1e-04 3.31 
32 2.24e-02 1.00 4.98e-05 3.18 
64 1.12e-02 1.00 5.83e-06 3.09 

128 5.60e-03 1.00 7.05e-07 3.05 

TABLE 2. Errors and empirical orders of convergence for Experiment 2 

|leI L2(F0) IIEIIL2(r,) 

N e = e1l = I | =3 e =3.2 | = 3.5 
8 1.le-1 1.7e-2 4. le-2 4. le-2 4. le-2 

16 5.4e-2 1.00 5.8e-3 1.58 3.0e-3 3.77 3. le-3 3.70 3.4e-3 3.60 
32 2.7e-2 1.00 2.8e-3 1.06 8.2e-5 5.18 4.9e-5 5.98 7.9e-5 5.40 
64 1.4e-2 1.00 1.3e-3 1.06 1.5e-5 2.42 9.0e-6 2.46 1.4e-5 2.51 

128 6.8e-3 1.00 6.5e-4 1.03 2.8e-6 2.44 1.5e-6 2.61 1.6e-6 3.15 
256 3.4e-3 1.00 3.2e-4 1.02 4.8e-7 2.57 2.4e-7 2.61 1.7e-7 3.18 
512 1.7e-3 1.00 1.6e-4 1.01 7.5e-8 2.67 3.7e-8 2.70 2.1e-8 3.02 

Experiment 2. We considered in this experiment the weakly singular inte- 
gral equation (4.1) with g(x) = x and tested the local convergence on 1o = 
(-1/2, 1/2) for the errors e = V'- Yh and E = VI-Kh(Yh) with various values 
of e . When e = 1 (uniform mesh) we achieved convergence of apparent order 
O(h) for both errors (see Table 2), instead of the predicted orders of 0(h1/2) 
for llellL2(r0) and O(h) for IIEIIL2(r0,). However, one can see that IIEIIL2(r,) is 
smaller than llellL2(r0) by an order of magnitude. When e = 3 or e = 3.2 
almost nothing changed for jjellL2(r0) whereas the empirical rate of convergence 
for I EIIL2(To) is slowly asymptotic to 0(h3). When e is increased to 3.5 the 
asymptotic 0(h3) order is obtained much more quickly (see Table 2). 
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