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En l'honneur de Michel Crouzeix I'occasion de son cinquantieme anniversaire 

ABSTRACT. We study the convergence properties of implicit Runge-Kutta meth- 
ods applied to time discretization of parabolic equations with time- or solution- 
dependent operator. Error bounds are derived in the energy norm. The con- 
vergence analysis uses two different approaches. The first, technically simpler 
approach relies on energy estimates and requires algebraic stability of the Runge- 
Kutta method. The second one is based on estimates for linear time-invariant 
equations and uses Fourier and perturbation techniques. It applies to A(O)- 
stable Runge-Kutta methods and yields the precise temporal order of conver- 
gence. This order is noninteger in general and depends on the type of boundary 
conditions. 

INTRODUCTION 

In this paper we investigate the approximation properties of implicit Runge- 
Kutta methods applied to time discretization of parabolic equations with time- 
or solution-dependent operator. Apart from some results in Crouzeix's thesis 
[3], this appears not to have been studied previously. There are, however, a 
number of papers dealing with the backward Euler or Crank-Nicolson method, 
and a few papers studying multistep methods. These papers fall into two groups, 
depending on whether the results are obtained from' 

(A) estimates for linear time-invariant equations coupled with perturbation 
techniques [3, 18, 21, 26], or 

(B) energy estimates, e.g. [7, 27] (cf. also [14]). 
Both approaches turn out to be useful also in the context of Runge-Kutta meth- 
ods, and to offer different merits. They work with different assumptions about 
the equation (A: resolvent bounds, B: Garding's inequality) and require dif- 
ferent stability conditions on the part of the methods (A: A(H)-stability, B: 
B-stability or algebraic stability). When they apply, energy estimates provide 
far simpler stability and convergence proofs. It seems, however, that they do 
not yield the noninteger temporal convergence order which is actually observed 
in computations and can be explained via approach (A). When it comes to mod- 
ified Runge-Kutta methods, in particular linearly implicit methods [24], there 
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is usually no alternative left to choosing (A). So we have found it worthwhile 
to present both approaches in this paper (also because (B) is quite short). 

In ? 1 we use energy estimates to derive error bounds for algebraically stable 
Runge-Kutta methods applied to a class of quasi-linear parabolic equations, or 
to their spatial semidiscretizations in the method of lines. Our treatment here 
is certainly influenced by the classical paper of Douglas and Dupont [7], where 
the Crank-Nicolson method is studied. As algebraic stability has been tied to 
energy estimates since its introduction by Burrage and Butcher [ 1] and Crouzeix 
[4], a result like our Theorem 1.1 is possibly without surprise to the experts in 
the field. We note, however, that the somewhat related B-convergence theory 
of Frank et al. [8] does not apply to the equations studied here and, moreover, 
would only predict a smaller temporal convergence order than does Theorem 1.1 
(q instead of q + 1, where q is the stage order of the Runge-Kutta method). 

An approach of type (A) is followed in the remaining ??2 to 5. It is different 
from Crouzeix's [3] approach to linear parabolic equations with time-dependent 
operator. Crouzeix uses a theorem of von Neumann and perturbation tech- 
niques to show step-by-step stability of A-stable methods and then obtains con- 
vergence by accumulating local errors similarly to the convergence proofs for 
nonstiff ordinary differential equations. Notwithstanding its merits, that result 
yields only suboptimal orders of convergence, it does not give error bounds in 
the energy norm, and it does not apply to A(H)-stable methods with 0 < a/2. 

In ?2 we derive some new stability estimates for strongly A(0)-stable Runge- 
Kutta methods applied to linear parabolic equations with constant operator. 
Generating functions, Parseval's formula, resolvent bounds, and techniques 
from [23] and [26] are the tools in this stability analysis. 

In ?3 we consider parabolic equations with time-dependent operator. The 
estimates of ?2 are such that they extend to the time-dependent case in a very 
simple way (Lemma 3.1), by taking up an idea of Savare [26], who recently 
studied multistep methods for such equations. Convergence results are then 
presented in Theorems 3.2 and 3.3. The temporal order of convergence in the 
energy norm is min(p, q + 1 + f), where p denotes the (nonstiff) order and 
q the stage order of the Runge-Kutta method, and fi depends on the spatial 
smoothness of the solution and on the boundary conditions. In the case of time- 
dependent strongly elliptic second-order operators, we get the following values 
of f8 when the error is measured in temporally discrete versions of the L2 (HI) n 
Lm (L2) norm: With homogeneous Dirichlet boundary conditions, we have 
f=3 -e for arbitrary E > 0, in the sense of an error bound C(e) * hq+1+314-c 

which can probably be sharpened to C . hq+l+3/4. I loghr with a small power of 
the logarithm. In the case of Neumann boundary conditions we get fl = I -e 
in 1 space dimension, and fi = - e in 2 and more space dimensions. Periodic 
boundary conditions yield the full order p (always assuming sufficient temporal 
and spatial smoothness of the solution). We observed the sharpness of these 
convergence orders in our numerical experiments. Cf. also [25] and [23], where 
fractional convergence orders for linear and semilinear equations with constant 
operator are studied. 

Section 4 extends these results to quasi-linear equations.. For solution- 
dependent strongly elliptic second-order operators, we still get the results 
sketched above in 1 and 2 space dimensions, but our assumptions lead to some 
problems in 3 space dimensions. 
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Finally, ?5 shows that the results of ??2 to 4 extend to variable stepsizes under 
mild restrictions on the time step sequence. 

We conclude this section by recalling some terminology (cf. [2, 12]). A Runge- 
Kutta (RK) method applied to an initial value problem 

u' =F(t, u), u(O) = uo, 

with a stepsize h > 0 yields at t, = nh an approximation un given recursively 
by 

m m 
Un+1 = Un +hZbjUnj, Uni = un+hEaijUnj, 

j=1 j=1 

Uni = F(tn + cih, Uni) (i = 1, .. )m). 

The Runge-Kutta method has order p, if the error of the method, when applied 
to ordinary differential equations with sufficiently differentiable right-hand side, 
satisfies un -u(tn) = O(hP) as h - 0, uniformly on bounded time intervals. We 
always assume p > 1. The method has stage order q, if EZm7 aijck-i = cr4/k 
for k = 1, ..., q and all i. In the following we will use the notation 

k = (aij) Tj= I) bT = (bi, ... ., bm) X 1 = (1, . .., 1) T. 

A Runge-Kutta method is called A(H)-stable, if I - zd is nonsingular in the 
sector I arg(-z)l < 0, and if the absolute value of the stability function R(z) = 
1 + zbT(I - z6)-'1 is bounded by 1 for I arg(-z)l < 0. The method is called 
strongly A(0)-stable, if it is A(0)-stable and in addition has an invertible Runge- 
Kutta matrix 6, and the limit of the stability function at infinity, R(oo) = 
1 -bT-l 1 , has absolute value strictly smaller than 1. The Runge-Kutta method 
is called algebraically stable if the matrix (biaij + bjaji - bibj)T11 is positive 
semidefinite and all weights bi are positive. 

Throughout the paper, C will denote a generic constant which takes on 
different values on different occurrences. 

ENERGY ESTIMATES 

1. A CONVERGENCE RESULT FOR ALGEBRAICALLY STABLE RK METHODS 

In this section we use energy estimates to derive a convergence result for 
algebraically stable Runge-Kutta methods applied to the initial value problem 

( 1.1) iU' + A(u)u= f(t), u(O) = uo. 

The setting of this equation is as follows: Let H and V be (real, separable) 
Hilbert spaces with norms I I I and II a II, respectively, such that V is embedded 
densely and continuously in H. The norm on the dual space V' is denoted by 
11 a11. We identify H and its dual H', so that V c H = H' c V', and the 
duality (*, *) between V' and V coincides on H x V with the scalar product 
of H. We assume that, uniformly for all u E V, the bilinear form associated 
with the linear operator A(u): V -, V' satisfies the GArding inequality 

(1.2) (A(u)v, v) > a 1Iv12 _ c.IV 12 foru, V E V 
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with a > 0 and c > 0, and is bounded by 

(1.3) I(A(u)v,w)I<MjIjvIIIIjwII foru,v,wEV. 

Further we assume that there is a subset S of V such that the following Lip- 
schitz condition is satisfied: For every 3 > 0, there exists L = L(6, S) such 
that 

(1.4) II(A(v)-A(w))ull* < *lv-wllI+L*Iv-wI foruES, v,wE V. 

Example (cf. [7]). On a smooth domain Q c Rd, consider the quasi-linear 
parabolic equation 

8at = - aE 69 (u (x W t9x ) + f(x, t), x EK n,o< t< T 

with Neumann boundary conditions 

d au 
,ni *aij(u(x, M )^90 = 0, x Eal A 0<t <T, 

i,j=1 xi 

where (n1, ...n fd)(x) denotes the normal vector. The coefficient functions 
aij: R -* R are assumed to be bounded and Lipschitz bounded, and the matri- 
ces (aij(pu)) (,u E R) are uniformly positive definite. The variational formula- 
tion of this problem is of the form (1.1) on H = L2(Q) and V = H1(Q), with 
operators A(u): V -- V' defined by 

d O~v aw 
(A (u)v, w) = |Eaij (u(x)) - xj X 

This satisfies (1.2) and (1.3). Condition (1.4) holds with 

S = S(r) = {u E H1(K): sup IVu(x) <r 
XEQ 

because for u E S(r) and v, w, E E V we have 

| (aij (v (x)) - aij (w (x))) * au*D dx < lI v- V W L2 * r - 11II )IL 

i, j axi a~~~xi 

where 1 denotes a Lipschitz constant of the functions aij(*(). This example is 
readily extended to include first-order terms, or to Dirichlet or mixed boundary 
conditions. o 

We have the following convergence result. 

Theorem 1.1. Consider the initial value problem (1.1)-(1.4). Let {un } C V be 
a Runge-Kutta solution obtained with an algebraically stable method of stage 
order q and order p > q + 1 having an invertible coefficient matrix a and 
IR(oo)I < 1. If equation (1.1) has a solution u(t) E S for 0 < t < T, with 
temporal derivatives U(q+1) E L2(0, T; V) and U(q+2) E L2(0, T; V'), then for 
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sufficiently small stepsizes h (restricted only by the constants in (1.2)-(1.4)), the 
error is bounded for Nh < T by 

N 

h E |Un - U(tn) 
12 + max jUn u(tn) 12 

n=O 
O~~<n<N 

(1.5) n=-- 

< C, *(hq+1)2 (f 11u(q+I)(t)112 dt + IIU(q+2)(t)112 dt) 

The constant C depends on the Runge-Kutta method, on the constants in (1.2)- 
(1.4), and on T. 
Remarks. (a) Theorem 1.1 generalizes to variable stepsizes. The proof makes 
no essential use of constant stepsizes, in contrast to the proofs in ??2 to 4. 

(b) Theorem 1.1 has an obvious extension to the situation where the constants 
in (1.2) and (1.3) are allowed to depend on l/ull and to deteriorate with growing 
liull. (The constant C in (1.5) then depends also on supO<t<T jju(t)j .) For 
example, the incompressible Navier-Stokes equations in dimension 2 and 3 
then fit into the framework. Moreover, f(t) in equation (1.1) can be replaced 
by f(t, u) satisfying a local Lipschitz condition llf(t, v) - f(t, w)ll* ? I 
liv - wil + L(3, r) . Iv - w I for llvii + llwli < r. This is often satisfied for 
first-order nonlinearities. Of course, the operator A may also depend on t. 

(c) Equation (1.1) can also result from space discretization of a parabolic 
initial-boundary value problem, with conditions (1.2)-(1.4) holding uniformly 
in the meshwidth. In this situation, it is more interesting to compare the fully 
discrete solution to the solution of the PDE rather than that of the spatial 
semidiscretization. A projection &'(t) of the PDE solution onto the finite- 
dimensional approximation space then satisfies a perturbed equation (1.1): 

u' + A(')' = f (t) + d (t), u'(0) = uo + eO, 

where d(t) is the spatial truncation error. If ui(t) is in S and sufficiently 
smooth, then the difference between the Runge-Kutta solution un of equation 
(1.1) and u(t) is bounded by 

N 

hZii||un-z(tn)112 + max uun-u(tn)i2 
n=1 << 

N m\ 

<C. + ieo2 + iR(oo)l * h iieoii2 + h E lid(tn + cih)ll) 
n=0 i=1 

where B is the expression on the right-hand side of (1.5), with u replaced by 
ui. The proof of this estimate is a simple extension of the proof of Theorem 
1.1. Errors resulting from the inexact solution of the nonlinear Runge-Kutta 
equations can be bounded similarly. 

(d) In finite dimension, the existence of a numerical solution can be shown un- 
der the method assumption of [6, Thin. II.5.4]: There exists a positive diagonal 
matrix D such that Dd+dTD is positive definite (cf. also [12, Ch. IV.14]). Us- 
ing condition (1.2), one shows that the iteration UnAl) + A(U?))U"! - I ni ~~~ni 
f(tn + cih) maps some ball into itself and one applies Brouwer's fixed-point 
theorem. Uniqueness is obtained from condition (1.4) only if there exists a 
numerical solution with internal stages Ui E S, which is not guaranteed in 
general. 
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Proof of Theorem 1.1. The proof combines arguments that are familiar from 
B-stability theory and from energy estimates for the time-continuous case. 

(a) For brevity, we denote the solution values Ui = u(tn + cih), Un = 

u'(tn + cih), and uiin = u(tn) . We then have 
m m 

Uni=Un+ hZ, aij Unj+Dni, an+i ='n+ h ZbjU ,+dn+1 
j=1 j=1 

where the defects are of the form 

Dni = hq 
t 

7c t h n) u(q+ 1l)(t) dt, 

dn*= hq+1 t+ (- tn) U(q+2) d - ~~~ K h ,~u2(t)~ dt 

I-hq Kt 
I t - tn U(+)(t)dt 

Kt, h / 
t d 

with bounded Peano kernels Ki and K (for simplicity we assume that all Ci E 

[0, 1]). Here we have used Taylor expansion and the definition of the stage 
order q and the order p > q + 1. We note for later use that, by the Cauchy- 
Schwarz inequality, 

N m N 

(1.6) h jj IlDn 1I2 + h (IIdn+ 112 + Iidn+ I/h I2I) ? C B, 
n=0 j=1 n=Q 

where B denotes the expression on the right-hand side of (1.5). 
(b) The errors Eni = Uni-On i Etni = Uni-Uni, and en =Un-in thus 

satisfy 

(1.7a) Eni + A(Uni)En, = -(A(Uni) -A(- U))Onj, 
m 

(1.7b) Eni =en + ZaijEj-Dnni, 
j=1 

m 

(1.7c) en1 =en+ hZbiEn i-dn+. 
-1= 

We take the square of the H-norm in (1.7c) to obtain 

m 2 / 
(1.8) Ien+1 12 = en +hEbiEt i -2 (dn+j en+hEbjEnj +Idn+i2- 

1=1~~~~~~~~= 

We estimate the three terms on the right-hand side separately. Expressing en 
by equation (1.7b), we have 

m 2 m 

en + h bjEn len12 + 2h bi(Eni ,Eni + Dni) 

m m 
+ h2 E (bibj-biaij-bjaji) j (Eni = Enj)* 

i=l j=l 
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As the method is algebraically stable, the last term is nonpositive. For the 
middle term we note that by (1.7a) we have (omitting all the subscripts n, i) 

(E', E+D) = -(A(U)E, E) - (A(U)E, D) - ((A(U) -A(U))U, E+D). 

Using conditions (1.2)-(1.4) (note that U,ni = u(tn + cih) E S by assumption), 
we can bound this by 

(E', E + D) < -a IIEl2 + c El2 + M. IhEll IIDII + (c5IIEII + LIEI) * IIE + DII 
and hence, for sufficiently small 6, 

(El , E +D) < -2 * IIE 112 + C IE 12 + C, * ID 112 . 

The second term in (1.8) is estimated as 
m m 

Kdn+, en + hZ biEni < IIdn+1 II* ien II + IlIdn+ 11 * h Z biIEnill* 
i=1i= 

? jhIIleII+*112 + 12 + Ch E IlEnjII2 + Ch/c Ildn+1 112, 
j=1 

with a small (. Here we have used the bound 
m 

( 1.9) IIEni II *< C * E lEnj ll 
j=1 

which is a consequence of equation (1.7a) and conditions (1.3) and (1.4). Fi- 
nally, the last term in (1.8) is bounded by 

Idn+ 12 < lldn+l II*. lldn+l 11 < lldn+ 112 + 2h *lld+ 2/hll*. 

Putting all these estimates together, we have shown (note that bi > 0 for all i) 
m 

Ien+ 12 - len 12 + a/3 * h Zbi iEni ll2 

m 

(1. 10) < Ch5 *llen ll2 + Ch IEniI2 
m 

+ Ch Z llD1 112 + Ch * (lldn+1 112 + lldn+I/hl112). 
i=1 

(c) From equations (1.7b, c) we infer 

en+ = R(oo) * en + bT l(E + Dn) -dn+ 

and since IR(oo)I < 1, this implies 
N N m N 

(1.1 1) h Z Ilen+ 112 < Ch Z IIEni + DniI12 + Ch I Ildn+1 112. 
n=O n=0 1=1 n=O 

(d) Summing the inequalities (1.10) from n = 0 to N and inserting (1.6) 
and (1.1 1), we get 

N m N m 

(1.12) leN+ 12+ h E EIIEn,112 < Ch Z IEnI12 + C*B. 
n=0 i=1 n=0 i=1 
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We next estimate 
IE .1I2 < 'c5 IIEnill2 + 2 l1 

*IIEnill! 

and bound IIEn i1*, using the triangle inequality in (1.7b), the continuity IIen I * 

< C IenI of the inclusion H c V', and the estimate (1.9): 
m 

IIE ill* < C I lenI + Ch E lIEnjIl + IlDnillI 
j=1 

Hence, 
N m N m N 

(1.13) h Z IEn 12 < (a/2 +Ch2/5) * h Z IIEnj 112 + Ch Z len 12 + C * B. 
n=O i=1 n=O j=1 n=O 

We insert this bound into (1.12) to get (again for a suitable choice of 5) 

N 

IeN+lI 
2 < Ch E len I+ C B, O < Nh < T 

n=O 

and the discrete Gronwall inequality now gives us 

len12 < CB, O < nh < T. 

We insert this estimate back into (1.13), and (1.13) back into (1.12), and so 
obtain 

N m 

hZZIEniE12 < CB. 
n=O i=1 

This bound inserted into (1.1 1) finally gives us 
N 

hZIIlen+ 112 < C*B, 
n=O 

and the theorem is proved. 0 

FOURIER AND PERTURBATION TECHNIQUES 

2. STABILITY ESTIMATES FOR LINEAR TIME-INVARIANT EQUATIONS 

In this section we derive some estimates for Runge-Kutta methods applied 
to equations with constant operator 

(2.1) ul + Au = f(t), u(O) =uo (t > O). 

We study this equation in a Hilbert space framework of analytic semigroups (cf., 
e.g., Kato [ 1 5, Chs. VI and IX], Lions [ 19, Chs. IV and VI], and Lasiecka [ 16]), 
emphasizing the role of resolvent bounds. On a (complex, separable) Hilbert 
space H with scalar product ( *, * ) and norm I I I, let -A be the generator 
of a bounded analytic semigroup that has 0 in its resolvent set. In other words, 
A: D(A) -c H -- H is a densely defined closed linear operator whose resolvent 
is bounded by 
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We consider a second Hilbert space V c H with norm 11 .11 and assume that 

(2.3) V = D(A'/2) = D(A*l/2) with equivalent norms, 

where as usual the norm on D(A1/2) is given by IIVIID(AI/2) = IA"/2v1 . In partic- 
ular, A'/2 and A*l/2 are isomorphisms between V and H. It follows that the 
sesquilinear form defined by (Au, v) = (A'/2u, A*l/2v) for u E D(A), v E V 
extends to a bounded sesquilinear form on V x V, and consequently A ex- 
tends to an isomorphism from V to its conjugate linear dual V' which we 
again denote by A: 

(2.4) A: V -- V' is bounded and invertible. 

The norm on V' will be denoted by 1 11*. We always identify H and H', so 
that 

(2.5) V c H = H' cV', with duality (v', v) =(v', v) for v' E H, v E V. 
From (2.2) we get the bounds 

(2.6) II(l+AX'IIv v < 1 + X 

ii(1 + A)-' IIv.v, < M2 

for I arg AI <? - , where Ml and M2 can be chosen to depend only on the 
constants in (2.2) and (2.3). 

Remark. On finite time intervals, all our results remain valid if, for some c > 0, 
the operator A + cI instead of A satisfies conditions (2.2) and (2.3). 

Examples. For A a second-order strongly elliptic differential operator on a 
bounded domain Q with Neumann boundary conditions (not necessarily self- 
adjoint), A + cI satisfies for suitable c > 0 the above assumptions on H = 
L2(Q) and V = H' (Q) . The bound (2.2) is well known, and condition (2.3) fol- 
lows with the help of, e.g., Theorem 1.4.8 in Henry [13], or Lions [20]. The as- 
sumptions are equally met for Dirichlet boundary conditions (with V = Ho' (Q)) 
and mixed boundary conditions. The conditions can also be verified for finite 
element discretizations of such operators, uniformly in the gridsize. 0 

We will now give stability bounds for Runge-Kutta solutions of equation 
(2.1). It is convenient to split the problem into the two special cases where 
either u0 = 0 or f(t) = 0. The general case then follows by superposition. 

Lemma 2.1. Consider equations (2.1)-(2.3) with uo = 0. Let the Runge-Kutta 
method be strongly A(H)-stable with 0> p. Then, the numerical solution (un) 
and the internal stages (Uni) are boundedfor h > 0 by 

N N m N m 

(2.7) h E IIun+lII2 + h Z I Il2 < Ch Z lIf(tn + cih)II* 
n=O n=0 i=1 n=0 i=l 

for every N > 0. The constant C is independent of h, N, and f. 
Proof. (a) We consider the generating functions 

00 00 00 

u() =ZUn+,cn, U(4)= UnCn, F(C) Z FnC , 
n=O n=O n=O 
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with Un = (Uni )=,, Fn = (f(tn + cih))TI= . A calculation yields (see Lemma 3.1 
of [23]) that they are related by2 

(2.8a) U(O) - (h) +A> F(C), 

(2.8b) u(4)= 1- R(o:U(c) 

with A(4) = (4' + -1ilbT)-1. We will show in part (b) of the proof that 

(2.9) (A()+A < C A 
vm f (Vl)m 

Then, using Parseval's formula in (2.8a) gives us the desired estimate for the 
internal stages Un1 . Since IR(oo) I < I , Parseval's formula used in (2,8b) yields 

N N m 

Z IIun+1112 < ConstZ Z II'Un1 1 
n=O n=O i=1 

and hence the bound (2.7). 
(b) It remains to show (2.9). Let 41 < 1, 7 1 . We have 

(2.10) (A(C)/h + A)-' 27i j(z/h + A)-'* (z- A(C))- dz, 

where y is a union of bounded contours that enclose the eigenvalues of A(4). 
The formula of Lemma 2.4 in [23], 

(2.11) (A(C)-z)'l=e(I-z') 1+ l ( - z(- )-l1bT(I -Zerl 1 -Rz) 

shows that the eigenvalues of A(;) are either eigenvalues of d-' or satisfy 
R(z) 1/c. By A(O)-stability, they are all in the sector I arg zI < Xr - 0 < 
qr Moreover, for 4 bounded away from 1, all eigenvalues of A(4) are 

bounded away from 0. These eigenvalues can be enclosed by bounded contours 
in I arg zI 1 7r - v that stay a fixed positive distance away from the eigenvalues, 
so that on these contours (A(c) - z) is uniformly bounded for I < 1. By 
the bound (2.6), the contribution of these eigenvalues in equation (2.10) thus 
gives us uniformly bounded operators from (V') m to Vm for 141< 1. 

It remains to study the contribution of the eigenvalue z(4) near 0 occurring 
for 4 near 1. Hence, let z(C) be defined by R(z(C)) = 1/C for 4 near 1, with 
z( 1) = 0 . By A(0)-stability, I arg z(C)I < 7r - 0 for I I ? 1, 4 near 1. Formula 
(2 1) shows that 

Rsz(4)-z (A(C) - z)1 = 0:)(:)+(1), z -- z(C), C near I-, 

where the residue Res(z) = (I - z@')-llbT( - zd&')-I/R'(z) is bouni ded for z 
near 0 (since R'(0) 1). Therefore, the contribution in (2.10) of the contour 
yo encircling z(C) is equal to 

(2.12) j(z/h + A)-' (z - A(4))- dz = (z(C)/h + 4)-i Res(z(;)). 

2As in (2.8a), we often write A(4) instead of A(4) 0 Iv , and A instead of Im 0 A. 
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Again by (2.6), this is uniformly bounded as an operator from (V') m to Vm 
for c near 1 with 141 < 1. a 

The following lemma shows that, pointwise in time in the H-norm, the so- 
lution is again bounded as in Lemma 2.1. For different pointwise estimates, cf. 
Lemma 3.5 of [23]. 

Lemma 2.2. Under the assumptions of Lemma 2. 1, we have for all n > 0 
n m- 

(2.13) Iun+1I2+ max hUnJ2 < ChZZlf(tv + c,h) I 
V=O i=1 

Here, C is again independent of n, h, and f. 
Proof. (a) We start from the inequality 

n 

(2.14) IUn+1 12 ? 2 EI |(uv+l -uV uV+)I , 
v=O 

which holds for arbitrary sequences (un) with uo = 0. Inserting uV+, - UV 
from the Runge-Kutta method and using the duality (2.5), we obtain 

n/rn 

JUn+11 2 < 2 E|h , bi(-AUvi + f(tv + cih)) . UV+1 
v=O I i=l 

By the Cauchy-Schwarz inequality, this implies 

/ n 1t m 112\~~~~21/2 n1/2 

JUn'+ 1 (2 < 2 h 1 bi(-AUvi + f(tv + cih)) 1/ (h E IlUv+1 112) 

By the bound (2.4) and Lemma 2.1, each of the sums on the right-hand side 
is bounded by a constant times the right-hand side of (2.7). This shows that 
lun+l12 is bounded as stated in (2.13). 

(b) To prove the estimate for the internal stages, we note that Un = (Uj)_T 
is given from the Runge-Kutta formulas as 

Un = (I+h4PC&A)-'(h@Fn+ lun). 

Since the eigenvalues of e are all in the interior of the sector I argAI < a - , 
it follows from (2.2) that (I + hS 0 A) 1 is uniformly bounded as an operator 
from Hm to Hm . We also have the resolvent bound 

(2.15) l(A + A)-1llH VI < C.- ,11/2 argA) :<ir - (P. 

This follows from (2.6) via I((A+ + A)w ?I(A + A')-wIwl* *I I( + A)-wlw1 < 
C. IA]'-1 I*W1I2 for w E V'. Now, (2.15) implies that (I+hAt&sA)-l isbounded 
by O(h-1/2) as an operator from (VI)m to Hm . Hence, we have 

U.12 < C. (lun2 + h Z Ilf(tn + cjh)llt) 

As we know already that lun 2 is bounded by (2.13), this gives the desired 
bound also for the intemal stages Uni. 0 

A dual version of Lemma 2.2 is the following. 
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Lemma 2.3. Under the assumptions of Lemma 2.2, we have for all N > 0 

NN N m ?1/2 N m 

(2.16) (h E mUn+1 +hEE < C*hEEI(t 
n=O n=O i=1 n=O i=l 

with a constant as in (2.13). 

Proof. The result relies on a duality argument as in [26, Claim 2.8]. For the 
internal stages, we have to bound the mapping lN(Hm) - lN2(Vm): (Fn)nN 
(Un)nN=oI This has the same operator norm as its adjoint lN2(V'm) -- 1?f(Hm): 

n)nN= (U,)0, which is given by the following scheme, derived by taking 

adjoints in (2.8a): 

UJn =biin- h(P X A* )Un + h PTn ,- 

f n-I iUn-h(9 A +h n uN=O. 

In the same way as in Lemma 2.2, one obtains the bound (2.13) for the dual 

variables: 
N m 

max max <Unij <?Chh Z Fnijja, 
O<n<N 1<i<mnO11 

i.e., the required bound for the adjoint mapping. We thus get the bound (2.16) 

for the internal stages (Uni), and the result for (Un+i)nN= then follows from 

equation (2.8b) via Parseval's formula. o 

Next we consider equation (2.1) with f(t) 0. Then the Runge-Kutta 

solution is just un = R(-hA)nUo. It is known from Le Roux [17] (cf. also [5]) 

that R(-hA) is uniformly power-bounded if R(z) is the stability function of 

a (strongly) A(6)-stable method and A satisfies (2.2). Hence, 

jun4 < C juOI for n > 0. 

For the i2-norm in time/ V-norm in space we have the following estimate: 

Lemma 2.4. Consider equations (2.1)-(2.3) with f(t)- 0. Let the Runge-Kutta 

method be strongly A(0)-stable with C > v . Then, the numerical solution and 
the internal stages are bounded for all N > 0 by 

N N m 

(2.17) h EJjun+1 - R(oo) +uojj2 + h E E jjUn,1j2 < C *uoj2. 
n=O n=O i=1 

The constant C is independent of h and N. 

Remark. Note that h zZ-= jjun+1 jj2 < C * Uuo12 if R(ox) = 0. In this case one 

has also jju1jU < C. (nh) -12 1j2uoj for n > 1, see [22, formula (3.31)]. 

Proof of Lemma 2.4. The generating functions satisfy (cf. (2.8)) 

(2.18a) U() = ( + A A I )iuo, 

(2.18b) u() = 1 (bTp- 1 Ug) + R(oo)uo). 
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Using the identity 

(2.19) 1- I 1-R(oo)' 

which is verified by multiplying both sides with A()-1 = d' + l1bT, we 
rewrite (2.18a) in the form of (2.8a) with Fn = (Fni)1 e= -1 - R(oc)n u uo/h. 
For the internal stages we thus get the bound (2.17) by applying Lemma 2.3 with 
Fni in the role of f(tn + cih), noting once more IR(oo)I < 1. The result for 
the sequence (un+l - R()o)n+ Iuo) then follows by using Parseval's formula in 
(2.18b). El 

3. LINEAR EQUATIONS WITH TIME-DEPENDENT OPERATOR 

We consider time discretization of the initial value problem 

(3.1) u' + A(t)u = f(t), u(O) = uo (O < t < T). 
Extending the setting of ?2 to the time-dependent situation, we assume that the 
densely defined closed operators A(t): D(A(t)) c H -- H satisfy conditions 
(2.2) and (2.3) uniformly in 0 < t < T: 

(3.2) I(A + A(t)) IH-H < I + MAI for I argI < 7f- (p < 

with M independent of t, and 

(3.3) V = D(A(t)12) - D(A(t)*l/2) with equivalent norms, uniformly in t, 

where V is assumed not to depend on t. Of course, A(t) then also satisfies 
(2.4) and (2.6) uniformly in t. In addition, we assume 

(3.4) IIA(t)-A(z)IIv/4 v < L. It-T, 0 < T < t < T. 

Example. Consider the second-order strongly elliptic differential operator (8i 
a/axi) A(t)u = Zj,j a(aij(x, t)9ju) + ,i bi(x, t)aiu + c(x, t)u with smooth 
bounded coefficients on a smooth bounded domain Q, equipped with Neumann 
boundary conditions. We take this as an unbounded operator on H = L2(f-). 
While D(A(t)) depends on t through the boundary conditions au/a nA(t) = 

Zjj niaij(x , t)aju = 0, the space D(A(t)1/2) = V = H1 (Q) is independent of 
the problem coefficients (cf. Lions [19, Ch. VI. 1]), and [20, ?6]. 

Lemma 3.1. On finite time intervals (0 < nh < Nh < T < oo), the estimates of 
Lemmas 2.1-2.4 remain valid for the Runge-Kutta solutions of equations (3. 1)- 
(3.4) with time-dependent operator. 
Proof. The proof is a discrete analogue of the following surprisingly simple 
proof of an estimate for the exact solution of equation (3.1). We learnt this 
from Savare's paper [26], where time discretization of equation (3.1) by linear 
multistep methods is studied. Consider equation (3.1) rewritten in the form 

(3.5) u' + A(7)u = f(t) with f(t) = f(t) + (A(t) - A(t))u(t) 

for a fixed 7 > t. For the time-invariant equation with operator A(t), we have 
the estimate (cf. [16, ?4]) 

(3.6) j IIu(t)112 dt < C (lUol2 + j 11f(t)I12 dt) 
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with C independent of t. To bound the term containing 7, one uses (3.4) 
and a partial integration: 

rt *t J II(A(7) - A(t))u(t)j112 dt < J/L2(- t)211u(t)112 dt 
(3.7) 

= 2L2(i - t) (JtU Ii(T) 112 dT) dt. 

Hence, w(t) = fot IIu(T)112 dz satisfies an inequality of the form to which Gron- 
wall's lemma applies. This provides an estimate (3.6) with the data f instead 
of 7. 

The above arguments carry over to the discrete case without difficulty: Lem- 
mas 2.1 and 2.4 establish the discrete version of (3.6), partial summation re- 
places the partial integration in (3.7), and a discrete Gronwall lemma then yields 
the desired estimates. We omit the details. 0 

If the solution of (3.1) is sufficiently smooth in time, one has the following 
convergence result. 

Theorem 3.2. For an initial value problem (3.1)-(3.4) consider a Runge-Kutta 
method of stage order q and order p > q + 1 that is strongly A(O)-stable with 
0 > p. If U(q+ ) E L2(O, T; V) and U(q+2) E L2(O, T; V'), then the error is 
boundedfor Nh < T by 

N 

h E Iu|n- U(tn)It2 + max Iun - U(tN)12 
n=O 

~~O<n<N 
(3.8) n=-- TT 

< C. (h+ 1)2. ( IIU(q+ )(t)112 dt + IIu(q+2)(t)112 dt) 

The constant C depends on the Runge-Kutta method, on the constants in (3.2)- 
(3.4), and on T. 

Proof. Let us first assume that the operator A is time-independent. The general 
case will be treated at the end of the proof. 

(a) For the errors en+, = Un+1 - u(tn+l) and En = (Eni)7!1 with Eni =Uni - 
u(tN + cih) we have the recursion 

(I + hef ( A)En = len -Dn, 

en+, = en - h(b ? A)En -dn+X 

where dn+l and Dn = (Dni)7!1 -are the defects obtained by inserting the exact 
solution values into the Runge-Kutta scheme. We recall that these defects satisfy 
the bound (1.6). The generating functions 

00 00 

e(4) =en+iS8, E(4) =ZEn4n, 
(3.10) n=O n=O 

00 00 

d(4) = Zdn+iCn, D(4) =EDnCn 
n=O n=0 
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are then related by (cf. (2.8)) 

(3.1la) E(4) +A) () (D(;) + 1 l 1d(C)) 

(3.1 lb) e(4) = I - R(1) (bT-I (E(4) + D(4)) - d(C)). 

Using the identity (2.19), we rewrite (3.1 la) as 
(3.12) 

E(C) + D(C)= (A()+A) AD( A)(- A> ' 1 )d(C) 
h hA(~ + - R(oo)4 h 

By (2.4) and (2.9), the operator (A(CI)/h +A)-1A is uniformly bounded on Vm 
for I4I < 1 . By (2.9) and IR(oo)I < 1, the expression multiplying 4 d(4,)/h is a 
uniformly bounded operator from V' to Vm . Thus Parseval's formula applied 
to (3.12) gives 

N m MN m N-1\ 

(3.13) hZ IIEniII2 < C( hEEIIDni 12 + h E jidn+j/hI )2 
n=O i=1 n=O i=l n=O 

and by (1.6) this is bounded by the right-hand side of (3.8). Parseval's formula 
used once more in (3.1 lb) then yields the desired bound for h Z' IIen+i 112j. 

(b) The pointwise estimate in the H-norm follows as in the proof of Lemma 
2.2 with u>, Uj replaced by el, Ej, . using the second formula of (3.9) and 
the estimate (3.13) of the internal stages. 

(c) For the time-dependent case, we use the ideas of Lemma 3.1. With fixed 
A = A(!) for a suitable 1, we write the error recursion as 

(3.14) ~ ~ ( (+ ht?? A)En = len -Dn +hdFn (3.14) 
en+, = en -hbT C) AEn - dn+l + hbTFn 

with Fn1 = (A - A(tn + cih))Eni. This gives for the generating functions a 
combination of (2.8) and (3.11): 
(3.15) 

E(C) ( ( + A (D(C) + 1 - ,ld(C)) + (7' +A) F(C). 

Hence, Parseval's formula can again be applied, yielding 
n m n m n-I 

h Z IIEill2 < C h VV IIDv 112 + h E Ildv+l/hI112 
u-O i_l \'=O i=1 V=0 

n m 
+h j IIA - A(tv + cih)1127 vlIEv,112) 

i=O i=1 

Partial summation of the last term (with A = A(tn+l)) and the application 
of a discrete Gronwall lemma yield an 12 bound of the form (3.13) for the 
internal stages. This leads to the desired bound for h Eo Jjen+j 112 as in part 
(a). The pointwise bound in the H-norm is proved as in part (b), using the 
second formula of (3.14). o 

Assuming more spatial regularity, we obtain an improved temporal order of 
approximation. 
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Theorem 3.3 (Refined error estimate). In addition to the conditions of Theo- 
rem 3.2 let p > q + 2. We further suppose that the regularity assumptions 
U(q+2) E L2(0, T; V) and U(q+3) E L2(0, T; V') hold. If ,8 E [0, 1] is such 
that D(A(t)1I2+fl) is independent of t (with uniformly equivalent norms) and 
A-8 U(q+) E L2(O, T; V), then the error is bounded for Nh < T by 

N 

h E IIUn - U(tN)I2 + max Un - UN(t)12 
n=O -<< 

T 

(3.16) < C *(hq+l+,l)2. jA I8fU(q+1)(t)jj2 dt 

+ C * (hq+2)2. IIU(q+2)(t)112 dt + IIU(+3)(t)112 dt) 

Again, the constant C depends only on the Runge-Kutta method, on the constants 
in (3.2)-(3.4), and on T. 

Remark. The restriction to ,8 < 1 is not essential. If A(t) depends smoothly 
on t as an operator from V to V' and if higher temporal derivatives of u 
satisfy some regularity assumptions as in Theorem 3.3, then the convergence 
order is min(p, q + 1 + ,B). We do not prove this extension of Theorem 3.3. 
The proof uses similar ideas but becomes very technical. 

Example. We consider again a second-order strongly elliptic differential opera- 
tor with time- (and space-) dependent smooth coefficients on a smooth bounded 
domain Q, equipped with appropriate boundary conditions. We take it as an 
unbounded operator on H = L2(.Q). The attainable value of I8 in Theorem 
3.3 relies on the characterization of the domains of fractional powers of elliptic 
operators given by [9] and [10]: 

(i) Homogeneous Dirichlet boundary conditions. For a < 5/4 (and a > 
1/2) we have D(A(t)a) = H2a(Q) n Ho (Q) with uniformly equivalent norms. 
However, for a > 5/4 an element v E D(A(t)a) has to be such that A(t)v 
vanishes on the boundary, and hence D(A(t)a) depends in general on t for 
a > 5/4. We next consider the condition Aflu(q+l)(t) E V or equivalently 
u(q+l)(t) E D(A(t)1/2+fl). A smooth function over Q that vanishes on the 
boundary is in D(A(t)514-c) = H5/2-2e(Q) nfHo(Q) for arbitrary e > 0. This is 
sharp unless further (unnatural) boundary conditions are satisfied. In the case 
of a temporally and spatially smooth solution, Theorem 3.3 is thus applicable 
with 1/2 +,8 = 5/4 -e , i.e, 8 = 3/4 -e. 

(ii) Homogeneous Neumann boundary conditions c9u/9nA(t) 
E2,i niaij(x , t)0ju = 0. In 2 and more space dimensions, D(A(t)a) = H2a(Q) 
for a < 3/4, but for larger values of a the domain depends on t through 
the boundary conditions. These do not depend on t in dimension 1, and then 
D(A(t)a) is independent of t for a < 7/4. On the other hand, a -smooth func- 
tion satisfying the boundary conditions is in D(A(t)714-8) for arbitrary e > 0. 
The time derivatives of a smooth solution satisfy the boundary conditions only 
if they do not depend on t, hence in dimension 1. Otherwise, the solution 
derivatives are in D(A(t)314-e). We can thus use Theorem 3.3 (or the exten- 
sion mentioned in the above remark) with I8 = 5/4 - e in 1 space dimension 
or when the coefficients aij do not depend on t on the boundary, and with 
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,B = 1/4 - e otherwise in higher dimension. The latter value of fi is also 
obtained with nonhomogeneous Neumann boundary conditions. 

(iii) Periodic boundary conditions. Here we have for all a that D(A(t)a) is 
independent of t, and a smooth solution is in D(A(t)a) together with its time 
derivatives. Hence, in this case the above remark gives us the full convergence 
order p. 

Remark. While the above values of ,B are sharp for the energy norm, they are 
not necessarily optimal for error estimates in the L2(Q)-norm. In fact, we can 
also consider A(t) as an unbounded operator on the space H = H-1 (Q) with 
D(A(t)) = Ho (Q2), in the case of Dirichlet boundary conditions. We then have 
V = L2(Q) and D(A(t)1/2+p) D(Ao(t)fi), where AO(t) is the same differential 
operator viewed as an unbounded operator on L2(Q). Hence we can choose 

= 5/4 - e (larger by 1/2) in this case, to obtain an estimate 

N 1/2 

(h~ E - u(tn)l2(21)) = q+1+514E) 
-n=O 

for smooth solutions. In (23] such an estimate was shown pointwise in time 
for equations with time-independent operator. We do not know if this can be 
achieved in the time-dependent case. 

Proof of Theorem 3.3. We concentrate on those aspects that go beyond the proof 
of Theorem 3.2. 

(a) We first consider the estimates in the V-norm for the time-invariant 
situation. Since p > q + 2, the defect in (3.9) can now be rewritten as 

Dni = h+l .51*u(q+l)(tn)+h+l f n1 (t-tn) u(h+2)(t) dt 

(3.17) t 

=n+ h+2 K ( h) u(4+3)(t) dt 

with bounded Peano kernels k and ki and with 

/ m 
\~~~q+ m 

(3.18) i= (+ 1)! ((q + 1) E aijcq - c+l) satisfying Zbi5i =0. 

We shall show that the estimate (3.16) also holds for h E IIEni + DniI2. The 
desired bound for E IIen 112 then follows from (3.1 lb). We start from identity 
(3.12). By (3.17), the term coming from d(4) is bounded as needed. It thus 
remains to consider the contribution of 

G(C) (A(;) +A> AD() (A() +A) Al-fl AflD(C). 

Using the estimate (see, e.g., [13, ? 1.4]) 

(3.19) ii(A + A)-1Al-llvv < C. JA<-, I argAl < ir - , 

we obtain from the representation as a contour integral (2.10) that IG() II < 
C * hIl I IlAgD(C)II, uniformly for all 4 with RIC < 1 that are bounded away 
from 1. For 4 near 1 (cf. proof of Lemma 2.1) one eigenvalue z(4T) of A(4) 
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gets close to 0, and such an estimate can no longer be inferred. To overcome 
this problem, we use equation (2.12) and the identity 

bT(I - z')-1 = bT + zbTe(I -Z) 

The contribution of the eigenvalue z(4T) to G(C) is thus (with z = z(4) for 
short) 

+ A( A z R z(() I b D(,z) 

+(+A Al zB.Z (I - zi-llb T(I Zarl 

h ~~~~~~~R'(z) 

For the first term, we use that (z(4)/h + A)-1A is bounded as an operator on 
Vm for 4 near 1 with ICI < 1, whereas the second term can be bounded via 
(3.19) as before. This yields 

(3.20) IIG(C)II < C IIhl * AIAD(C)II + C * IIb D(;)II, 

now valid uniformly in IC < 1. We finally apply Parseval's formula and use 
(3.18) for bTDn. 

(b) We next verify the pointwise estimates in the H-norm. As in the proof 
of Theorem 3.2, we start from 

n 
Ien+l 2 <2Z1(-h(bT (A)(I+h@'XA)-l1ev,ev+l) 

i=O 

+ (h(bT 0 A)(I + hd' 0 A)-1Dv, ev+i) - (dv+l, ev+i)I 

and use the Cauchy-Schwarz inequality. This yields immediately the bounds for 
the first and the third term. The second term is split as 

(bX A)(I + he 8& A)-'D 
m 

= ~ biADvi - hf(bT ?& A)(I + ha ? A)-1l ? (hA)1-l- AIlD, 
i=l 

and since (3.19) shows that (I + ha ? A)-1a ? (hA)-m8 is bounded as an 
operator on Vm , we obtain the desired bounds as in part (a). 

(c) In the time-dependent case, we start from (3.12) and (3.15), which shows 

E(()+D( A() +A) + +A" F(C)+K(C))) 
E(4)+D4T) = h I (oCh h 

with 
Fni= (A - A(tn + cjh))(Eni + Dni) 

and 
Kni = A(tn)Dni + (A(tn + cih) - A(tn))Dni. 

The term coming from K(;) can be bounded as in part (a), using the Lipschitz 
boundedness (3.4). The rest of the proof is then identical to part (c) of the 
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preceding proof. For the pointwise estimate in the H-norm, we use (2.14) with 
un replaced by en, further 

m 
en+1 = en -h E biA(tn + cih)(Eni + Dni) 

(3.21) i=l 

+ h E bi(A(tn + cih) - A(tn))Dni + A(tn)bTDn -dn+ 
i=l 

and the above estimate for Z IIEni + Dni 12. 

Remark. Concerning spatial discretization, the remark (c) after Theorem 1.1 
applies verbatim to the present situation, with B now given by the right-hand 
side of (3.8) or (3.16) for uz instead of u. This follows by linearity and using 
Lemma 3.1 to treat the perturbations. 

4. QUASI-LINEAR EQUATIONS 

We now consider equations with solution-dependent operator, 

(4.1) u' + A(u)u= f(t), u(O) = uo (O < t < T). 

We use the framework of ?2 and consider again a Hilbert space triple V c H = 
H' c V' . For v E V, let A(v): D(A(v)) c H -- H be a densely defined closed 
linear operator. Conditions (2.2) and (2.3) are assumed to hold uniformly for 
v varying in bounded subsets of V, viz., 

(4.2) I(A + A(v))- IIH H < 1 + for I arg AI <nr-p (0<2 

(4.3) V = D(A(v)1/2) = D(A(v)*l1/2) with equivalent norms. 

Then A(v) also satisfies the bounds of (2.4) and (2.6) uniformly for v in 
bounded subsets of V. We further assume that the following local Lipschitz 
condition is satisfied: For all 3 > 0 and all r < oo, there exists L = L(6, r) 
such that 

(4.4) IIA(v) - A(w)llv*v ? 3 * liv - wll + L. v - wI for JvII J r, JJwJ i< r. 

Example. Consider a second-order strongly elliptic differential operator A(v) 
with smooth coefficients aij(v(x)) etc. over a smooth bounded domain Q c 
Rd, equipped with Neumann boundary conditions. In 1 space dimension, tak- 
ing H = L2(Q) and V = HI (Q) c C(Q) gives well-defined operators A(v), 
v E V, that satisfy the above conditions. In particular, condition (4.4) is ob- 
tained from the estimate 

IIA(v) - A(w)IIvv ?V< sup la(v(x)) - a(w(x))i, 
xEn 

using the local Lipschitz boundedness of a and the imbedding HS(Q) c C(Q) 
for s > I together with the bound [19, Prop. IV.4. 1] 

IIVIIHS < 35. IIVIIH' + CS(3* IVIL2 for v E Hl(Q) and s < 1. 

This choice of H and V is no longer possible in 2 dimensions. Here, it 
can .be shown that our conditions are met when the differential operator is 
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considered as an unbounded operator on the Sobolev space H = HS(Q) with 
O < s < 1/2, with V Hs+l(Q). The lower bound on s originates from 
Sobolev's inequality in the requirement V c C(Q). The upper bound comes 
from condition (4.3), because for values of s > 1/2 the Neumann boundary 
conditions (which depend on the coefficients aij(v (x))) enter into D(A(v) 1/2). 

Note that for s < 3/2 one has HS(Q) = D(Ao(v)s/2), where Ao(v) is the 
same differential operator taken as an unbounded operator on L2(Q). In 3 
space dimensions, there is a conflict between the Sobolev inequality for V and 
condition (4.3), so that the 3-dimensional quasi-linear Neumann problem falls 
outside our framework. 

The situation is more favorable for the Dirichlet problem, for which condi- 
tion (4.3) is less stringent. Here one can take H = Hgs(Q) and V = Hs+l(Q) n 
Ho(Q) (and hence V' = Hs-l(Q)) with 0 < s < 1 in 2 space dimensions, and 
still with s = 1 in 3 dimensions. a 

We have the following convergence result for the case that the solution of 
(4.1) is sufficiently smooth in time. 

Theorem 4.1 (Convergence of Runge-Kutta methods for quasi-linear parabolic 
equations). For an initial value problem (4.1)-(4.4) consider a Runge-Kutta 
method of stage order q and order p > q + 1 that is strongly 4(0)-stable with 
0 > (0. If U(q+l) E L2(0, T; V) and U(q+2) E L2(0, T; V'), then for sufficiently 
small stepsizes h there exists a unique numerical solution un (O < nh < T) 
whose error is bounded by 

N 

h E Ilun U-u(tN) I2 + max Iun - Un(t)12 
n=O -<n< 

< C . (h+1)2. (jATju(q+1)(t)jj2 dt + T IU(q+2)(t)12 dt) 

The constant C depends on the Runge-Kutta method, on the constants in (4.2)- 
(4.4), on SUpO<t<T IIu(t)JI, and on T. 

Proof. Let us assume for a moment that the numerical solution un and the 
internal -stages Un,i exist for 0 < nh < T and that 

(4.6) IIUnill < r 

with r = 2SUpo<t<T1IU(t)11. For sufficiently small stepsizes h, this will be 
verified at the end of this proof. 

(a) For a concise notation, we abbreviate the exact solution values by Uni = 

U(tN + cih), i,n u(tn) and we set 

(4-7) AVn =diag(A(Uni) ,*- (Unm)) * 

In this notation, the errors Eni = Uni - Uni and en = Un - fin of the Runge-Kutta 
method applied to (4.1) are related by 

(4.8) (I + h@s1,n)En = len + h@Fn -Dn) 

en+1 = en -hb TnEn + hb n- 
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with Fni = (A(U,j) - A(Uni)) . Uni and with the defects Dni and dn+I . Recall 
that these defects satisfy the bound (1.6). Lemma 3.1 and Theorem 3.2 now 
give the following 12-bound on the error (cf. (2.7) and (3.13)): 

N N m N m 
(4.9) hZ + h Z lIE .112< C (N + h nI,FII2) 

n=O n=O i=l n=0 i=l 

with 
Nm N-1 N 

(4.10) BN = h Dni + h Z Ildn+I/hll* + h E jjdn+1/2- 
n=O i=1 n=O n=O 

The rest of the proof is to show that the left-hand side of (4.9) can actually be 
bounded already by BN. 

(b) We thus have to estimate Fni. This is the moment where condition (4.4) 
comes into play. Since the internal stages are bounded by assumption (4.6), we 
conclude that 

IIFn,II2 <, (611JEnill + LIEniI)2 * r2 

and further 

(4.11) nIF 112 < 2r2c52jjEn,1112+ 4r2L2(jEni + + jDnj2). 

(c) We next establish a bound for IEni + DnlI. For technical reasons, we 
regroup (4.8) as 

(4.12) (I + h@ ?A(iin))(En +Dn) = len + hFn + hdR o A(iin)Dn 
+ h (6 8& A (f4n) - -n) En - 

Since the operator (I + hd? ? A(iin))_1 is uniformly bounded on Hm and 
bounded by O(h-112) from (V')tm to Hm (see Proof of Lemma 2.2), we obtain 

/ ~m 
Eni + Dnil2<C leni2 + h E IIFnj + A(iin)DniI* 

j=l 
m 

+ hlI@ I A(iin) - SflhIVim4.vm wZIEflJII) 

and by applying (4.4) to JJA(an) - A(&Uni)Iv' .-v also 
(4.13) 

m m m \ 
jEni + Dnij2 < C* len 2 + h E IIFn1II* + h E IDnj + h3Z EnIIE2n ) 

j=1 j=1 j=1 / 

(d) Next we consider the second equation of (4.8). Recalling the tech- 
niques of the proof of Lemma 2.2 part (a) and substituting each occurrence 
of Z E IIEv, 1I2 or E IIev+I 112 by (4.9), one finds 

n m ) 
(4. 14) le+ 2<C*Bn + h v, 1 lll2 | 
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which is the same bound as for the 12-norm. We then insert (4.14) into (4.13) 
and use the estimate (4.1 1). This results in 

n m n m 

Eni + Dni 12<C. Bn(+hZZEIE,j+Dvj 12 + h(h2 + 62) Z Z IIEl1I2 

for i = 1, ... , m. The application of a discrete Gronwall inequality now gives 
the bound 

n m\ 

(4.15) Eni + Dn 2 < C Bn + h(h2 + 2 E II2 
i zo~~~=O j=l 

(e) We finally insert (4.15) into (4.1 1), and (4.1 1) into (4.9). Since a can be 
chosen arbitrarily small, we obtain 

N N m 

h E lien+l 112 + h IElEnI112 < C. BN, 
n=O n=O i=1 

and by (4.15), (4.14) also 

max len+l12+ +max max IEn 12<C. BN. 
O<n<N O<n<Ni=. 

These are the desired bounds that lead to the estimate (4.5) in the same way as 
in Theorem 3.2. 

(f) It remains to prove the (local) uniqueness and existence of the numerical 
solution as well as the bound (4.6) for the internal stages. We use a fixed point 
argument. 

First we will show that the iteration 
(4.16) 

m 
U(k+l) = Un-h h aij (A(U(k))U(k+1) )ftn+ ch)), 

j=1 

is a contraction with respect to the weighted norm 

IUn ll = max max(IUniUll, h- 1/21Ui) i=l ...,ImUn) 
in a ball (with respect to the I1 norm) around 1 un of a fixed, sufficiently 
large radius. The proof that the iteration maps the ball into itself for small h 
uses arguments similar to the proof of contractivity, and is therefore omitted. 
To show contractivity, we consider the difference of two sequences Un,k+l) and 

Vn(k+l). We denote this difference by Enk+l) - Unk+l)- Vn k+1),and like in (4.7), 
we write for short d(Un) = diag(A(Unl), ..., A(Unm)). We then have 

(I + he ?9 A(un))En(k+) = h@b.f (V,nk))-n 

+ h(f A(un) n ))-E 

Recalling the uniform bounds on (I+ha"?A(Un))4 and the Lipschitz condition 
(4.4), and using that Vn(k+1) is again in the ball, we get 

IIE (kII C <C (d max IIE(j)II + Lh"2 h 1/2 max IE(j)I) 

+ C. (o + Lh" 2). iliUnk) -ul,jl max llE ||II 
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and the same bound for h-'/2. IE k+l)l . Thus, the recursion satisfies 

IIIE?n 'III < C. (3 + Lh"2). IIIEEk)nIII 

and hence is a contraction for 3 and h small enough. This proves the unique- 
ness of the numerical solution in the ball. 

It remains to show the existence of a fixed point. For this we take Un?) - 

u(tn + cih) as starting value for the iteration and use Illun - u(tn)III < C h12 
which follows from parts (a)-(e) of the proof (with q = 0). From the identity 

(I + h' 0 A(U(tn)))(Un() -UP) 

= 1 ((un - u(tn)) - h(,W(U. n-)) ' 0 A(u(tN)))(UP)' Un))--Dn 

one deduces as above that 

111 Un) -Un?)III < C . h112 

Thus, if h is small enough, the iterates remain bounded by 2 supO<t<T IIu(t)II 
in V-norm and converge to a fixed point Un satisfying (4.6). a 

Under slightly stronger assumptions, we obtain-as in the linear case-a 
higher temporal order of convergence. In addition to (4.2)-(4.4) we now assume 
that for all r > 0 there exists L = L(r) such that- 

OA 
(4.17) A(v) -A(w) - W(u)[V - W] < L.(IIu-vlI+IIu-wII). IIv -wl 

au ~~V?-V 

for max(llull, lIvll, 1w Iw) < r. This, together with (4.4), implies the estimate 

(4.18) O A(D)[W] < C. ll ll 

uniformly for v and w in bounded subsets of V. Let further , E [0, 1] be 
such that D(A/2+fl (v)) is independent of v (with uniformly equivalent norms) 
and 

O A 
(4.19) A4 au (U(t))[W]U(t) < C. IIAwII, 0 < t < T, 

uniformly for w E D(A 1/2+fl). 

Theorem 4.2 (Refined error estimate for quasi-linear equations). In addition 
to the conditions of Theorem 4.1 we assume p > q + 2, (4.17) and (4.19). 
We further suppose that the regularity assumptions U(q+2) E L2(0, T; V) and 

e L2(0, T; V') hold. If Ag u(1) E L2(0, T; V), then the error is 
bounded for Nh < T by 

N 

h E Ilun - U(tN) 12 + max I Un - U(tN)2 
n=O -<< 

T 

(4.20) < qC (hq+l+fl)2 IlAflu(q+l)(t) 12dt 

+ C. (hq+2). (fT qu(q+2)(t)112 dt 
+ j U(+3)(t)112 dt) 
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Again, the constant C depends only on the Runge-Kutta method, on the constants 
in (4.2)-(4.4), (4.17), (4.19), on SUPO<t<T IIu(t)JI, and on T. 

Example. Consider again the example of solution-dependent strongly elliptic 
second-order operators from the beginning of this section. We compare the 
situation to that of the example after Theorem 3.3. In 1 space dimension, 
Theorem 4.2 gives us the same noninteger convergence order as Theorem 3.3. 
Condition (4.19) is not restrictive for spatially smooth solutions. In 2 space 
dimensions, we still get the same values of ,B by choosing H = Hs(Q) with a 
small s > 0. For the Dirichlet problem in 3 dimensions, taking H = Ho (Q) 
allows us to choose ft = 1/4 - e. For periodic boundary conditions, Theorem 
4.2 gives us ft = 1, but we expect that here again the full order p can be 
obtained under reasonable assumptions on the derivatives of A. 

Proof of Theorem 4.2. We use the same notation as in the proof of Theorem 
4.1. The main idea now is to show that under the present assumptions, the 
bounds (4.9), (4.14), and (4.15) also hold if IIEjIIj is replaced by IlEni + Dnill 
and if Ei IIDni I2 is replaced by Ei lIhlAgDni 112 + 11 Zj biDni I2. The rest is 
then identical to the preceding proof. 

(a) We start again with (4.8), written as 

(4.21) (I + h'.Vn)(En + D) = len + hiPn + h@Kn + hd'Sn, 

en+1 = en - hb T (E + Dn) + hbTFn + hbTKn + hbTSn- 

with Fni-(A(Uni -D -A(Unj)) * Uni and with Sni = A(n)Dn - 
The remaining term, namely 

Kni= (A(uni) - A(Un - Dni) - A(n)[Dnil) Uni 

+ -l (in)[Dnil * (Eni + Dn1 + ni in -Dni) 

+ (A(Uni) - A(iin)) * Dni 

satisfies by (4.17), (4.18), and (4.4) the bound 

(4.22) IIK1II~ ?l < C * h2 * ( 12i 112 + liEn, + Dni112). 
The recursion (4.21) admits by Lemma 3.1 and Theorem 3.3 instead of (4.9)- 
(4.10) the (sharper) bound 

N N m N m \ 

(4.23) h E lie + h EEhZIEn,i + Dni12< C* (BN + h Z I ni1*2) 
n=O n=O i=1 n=O i=1 

where, owing to (4.22), 
N m N m 2 

BN = h E Z llhBA4Dnill2 + h E Z | biDni 
(4.24) n=O i=1 n=O N-i=N 

N m . N-1 N 

+ h3 E Z lIEni + Dni 112 + h E jjdn+j+/hjj2 + h Z Ildn+1I12.- 
n=O i=1 n=O n=O 

Note that Fni is bounded by 

(4.25) IF,,1 12 < 2r23521lEn, + Dnill2 + 4r2L2IEn, + Dni1l2. 
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(b) To establish the bound for IEni + D1iI, we use the identity 

(I + he ? A(i4n))(En+ Dn ) = len + hien + h@Kn + h9Sn 
+ h(e ($J A(iin) - @>n) (En + Dn)O 

further (4.23), the uniform boundedness of (I +he ? A(uin))- @' ?(hA(i4n))1 -l 
on Vm and (4.19). This gives 
(4.26) 

IEni + Dni 

/ m m m 
(I. en12+h: I I./ <C | + h E Inj2 + h E lIh4A4Dnj 112 + h3 Z IlEnj + Dnj 12 

\ j=l j=l j=1 

(c) From the second line of (4.21) one obtains with the same techniques as 
in the preceding proof 

n m 
(4.27) Ieh+iI2?C (jn + h IIEIIl) 

u=O i=l 

With the bounds (4.23), (4.25)-(4.27) available, one continues as in the proof 
of Theorem 4.1. o 

Remark. The remark (c) after Theorem 1.1 about space discretization applies 
also to the present situation, with B now given by the right-hand side of (4.5) 
or (4.20) with ui instead of u. Also remark (b) after Theorem 1.1 about the 
generalization from f(t) to f(t, u) applies to Theorem 4.1, and to Theorem 
4.2 with additional assumptions on af/au. 

5. VARIABLE TIME STEPS 

The proofs of the results of the foregoing sections used in an essential way 
the assumption of a constant time step h. There is, however the following 
extension to variable stepsizes. 

Theorem 5.1. The lemmas and theorems of ??2-4 remain validfor Runge-Kutta 
solutions obtained with stepsize sequences {hn} satisfying 

N 

(5.1) ZIhn+i/hn-1I < C 
n=o 

(5.2) ch < hn < h, 0?< n < N 
with a positive constant c. 
Remark. Condition (5.1) is familiar from the convergence analysis of linear 
multistep methods for ODEs, see [ 1 1, Thm. 111.5.71. Condition (5.2) may appear 
rather restrictive. However, if there is a finite subdivision of the integration 
interval into subintervals on which stepsizes of different scales are used, then 
one can apply Theorem 5.1 separately on each of the subintervals. 

We do not give a proof of Theorem 5.1, but only indicate how the variable 
stepsize version of Lemma 2.1 comes about. The basic idea is again that of 
Lemma 3.1. To simplify the presentation further, we consider here only the 
backward Euler method 

un+lAun+Aufi u0=0l 
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We rewrite this as 
U+lh- Ufl + An+lun+l =9n+ 

h 
with An+1 = (hn+1/h)-Ag, i = (hn+i/h).f n+ ,or again as (cf. (3.5)) 

- + ANUn+i = 9n+i + (AN - An+1)*Un+i h 
By Lemma 2.1 and condition (5.2), we now have 

N N N 

h E llunlI2 < Ch 3 tIfnIt: + Ch j hAN-An - 112,vilunAt112. 
n=1 n=1 n=1 

Using partial summation and the definition of An, and noting that 

h(hN-hn)2 (hN-hn+)2 ?2Ihn+lh hnl= 

we get for all N 
N N N-I n 

h E Z lun2 < Ch Z fn2 + C E an h Z t uI,tvt2. 
n=1 n=1 n=1 V=1 

By (5.1), (5.2), we have j an < C, and hence a discrete Gronwall-type inequal- 
ity gives 

N N 
h Z Ilunjj2 < Ch Zhfnhj2, 

n=1 n=1 

which is the desired result. 
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