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STABILITY OF RATIONAL MULTISTEP 
APPROXIMATIONS OF HOLOMORPHIC SEMIGROUPS 

C. PALENCIA 

ABSTRACT. In this paper we prove the stability of semidiscretizations in time 
of holomorphic semigroups in Banach spaces by means of A(a)-stable rational 
multistep methods. No assumptions on the method other than A(a)-stability 
are required. Our result is applicable in the maximum norm analysis of parabolic 
problems. 

1. INTRODUCTION 

The present paper is devoted to the study of the stability of rational multi- 
step semidiscretizations in time of parabolic initial value problems. As is well 
known, a parabolic problem generates a dynamical system in a suitable under- 
lying function space which, in general, is not a Hilbert space. For instance, 
Banach spaces of continuous functions with the maximum norm are common. 
In these cases, unless some kind of maximum principle is available, the analysis 
of the discretizations could be difficult. Our main result establishes the stability 
of such semidiscretizations under the natural condition of A(a)-stability of the 
method. 

From an abstract point of view, we will say that a linear initial value problem 
(1) { t) Au(t) 

U'(0) =U0 E D(A) 
is parabolic when A: D(A) c X -+ X is the infinitesimal generator of an ana- 
lytic semigroup etA, 0 < t < +oc, of linear and bounded operators in a Banach 
space X (see e.g. [9] and [11]). Henceforth, we will restrict attention to the 
case of complex Banach spaces. The case of real Banach spaces is of practical 
interest but it can be handled easily by complexifying X (see e.g. [20]). Given 
a E (0, 7r/2) and M > 1, we denote by S(X, M, a) the set formed by all 
linear, densely defined operators A: D(A) c X -- X such that the spectrum of 
A lies in the sector 

Sa := {0} U {z E C: z 0, I arg(-z)l < a} 

and 
_ _(zI-A) III < M/IzI, z E C, z f Sa. 
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Operators in S(X, M, a) are referred to as sectorial (see e.g. [6]). We have (see 
e.g. [6, 1 1]) that problem (1) is parabolic if, and only if, for some a E (0, ir/2), 
M > 1 and ,u E R the shifted operator (A - AI) belongs to S(X, M, a). We 
point out that A E S(X, M, a) implies that etA, 0 < t < +oo, is a bounded 
semigroup. 

Let k > 1 be an integer. A rational k-step method for (1) (see e.g. [2]) 
approximates the value etAuo, t = nh > O, h > 0, n integer, u0 E X, of a 
generalized solution of (1) by the solution un of a recurrence 

(2) uj = fo(hA)uj-k +fl(hA)uj-k+l * + fk-l(hA)uj1, j> k, 

where fo(z), .fj (z), *. , fk-I (z) are rational functions that define the method. 
When k > 2, the starting values u1, ..., Ukl are also needed, and we as- 
sume that they are provided by suitable auxiliary procedures. Furthermore, we 
suppose that the rational functions fo(z), fi (z), ... , fk- (z) are bounded on 
the spectrum of hA. Thus, (2) makes sense for arbitrary starting values in X. 
Examples of rational k-step methods are rational one-step methods (see e.g. [1, 
10]), linear multistep methods (see e.g. [4, 13]) and general multistep methods 
(see e.g. [8]). The amplification matrix of the method is given by 

_fk-1(Z), *.**. (Z) fo(Z) 

F(z) = 1 * 

and the recurrence (2) is equivalent to 

U= F(hA)Uj_1, jk, 

where Uj = [uj, uj., ..., uj1k+l]T E Xk, j > k - 1. The Lax stability (see 
e.g. [19] and [21]) of the method, when applied to problem (1), requires that 
for each T > 0 there exists a constant C > 0 such that 

IIF(hA)n I < C, h > 0, nh < T. 

Here the operator norm of F(hA)n: Xk __ Xk is measured with respect to any 
norm in Xk generating the standard topology. 

Let us recall some basic notions. The stability region SR of a rational k-step 
method with amplification matrix F(z) is defined as 

SR = {z E C U {oo}: F(z) is power bounded}. 

It is easy to see, because F(z) is a Frobenius matrix, that z belongs to SR if, 
and only if, the characteristic polynomial of the matrix F(z) satisfies the root 
condition (see e.g. [7]), i.e., its roots lie in the closed unit disk and roots with 
unit modulus are simple. Denote by Mkxk the set formed by all k x k complex 
matrices. For F E Mkxk we denote by p(F) the spectral radius of F. The 
method is said to be A(a)-stable, 0 < a < 7r/2, when {oo} U S c SR. The 
method is called strongly A(a)-stable when it is A(a)-stable and p(F(oo)) < 1. 
Finally, when a = 7r/2, the terms A-stable and strongly A-stable are used. 

Now we can state the following general stability theorem, which constitutes 
the main contribution of the present paper. 
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Theorem 1. Let a E (0, 7r/2) and M > 1. Suppose that a rational k-step 
method with amplification matrix F(z) is A(a)-stable. Then there exists a 
constant C = C(F, a, M) such that the inequality 

(3) JIF(hA)n 11 < C, h > O , n > 1 
holds, for each complex Banach space X and each A E S(X, M, a). 

We observe that the conclusion of Theorem 1 is stronger than Lax stability. 
In fact, this theorem shows the important qualitative feature that the method, 
as does problem ( 1) itself, generates bounded orbits, Ukl 1, Uk ? . . . 

Next we comment briefly on several known- results that are of interest in 
relation with Theorem 1. 

(a) Lax stability does not hold for general semigroups and A-stable rational 
k-step methods (see [1, 3] and [10]). A-stable linear multistep methods and 
semigroups of contractions in Hilbert spaces are considered, for instance, in [4, 
13] and [18]. 

(b) The convergence of some strongly A(a)-stable rational k-step methods 
for holomorphic semigroups has been studied in [2] and [13]. However, when 
k > 2, these papers do not show the stability of the methods. In [2] and [13] the 
starting values are of the form uj = gj(hA), 1 < j < (k - 1), for some suitable 
auxiliary rational functions g1 (z), ... , gk- I(z) . Then, because of convergence, 
[2] and [13] imply that the sequence F(hA)nk[I, g1 (hA), ..., gk- I(hA)]T, 
n > k, is bounded, but this is weaker than the stability estimate (3). 

Concerning the stability of A(a)-stable methods and parabolic problems (1), 
with A sectorial of the same angle a E (0, 7r/2), we have also: 

(c) Lax stability holds for strongly'A(a)-stable one-step methods (see [1, 12] 
and [14]). In [16] even variable stepsizes are allowed. 

(d) Strongly A(a)-stable irreducible linear multistep methods are stable (see 
[14]). 

(e) Stability was proved for general (not necessarily strongly) A(a)-stable 
methods in [3] and [15]. When restricted to one-step methods, our present 
proof is somewhat simpler than those of [3] and [15]. 

(f) More recently, in [17], stability has been established for a wide range 
of A(a)-stable rational multistep methods including, among other, the cases 
mentioned above. The applicability of [17] is somewhat restricted by the fact 
that a certain behavior of the spectral radius of the amplification matrix at 0 
and at oo is required.' 

In summary, Theorem 1, in contrast with the results just reported, establishes 
the stability without extra assumptions about the A(a)-stable method. On the 
other hand, a rational k-step method that is Lax stable, when applied to any 
parabolic initial value problem' (1) with A sectorial of angle a E (0, 7r/2), is 
necessarily A(a)-stable. Therefore, the hypotheses in Theorem 1 are optimal. 

The rest of the paper is as follows. In ?2 we prove Theorem 1. In ?3 we 
state the extension of Theorem 1 to the case where the holomorphic semigroup 
is not bounded. Furthermore, we consider conditions guaranteeing a strictly 
contractive behavior. Finally, we give several convergence results. 

2. PROOF OF THE MAIN RESULT 

In the sequel, Dz,r denotes the closed disk in C of center z E C and radius 
r > 0. For z = o, we denote also 
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Doo,r = {oo} U {z E C: lzl > r-1}. 

For G = {g1m},km=1 E Mkxk and a linear and continuous operator B in X, 
we denote by G ? B (Kronecker's product) the linear and continuous transfor- 
mation in Xk defined by the operator matrix {g1mB}k m= nI We assume that 
norms in Mkx k and in Xk are taken in such a way that 

JIG ? B Gh < JIGII JIBII [ 

is satisfied, for each matrix G E MkXk and each linear and bounded operator 
B in X. 

We begin the proof with a discussion concerning the amplification matrix 
F(z) . Denote by Q the complement in the Riemann sphere of the set formed 
by the poles of F(z) . Let C be either 0 or ox and set 

AC = {p E C: det(I - F(C)) = O and 1#1 = 1}. 

Select a > 0 satisfying D1,3, n DH,, , = 0 when Iu', 4u" E AC, s' # u" . Since 
the matrix F(C) satisfies the root condition, it is clear that any element of AC 
is a simple characteristic root of F(C). This fact, together with the continuity 
of the characteristic roots of F(z) with respect to z E Q, shows that there 
exists r E (O, 1) with DCr c Q and such that, for Z E DCr and , E AC, the 
equation det(AI-F(z)) = 0 possesses exactly one root in each disk Dy, . This 
root is denoted k ,, (z). Moreover, after reducing, if necessary, the size of r, 
we can suppose that, for z E DC,r and ,u E AC, we have IAC,,(z) - yJ < 3. 

Fix ,u E AC. Under the present circumstances, it is clear that the expres- 
sion k ,, (z) is a holomorphic function of z E DC,r. Furthermore, we have 
(see e.g. [11, ?1.5]) that the projection PC,,,(z) onto the eigenspace of F(z) 
corresponding to the eigenvalue kC,,, (z) is given by the Cauchy integral 

PC( 2#i LaD,a - uI E AC, Z E DC,r, 

where O1D/,, 3 stands for the positive boundary of D/ ,,,. Therefore, the map- 
ping PC,1 : DC, r ` Mkxk is holomorphic. 

Finally, after reducing again, if necessary, the size of r, we can assume that, 
for z E DC,r, the characteristic roots of F(z) other than the ones given by 
AC,, (Z), (u E Ac, have modulus strictly less than one. In other words, denoting 

(4) Pc(z) = PC,p (z) and QC(z) I-PC(z), z EDC,r 
#EAC 

we can suppose that 

(5) p (F (z) QC(z)) < I Z Ei DC,r- 

It is understood that in the above discussion we have chosen the same values of 
3 and r for both 4 = 0 and 4 = 0. 

Next we fix A E S(X, M, a). Notice that the operators hA, h > 0, also 
belong to S(X, M, a), so that we can restrict the proof of (3) to compositions 
F(A)n involving only A. 

It is possible to prove, by means of the Neumann series (see e.g. [6, Theorem 
7.9.5]), that there exist L > 1 and 0 < i < a, depending on M and a 
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but independent of A and the Banach space X, such that S(X, M, a) c 
S(X, L, X)). Let F be the positively oriented boundary of the region DO,r u 
Sfl U Doo,r . For n > 1, we can write 

(6) F(A)n = F(OO)n I + 2iJF(Z)n ? (zI-A)-1dz. 

This representation of F(A)n is proved by a direct application of the residue 
theorem. The term F(oo) n I is bounded independently of n > 1, because 
ox belongs to the stability region SR. One advantage of using the nonstandard 
path of integration F is that, in the integral in (6), 0 and oo appear in a 
symmetric way. In fact, F( l/z) ? (z1II - A)-Id( l/z) exhibits in IF n Do, 1 
the same behavior as F(z) ? (zI - A)-I dz . Thus, by using the transformation 
z -) l/z, we can restrict our attention to the contribution to (6) from the part 
of F lying in the unit disk Do, 1 . This path is the union of y, the part of F 
on the boundary of Do, r, and a, the union of the two segments [-eifl, -rei6] 
and [-re-ifl, -e-ifl]. 

The matrix F(z) is power bounded for each z E a. Hence it is uniformly 
power bounded (see e.g. [2, Lemma 2] or [5]), i.e., there exists C1 = C1 (F) > 0 
such that 

IIF(-se"68)njI < C1, n > 1, r <s< 1. 

Therefore, the contribution to (6) due to the segments is bounded by 

1-f, Ldsls= 
CI linril 

which is independent of n > 1. 
On the other hand, for z E y c D0,r, we have, by (4), that 

F(Z)n = F(Z)nQo(z) + F(z)nPo(z) = (F(z)Qo(z))n + F(z)nPo(z). 

By (5), the matrix F(z)Qo(z) is power bounded for each z E y. Hence, 
again by the results in [2] or [5], there exists C2 = C2(F) > 0 such that 

Jj(F(z)Qo(z))njj < C2, n > 1, z E y. 

Therefore, for n > 1, 

|| 2 
j(F(Z)Qo(z))n ? (ZI - A)- dz 

< L / jj(F(z)Qo(z))njj jzju-{dzj < 27/ do #< LC2. 

The remaining contribution to the integral in (6) is dealt with as follows. For 
n > 1, we have 

1 jF(z)nPo(z) ? (ZI - A)-' dz 

= 21 j Z E F(Z)nPo,4(z) ? (zI - A)- dz 

= E Zri ,(z)Po(z) , (zI - A)-' dz. 
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We estimate separately each term in the last expression. To this end, the path 
of integration y is deformed according to both n > 1 and ,u E Ao. In order to 
simplify the notation, in the rest of the proof we suppose that we fix M E Ao and 
then we set A(z) := Ao,u j(z), for z E DO,r , and p := max{lIPo,,#(z)II z E DO,r}. 
We have jA(z)j < 1 for each z E S4, n Do,r. The case when A is constant on 
Do,, is trivial, so that we will suppose that A is not constant. Consideration of 
the Taylor expansion of A(z) at the origin leads to 

A(z) = A(O) + azm + O(zm+l), 

where a 5 0 and m > 1. Furthermore, by the maximum principle for A(z), 
we have that JA(z)I < 1 for z E Sp, z 0. Moreover, it is straightforward to 
conclude (see also [3]) that there exists c > 0 such that, for z E Do, r, 

(7) I,e(z)I cizlm if z 
E 

S. 

For any integer n > 1 let Yn be the part of the positive boundary of Dorn-I/m 
lying outside Sfi. We deform y into the new path 

Yn := [-rnlIme-ifl, -re-'8] U Yn U [-rei', -rn-llmeif]. 

The paths y and yn share the same ends. Therefore, by virtue of (7), we have 

27jiJo,,2(z)nPO,^ (z) ? (zI-A)- dz 

< -.p j A(Z)jnjzj-l{dzj 

<- 14, j 
~e- sm- ds + l' +(7-fi)en(rn l/)m dp 

7T rn- I/m 27r _(7t-,8) 
Lp f00 cm <- I e-ecu-uldu + Lpecr 
mic Jrm 

an expression that is independent of n > 1. This concludes the proof of the 
theorem. 

3. FURTHER EXTENSIONS 

In this final section we state several results which are directly related to The- 
orem 1. We suppose that the constants a E (0, 7r/2), M > 1 and the complex 
Banach space X are fixed. We consider a rational k-step method with ampli- 
fication matrix F(z) that is A(a)-stable. 

First, let us comment on the case where, in (1), the generator satisfies (A - 
PI) E S(X, M, a) for some j > 0. This case arises, for instance, in parabolic 
problems with either a source or a convective term. Then, there exist constants 
C, c > 0 and ho > 0, depending only on F,, a, M and ,u, such that the 
inequality 

(8) JIF(hA)nll < Cenh < h < ho, n > 1, 

holds. 
Secondly, suppose that in (1) we have 

(9) (A -,uI) E S(X, M, a) for some M < 0. 
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This condition implies a contractive behavior of the form IIe < M'eilt, t > 
0. Now it is of interest to ascertain whether the numerical method exhibits 
the analogous property (8), for some C > 0, ho > 0 and co < 0. Let us 
suppose that there exist ,u < 0 and co < 0 such that the method satisfies (8), 
for any operator satisfying (9). Then, by applying this result to the test equation 
u= (u + A))u, A E S,, it is easy to deduce both that the method is strongly 
A(a)-stable and that, for each f, E (0, a), there exist a pair of constants y > 0 
and r > 0 such that 

(10) p(F(z)) < I - yIz, Z E Sfl n DO,r. 

The scope of (10) is studied in [17], where it is shown that this condition is 
fulfilled by a wide range of methods. This range includes, among other, A(a)- 
stable methods with a > 7r/4, irreducible A(a)-stable linear multistep methods 
and several general multistep methods. Here we state that, conversely, when the 
rational k-step method is strongly A(a)-stable and fulfills condition (10), there 
exist constants C, co < 0 and ho > 0, depending only on F, a, M and iu < 0, 
such that (8) holds, for each operator A in X with (A - AI) E S(X, M, a). 

For the proofs of these results we apply a theorem analogous to Theorem 1 
to matrices of the form e-0hF(h(z - ,u)), 0 < h < ho, for a suitable choice of 
co and ho, and to the operators (A + ,I) . 

Finally, we study the convergence of the method under consideration. Denote 

E(z) = [e(k l )z , e 1]T 

and assume that the method is consistent of order p > 1, p integer, i.e., 

F(z)E(z) = ezE(z) + zP+ G(z), 

where G(z) is some vector-valued analytic function in Sa. 
Let h > 0, A E S(X, M, a) and an integer n > k be fixed. Suppose 

that in (2) the starting values u0, ul, ... , Uk-I are taken in such a way that 
eihAU(0) - Uj = ej E X, 0 < j < k - I. Moreover, suppose that, at each step 
j > k, the recurrence (2) is solved with an error of ej E X, i.e., we have 

uj- fo(hA)uj-k - fl(hA)uj>k+l - - fk-1(hA)uj-1 = ej. 

Then, by Theorem 1, it is straightforward to see that there exists a constant 
C, > 0, depending only on the method, such that 

n 
(11) jju(tn) - Un II?< Cs jlej II + II Tn (hA)u(0) II 

j=0 

where the term Tn(hA) accounts for the error produced by the method when 
neither starting errors nor source errors are present. Observe that the operator 
Tn(hA) is defined, by means of the functional calculus, as the operator in X 
given by the analytic function 

Tn(z) = 1, 0, .. ., 0]* (F(z)nkE(z) - e(n-k)ZE(z)) 

evaluated in hA. Consideration of the telescopic identity 
n-k-I 

n(z)z)_Ee(nk)zE(z)) = z F(z)nki (F(z)E(z) - eZE(z))eJz 

j=O 
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together with Theorem 1 shows readily that there exists Ce > 0 such that, for 
smooth initial data u(0) E D(AP+'), the estimate 

(12) IITn(hA)u(0)jI < CethPIIAP+'u(0)jj 

holds. If (A -uI) E S(X, M, 0), it E R, an extra factor elt, with co of the 
same sign of ,u, is added in the upper bound of the last inequalities (in the case 
u < 0 we must assume that (10) holds). 

On the other hand, suppose that the method fulfills (10). Then it is possible 
to prove (see [2, Theorem 7]), by means of an alternative integral representation 
for Tn(hA)u(0) , that there exist constants Ce,q, 1 < q < p, such that (cf. (12)) 

(13) 11Tn(hA)u(0)jj < Ce,qn{ u(0) E D(Aq). 

In particular, for q = p we get an O(hP) estimate as in (12), but for initial 
data in D(AP) instead of in D(AP+'). Furthermore, (13) clearly improves on 
(12) for large t . 

Finally, we point out that, for strongly A(a)-stable methods fulfilling (10), 
the estimate (13) holds even for bad initial data, i.e., for q = 0 (see [2, Theorem 
8]). 
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