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COMPUTING THE HILBERT TRANSFORM 
ON THE REAL LINE 

J.A.C. WEIDEMAN 

ABSTRACT. We introduce a new method for computing the Hilbert transform 
on the real line. It is a collocation method, based on an expansion in rational 
eigenfunctions of the Hilbert transform operator, and implemented through the 
Fast Fourier Transform. An error analysis is given, and convergence rates for 
some simple classes of functions are established. Numerical tests indicate that 
the method compares favorably with existing methods. 

1. INTRODUCTION 

The Hilbert transform of a function f(x) is defined as the principal value 
integral 

(1) ~'{f}(y)=!PVJ fx) dx. 

We consider primarily the case f(x) E L2(-0, oo), the set of square inte- 
grable functions defined on the real line. For this class of functions the integral 
(1) exists for almost all y, and it defines a function in the same class [7, p. 3 1]. 
As for applications, the Hilbert transform plays an important role in optics [4], 
signal processing [1 1], and waves in stratified fluids [3, 17]. 

A list of Hilbert transforms is presented in Table 1 (next page)-it provides 
the test problems for later sections. The special functions in the table are defined 
below. Table 1 supplements the one given in Erdelyi et al. [10, Vol. 2] to a 
modest degree-only the first and last entries of our table can be found in 
theirs. 

In practice the transform can seldom be found in tables such as these. And 
even when this occurs the result often involves special functions that may pose 
their own individual challenges to computation; cf. Examples 5-7 in Table 1. 
Moreover, in many applications f(x) is available only at discrete points xj. 
For these purposes a direct numerical evaluation of (1) is required. The follow- 
ing methods have been proposed: 

* Kress and Martensen applied the rectangle rule to (1) to derive 

(2) XI f}(y) z- 
2 f(y+(2n+ l)h) (2) Z~~~~~~7 2n+lI n=-oo 

where h is the step size[ [16]. 
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TABLE 1. Hilbert transforms 

Ex. f(x) Xlf}(Y) 

2 1+X4 +y 

3 snX) cos(y)-e-_' 

TP I +y4 

5 e~ Iy) 2 2 D(y) 

6 sech(x) tanh(y) + ,[( ' + Y/( ) 

7 e-lxl - sgn(y) [elyIEl(ly ) + elYIEi(ly )3 

* Stenger derived essentially the same formula, by using expansions in 
Whittaker's cardinal (or sinc) basis functions [20]. 

* Henrici proposed a method based on the following well-known property 
[11, p. 203]. If f(x) E L2(-00, ox), then 

(3) '{ff}(y) = 9`1 {i sgn(k) it4ff}(k)}, 

almost everywhere, where 9 represents the Fourier transform 

19-{f }(k) = f (k) = J f(x)e ikxdx, 

and i9` its inverse 

g {ff}(x) = f(x) = !- L 
f(k)eikx dk 

These Fourier integrals are approximated by discrete Fourier series on 
a truncated domain x E [-L, L]. Equidistant gridpoints are used, and 
the Fast Fourier Transform (FFT) may be used for a rapid summation 
of the series. 

In this paper we introduce what we believe to be a new method for the compu- 
tation of the Hilbert transform on the real line. It is based on a series expansion 
in rational eigenfunctions of the Hilbert transform operator in L2(-o, xc). 
The method is closely related to two other methods for the computation of in- 
tegral transforms: Weber's method for the computation of Fourier transforms 
[21], and Weeks' method for the numerical inversion of the Laplace transform 
[22]. 

An overview of the paper is as follows: In ?2 we recall that the functions 

(1 + ix)n 
Pn (X)=n (( i ~ ?)+ X ?=,2,.. 

form a basis for L2(-oc, x) . We then show that these functions are eigenfunc- 
tions of the Hilbert transform operator in L2(-00, x) . Section 3 is devoted to 
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some approximation properties of series expansions involving these eigenfunc- 
tions. In particular, we estimate the decay rate of the expansion coefficients for 
certain classes of functions. In ?4 we introduce the algorithm. It is a collocation 
method based on a truncated eigenfunction expansion. An attractive property 
is that the FFT can be used for an efficient implementation. An error analysis 
for the algorithm is given in ?5. We do not strive for full generality here: we 
focus merely on predicting the convergence rates for the test problems in Ta- 
ble 1. In ?6 we compare the methods listed above with the method introduced 
here. The new method turns out to be more accurate for several test problems. 
We conclude in ?7 with a synopsis of two applications: the computation of the 
complex error function, and the solution of a nonlinear wave equation. 

A few comments on Table 1 are in order. Entries 1-4 can be verified straight- 
forwardly using contour integration. The calculations of entries 5 and 7 are 
given in [18, Ch. 12]. Entry 6 was obtained via a direct computation of (3). 
The appropriate Fourier transforms may be found on pp. 30 and 88 of [10, 
Vol. 1]. 

The special functions in Table 1 are defined as follows: D(x) is Dawson's 
integral 

2 {x2 
D(x) = e-x et dt 

and the exponential integrals are defined by 

El(x) = j e-Ut- dt, Ei(x) = e-It-l dt. 
x . -~~~~~~x 

The psi (digamma) function ,y(z) is defined in terms of the gamma function 
as 

-g(Z) = rF(z)lr(z). 
It satisfies g(z) = ,y(T), so the transform for sech(x) listed in Table 1 is 
indeed a real function. 

2. RATIONAL EIGENFUNCTIONS 

It is well known that the functions 

Pn(X) (1-ix) +iXn n = 0,+ 1, ?2, ... 

form a complete and orthogonal basis set for L2(-o0, oo); see [12, p. 63]. One 
way to see this is to make the change of variable 

i 1+ix i..I 
(4) e' = l- ix' i.e., x =tan , 

which maps the entire real line x E [-oo, oo] to 0 E [-7r, 7]. Expansions in 
terms of pn(x) now turn into Fourier series: 

00 00 

f(X) = L a-Pn(x) f(x)(Iix) =E aneinn. 

n=-oo n=-oo 
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rIRezz 

Re(z)=Y 

FIGURE 1. Contour of integration used in the proof of Theorem 1 

The orthogonality properties of Fourier series may be used to deduce that 

Pn (x) pn (x) d x = 7rbn, m a 

where the overline denotes the complex conjugate, and 3n,, is the Kronecker- 
delta. This leads to the integral formula for the expansion coefficients 

(S) an = - f(x)pn(x)dx. 

As for history, the functions pn(x) could be traced back to Wiener's book 
[26, p. 35]. Further theoretical properties of these functions are discussed in 
[6], [12, ?2.6.4], and [13, Ch. 19]. Numerical applications are considered in 
[8, 15, 21, 23, 24, 25]. 

What is perhaps not so well known is that the functions pn(x) also form 
a complete set of eigenfunctions of the Hilbert transform operator (1) in 
L2(-oc, ox), with eigenvalues i sgn(n) . The proof is a straightforward exercise 
in contour integration. 

Theorem 1. For all real y and n = 0, ? 1, ?2, . 

X{Pn I (Y) = i sgn(n) Pn (Y) 

(We define sgn(O) = 1.) 
Proof. By definition 

00 (1 + ix)n 
{Pnl(Y) = IPVJ (1 i-x)n+i(x-y) dx. 

For n > 0 and fixed y we evaluate this integral using the contour shown in 
Fig. 1. The contribution along the big semicircle disappears in the limit R -+ oo, 
and the contribution along the little one approaches -ipn(y) as r -+ 0. Since 
the integrand is analytic in the upper half-plane, Cauchy's Theorem yields 

f{Pn}(Y) = iPn(Y)* 

For n < 0, two semicircles in the lower half-plane are used to complete the 
proof. o 
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From the above theorem we deduce that if f(x) E L2(-00, oo), then 
00 00 

(6) f(x)= E anPn(x) - {f}(x)= E isgn(n)anpn(X). 
n=-oo n=-oo 

Our algorithm is based on truncated versions of these series. Implementation 
details are deferred to ?4. 

3. APPROXIMATION PROPERTIES 

In applications the rate of decay in the coefficients an in (6) determines 
the accuracy of the method. However, giving a complete classification of this 
decay in terms of the usual smoothness properties of f(x) like differentiability, 
Lipschitz condition, and so on, is no easy task. We remind the reader that even 
for ordinary Fourier series such a comprehensive theory does not exist (see [2, 
Ch. 2], for example). We restrict our discussion therefore to estimating the an 
for a few simple classes of functions, aimed at covering the test problems in 
Table 1. 

The reader wishing to avoid wading through the details is directed to Fig. 3. 
There the an are plotted, together with the asymptotic estimates derived here, 
for the functions listed in Table 1. Note that in the figure, and also in the 
analyses below, we consider only n > 0. We do not sacrifice any generality in 
doing so, since an = a-I-n for all n, provided f(x) is real-valued. 

Fig. 3 reveals that the rate of decay in the an increases in the following order: 
f(x) = sin(x)/(l + x2), e-lxl , sin(x)/(l + X4), sech(x), ex2, 1/(1 + x4), 
and 1/(1 + x2). The accuracy of a numerical method based on (6) is therefore 
expected to increase in the same order. We confirm this numerically in ?5. 

If f(x) is sufficiently regular, methods from analytic function theory may be 
used for estimating the an, as was pointed out in [6, 21]. In particular, consider 
the bilinear map 

1 + iz .1 - w 
(7) 1 - iz ' II + w' 

related to (4), with z = x + iy. It maps the upper half-plane in the z-variable 
to the unit disc in the w-variable. The first expansion in (6) may thus be viewed 
as a Laurent series: 

00 00 

f(z)= , anPn(z) g(w)= anwn 
n=-oo n=-oo 

where 

g(w) = I + w f ( +W) 
Let R > 1, and consider the regions 

1 - reiG 
(8) FR: Z=1+ reieo AR: w= rei, 

both defined for R-1 < r < R, -7r < H < 7r. These regions are represented 
by the shaded areas in Fig. 2 (next page); the tick marks in the figure indicate 
the values z = ?i and the dot-dash curve represents the unit circle IwI = 1. 
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z w 

FIGURE 2. The regions FR (left) and AR (right) defined in (8) 

(Similar figures can be found in [5, 6].) The domain FR is mapped conformally 
to the annulus AR under the bilinear transformation (7). Here, FR consists of 
the exterior of two circles centered at z = ?i(R 2 + 1 )/(R2 -_1), respectively, 
both with radius 2R/(R 2 - 1). 

If f(z) is analytic in IFR , then g (w) is analytic in AR, and the Laurent 
series converges. Therefore, by Cauchy's estimate [1 1, Ch. 13] 

(9) ja,j ? C(r)r-1, C(r) =-max jg(w)j, 
lwl=r 

valid for each r such that R-1 < r < R. Thlis establishes at least geometric 
decay in the an. The bigger R, the quicker the a, are expected to decay. This 
means that if the poles of f(z) are clustered near z = +i , one can expect rapid 
convergence of the series (6). 

The analytic function theory sketched h~ere applies to both Examples 1 and 
2 of Table 1. Example 1 represents the extreme case R = oo. Only two of the 
coefficients a, are nonzero, since f(z) = 1/(1 + z2 2= ()= ~1+) 
Example 2 allows explicit computation of the a, too. We summarize as follows: 

Examplel1. f(x) = +2 =~ ao ,a- I ,and an =0 when n$ 

Example 2. f(x) =) I X 

|~ ~~~~( I) I o2n| 1 l 

(10) a2n = (-1~( -1)n 

for all n ? 0, and a2n-1 = -a2n, a-n an 

Though elegant, the above approach to estimating the an has limited appli- 
cability in practice. First, it requires f(x) to be analytic in a neighborhood of 
the entire real axis, including at x = +oo. Only the first two examples in Table 

i meet this requirement; the others have an essential singularity at x = +00 

Second, when transplanted from the real line to the unit disk under the mapping 
(7), functions such as Examples 3-7 in the table assume complicated forms.. For 
these functions different strategies have to be devised. 

To deal with Examples 3 and 4, we consider the more general class of func- 
tions 

(9)~ ~ ~ ~ ~~fx =an e C(rr-n C(r) _mxgw 
Q(X)r 
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where A is real, P(x) and Q(x) are polynomials in x with deg(Q) > deg(P), 
and Q(x) has no real zeros. We need to estimate the coefficients 

1 00 eiAx P(X) (l-ix\ 
a 7 J_ I + ix Q(x) I+ ix d 

One approach is repeated integration by parts, based on the identity 

(12) +X2 (l+ ix) dx 1(l x)+c n$O. 

For example, one step of integration by parts looks like 

eiAx R(x) i dx=_ eiAx R(x) - ix dx 
j. S(x) l+ ix / 2inj00 S(x) I+ ix 

where R(x) = P(x) and S(x) = Q(x)(1 + ix) in the first step. Each successful 
application of integration by parts reduces the difference between the degrees 
of the denominator and numerator by two, i.e., 

deg(S) - deg(R) = deg(S) - deg(R) - 2. 

This can be continued as long as deg(S) - deg(R) > 2. Thus it is deduced that 
for functions of the form ( 11) one can expect 

(13) an = O(n-c), 

where c= L[(deg(Q) - deg(P))J . This result may be improved, however, as we 
now show. 

We first record the fact that 
(14) 

J... (1+ix)l(l - lx)m dx=l(--1)! eU(1 1, 2 m 1, 2A) 

where m and / are integers such that I + m > 1, A > 0, and U(a, b, x) 
is the confluent hypergeometric function (see [19, p. 325]). We also need the 
asymptotic formula 

U(a, b, x) =r (F b - a + exx12exL-lb 

I 1~~~I x cos (vF2bx - 4ax - -b7r + a7 r 7r 1+ ? b - a 
2 

as a -00, for b bounded, x real (see [1, p. 508]). 
First consider Example 3 of Table 1. We need to evaluate 

1 00o sin(x) I 1 
_jxA 

n I 00 sin(x)d an=4fi J -12ix ( - ) dx = irf Jdx(l+ix)f+2(l1ix)1l- x. 

If we split the numerator as sin(x) = (eix - e-ix)/(2i) and assume n > 0 the 
integral involving the term e-ix vanishes. That leaves the integral involving 
eix, which is in the form (14), with A = 1, 1 = n + 2, and m = 1 - n. 
Together with the fact that J7(n + 3/4)/r(n + 2) n-514, one obtains: 
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Example 3. f(x) = Xi=x 

n 4ie(n + 1)!U(1' ' ) 

(15) = (-1)n+li7r-12(2n)-514 cos(2(2n + 1) 1/2 _ 7r/4) [1 + O(n I )]. 

Next, consider f(x) = sin(x)/(l + x4), and write the rational part as 

1 1 2x2 

1 +x4 (1 + X2)2 + (1 + x4)(1 + X2)2 

Multiply with (1/7r) sin(x)(1 - ix)n/(l + iX)n+l and integrate over (-xo, o); 
this gives an on the left. The first integral on the right can be estimated as in 
Example 3. Integration by parts establishes that the second integral on the right 
is O(n-3). Therefore: 

Example 4. f(x) = sin(x) = 

1 4 

n 16ie(n +2)! U(-2 - n, -3, 2) + O(n3) 

(16) (-1)n+, ii-1/2(2n)-9/4 cos(2(2n + 1)1/2 -7r/8) [1 + O(nI 

It is relatively straightforward to generalize Examples 3 and 4 to obtain a 
theorem applicable to all functions of the form (11). Since we shall not use 
such a general result further on, we omit the particulars. It suffices to say that 
this improves the earlier estimate (13) marginally to an = O(n-c- 1/4) . 

For functions infinitely differentiable on the real line, and decaying expo- 
nentially fast as lxl -- 00, the integration by parts approach establishes that 
n = O(n'1), for all integers 1, as n -- 00. This is a rapid rate of conver- 

gence though not necessarily as fast as the geometric rate of Example 2. The 
precise rate can be obtained by asymptotic methods in some cases, as the au- 

2 
thor demonstrated for f(x) = e-x in [24]. A steepest descent analysis was 

used to predict that an = O(e-(3/2)n23) , which represents a rapid decay, but not 
quite the geometric rate of Example 2. A similar analysis establishes that for 
f(x) = sech(x) the convergence is slightly slower, namely an = O(e-2n 1/2). We 
omit the calculation. The complete estimates are: 

2 
Example 5. f(x) = e-x 

(17) an (-1)n2e2/3(37r)/2m-1/3 cos((33/2/2)m2/3 + 57r/3)e-(3/2)m2/3 

where m_n+1/2. 

Example 6. f(x) = sech(x) 

(18) a (-1 )n23/2 7r-1/2n- 1/4 cos(2n 1/2 + 57r/8)e-2n 

Finally, we consider a function with a discontinuity in the first derivative, 

namely f(x) = e-x I. The coefficients are 

an=i J =IxI (i-ix)f dx = -Re dx (V ) dx] 
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10-2 

10-10 . \, Ex.\ x3 

10-12 lo-16 

10-16i 
0 10 20 30 40 50 60 70 80 90 100 

n 

FIGURE 3. Rate of decay in the coefficients an, n > 10. The 
labels refer to the test functions in Table 1. The continuous 
lines represent the true values Ian I and the circles represent the 
asymptotic approximations given in (1 5)-(19). Ex. 1 is absent 
since only two. coefficients are nonzero 

Integration by parts, based on (12), can be applied to the second integral to 
conclude that the convergence rate falls somewhere between that of Examples 
3 and 4: 

Example 7. f(x) = eIl xl 

(19) an 1+ 0(n-3). 

As verification of these asymptotic estimates we offer Fig. 3. There is good 
agreement between the estimated and the actual coefficients, even for relatively 
small n . The exceptions occur near the downward spikes in Examples 3, 4, and 
6. For these values of an the leading terms in the approximations (I15), (16), 
and (18) are no longer dominant, owing to the small cosine factor. Higher-order 
asymptotics are required here. We computed the "true" coefficients in Fig. 3 
using Matlab's FFT (see formula (22) of the next section). A large number 
of sampling points was used ( N = 214), so that these values can indeed be 
considered exact, at least on the scale of the figure. 

We now introduce the algorithm. 

4. THE ALGORITHM 

The need for computing the Hilbert transform on the real line arises in vari- 
ous ways. For example, f(x) may be known explicitly as a function of x, with 
fI{f}(x) to be computed at any x. Alternatively, f(x) may be known only at 
a discrete set xj, and X'{f}(xj) needs to be computed, thereby defining a dis- 
crete Hilbert transform operator. We first focus on the latter situation, which 
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arises for example in the numerical solution of integro-differential equations 
such as (28) below. 

Consider the truncated version of (6), defined by 

N-1 

(20) 4N{f}(X) = Ej isgn(n)anpn(x). 
n.-N 

Note that the index ranges over -N to N - 1. This is the natural truncation, 
since pn (x) and, P-n-i (x) form a conjugate pair. The coefficients are given by 
(5), that is 

an = |Jf( x)Pn(x)dx 

=21 |LJ (1 -itan0)f(tan O)e-inG40, 

where we have made the change of variable (4). Assuming that f(x) is available 
at the collocation points 

(21) 
xyd=tan 0j, =N' Iji<N, 

one may approximate the integral with the trapezoidal rule with spacing r/N. 
This yields the approximations an an, where 

(22) an k J ( - itan 0j) (tan 0j)en6 
j=-N+1 

We have set (I - itan I0j)f (tan I Oj) = 0 when j = ?N, since we are assuming 
that f(x) o(l/X) as x - ?oo. 

Once the an are known, the approximation to (20) may be computed by 

N-1 

(23) X f j 1 - itan 1 : isgn(n) naei?j, ljl < N. 

I n jn=-N 

The linear transformations f(xa) -Nan {f}(xj) define the discrete 
Hilbert transform operator. In summary, it is computed as follows: Given the 
function values f(xj) at the collocation points (21), compute the coefficients 
an according to (22). Then evaluate (23). Both formulas (22) and (23) can 
be computed with the FFT, rather than separate summations. This reduces the 
operation count from O(N2) to O(N log N). 

When f(x) needs to be evaluated at arbitrary x, one uses 

(24) Y{ f}(x)= 1 N-i isgn(n) an (+lx 
l-ix n=-N (otix) 

which may be evaluated by Homer's algorithm. 
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5. ERROR ESTIMATES 

The algorithm summarized by (22)-(23) produces the results shown in Fig. 4. 
We have plotted the error, defined by 

(25) error = max I2{f}(Xj) - 2N{f (Xj)I, 
ljl<N 

as a function of N, for the test examples in Table 1. These results, and also 
those shown in Figs. 5-8 of the next section, were computed with Matlab, with 
working precision about sixteen digits. The special functions in Table 1 were 
evaluated with Matlab's Symbolic Toolbox, which is based on the Maple kernel. 

It is possible to predict the rate of convergence observed in Fig. 4 in terms 
of the rate of decay in the coefficients an. To this end we use the following 
properties: (a) Ip,(x)I < 1/vTlVi2, for all n and x. (b) If f(x) is real- 
valued, then an = a_n-I for all n > 0, and a similar property applies to 
the computed coefficients an, for all n = 0, ..., N - 1. (c) Assuming that 

En=-. Ian I < 0, the true coefficients and the computed coefficients are related 
through [11, p. 19] 

00 

n- an = Z(an+2kN + an-2kN). 
k=1 

Theorem 2. Let '{ff}(x) and ZN{ff}(x) be defined by (6) and (24), and as- 
sume that EZ _10Ian I < 00. Then, for each real x, 

4 
00 

IXN ff}(x) -X{f }(x) l < _V/ +X EN lan l 

Proof. The error consists of two parts, namely the error associated with using 
an instead of an, and the error incurred by truncating the infinite series. These 

100 100 

lo,-lo 
~~~~~~~10 ~~~~~~~~~~~~~~~Ex. 7 

10.10 Ex. 2 Ex. 4 

1010-1 
0 20 40 60 80 100 102 104 

N N 

FIGURE 4. The error as defined by (25) as a function of N, for 
the algorithm summarized by (22)-(23). The labels refer to the 
test examples in Table 1. Notes: (a) Ex. 1 is not represented, 
since the- method is exact with only two terms in the series. (b) 
The figure on the left is a log-plot, the one on the right is a 
loglog-plot 
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errors may be separated, by writing 

otN{fl(X) 
- {f} (X) 

N-I -N-I 00 

= E isgn(n) (in-an)Pn(X) + z ianpn(x)-E ianPn(X) 

n=-N n=-oo n=N 

By applying the triangle inequality and the properties (a)-(c) listed above, the 
error bound follows. o 

In ?3 we estimated the coefficients an for some simple functions. This en- 
ables us to apply the above theorem. For example, suppose the analytic function 
theory as sketched in (7)-(9) is applicable. That is, we assume there exist posi- 
tive constants C and r < 1 such that 

(26) lanl < Crn, n > O. 

By summing the geometric series we establish geometric convergence of our 
algorithm: 

jA~r{f}(x)-*~'{f}(x)j ~ 4C rN 
Io6N{f}(X) -tf} (X) I < 

.+ x1 -r' 

The estimate (26) applies to Example 2 in Table 1, with r = - 1; recall 
(10). The geometric convergence is verified in Fig. 4. 

When the coefficients decay algebraically, like 

lanl ' Cn-(P+l) 

for some p > 0, the analysis is similar, except that we manipulate p-series 
rather than geometric series. This predicts that the error decreases like O(N-P) . 
This may be confirmed for Example 7 in Fig. 4. The estimate (19) indicates 
that p = 1, and a convergence rate of O(N-1) is evident from the figure. For 
Examples 3 and 4 we can estimate p to be 1/4 and 5/4 respectively; recall (15) 
and (16). However, the convergence rates observed in Fig. 4 seem to be better 
than the predicted O(N- 1/4) and O(N-5/4); it appears to be closer to O(N-314) 
and O(N-714). This discrepancy can be ascribed to cancellation effects: note 
the oscillatory nature of the coefficients in (15), (16). Such cancellations are 
disregarded when the triangle inequality is applied. 

Finally, this error analysis suggests that the convergence rates for Examples 5 
and 6 are essentially O(e-(312)N 2/ ) and O(e-2N /2) . This is in agreement with 
the empirical results observed in Fig. 4. 

6. COMPARISONS 

We now compare the methods listed in ? 1 with the rational eigenfunction 
method introduced here. For a fair compar.son we note that the rectangle 
rule (2) and the Fourier-transform method (3) both contain a free parameter 
that may be adjusted for optimum accuracy. We have the freedom to choose 
a domain x E [-L, L] outside of which we set f(x) = 0. To allow for a 
similar freedom in the rational expansion, we introduce a modified basis set 
P&(W = pn(x/L). Essentially the only modification to the algorithm given in 
?4 is that the collocation points are changed to xj = L tan I Oj . Estimating such 
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free parameters is no easy task however; cf. [9, p. 212]. We return to this issue 
below. 

We implement the rectangle rule on an interval x E [-L, L] using equidis- 
tant gridpoints xj = jh, ljl < N, where h = L/N. Formula (2) is therefore 
computed as 

(27) Nlf}(Xj) = 2 E f(Xj+2n+l) 
ir 2n+ 1 n=-oo 

where we set f(xl) = 0 when jxll > L. The Fourier-transform method is 
implemented on the same grid, and the FFT is used to compute the transforms 
in (3). 

In our tests it transpired that the Fourier-transform method (3) often yields 
very poor results compared to the other two methods, most notably for the test 
functions ex and sech(x). The problem is that the Hilbert transforms of 
these two functions are slowly decaying as jxl -* ox; see Table 1. Such long- 
tailed functions cannot be represented accurately by a discrete Fourier series on 
a truncated infinite domain. For this reason the Fourier-transform method was 
eliminated from the tests discussed below. 

Comparisons of the remaining two methods are presented in Figs. 5-8. In 
each case we show the maximum absolute error at the gridpoints (cf. (25)) as a 

Rational Expansion Ex. 1 Rectangle Rule Ex. 1 
10 0o 

N=8 

110 -5 16- 

101 

0 1 2 3 4 0 20 40 60 
L L 

Rational Expansion Ex. 2 Rectangle Rule Ex. 2 
100 __,_____=____ _____ 100 4>= ~ ; 

00 
10 lo \ 10 5 =6 

10 -10 X Jf 10 -10 

10 -15 d6104-1N6 101 lo__ _ __ _ __ _ __ _1015 _ _ _ _ _ _ _ _ _ _ _ 

0 1 2 3 4 0 5 10 15 20 
L L 

FIGURE 5. The error as defined by (25) as a function of L, for 
the rational expansion method summarized by (22)-(23) versus 
the rectangle rule summarized by (27). The test functions are 
f(x) = 1 /(l + X2) (top) and f(x) = 1 /(1 + x4) (bottom) 
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Rational Expansion Ex. 3 Rectangle Rule Ex. 3 
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Rational Expansion Ex. 4 Rectangle Rule Ex. 4 
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106~~~~~~~~~6 
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FIGURE 6. Same as Fig. 5, but the test functions are f(x) = 

sin(x)/(1 + x2) (top) and f(x) = sin(x)/(1 + x4) (bottom) 

function of the free parameter L, for various N. The rational eigenfunction 
method is superior for Examples 1, 2, 6, and 7. The rectangle rule is superior 
for Example 5, and for Examples 3 and 4 there is not much of a difference. For 
such assessments we assume of course that a near optimal value of L is used. 

As for computational efficiency, the rectangle rule and the rational method use 
respectively 2N and 2N - 1 function evaluations to compute the transform. 
However, computing the rectangle rule (27) using straightforward summation 
requires O(N2) operations, compared to the O(NlogN) of the eigenfunction 
method (23). Our Matlab implementation indicated that the eigenfunction 
method requires fewer operations when N > 128, provided we restrict N 
to be a power of two. 

To be fair to the rectangle rule we mention two strategies that may improve 
its efficiency. First, the formula (27) can be viewed as a matrix-vector product 
involving a Toeplitz matrix. It is possible to perform such a multiplication with 
the FFT in O(N log N) operations, provided one embeds the Toeplitz matrix in 
a circulant matrix of twice the size. Such an approach will only be efficient for 
N much bigger than the values considered here. Second, it may be possible to 
apply some form of convergence acceleration to the summation (27). However, 
this requires prior knowledge of the function. When solving integro-differential 
equations, for example, the function is an unknown and such information may 
not be readily available. 
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Rational Expansion Ex. 5 Rectangle Rule Ex. 5 
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FIGURE 7. Same as Fig. 5, but the test functions are f(x) = e-x 
(top) and f(x) = sech(x) (bottom) 

Rational Expansion Ex. 7 Rectangle Rule Ex. 7 
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FIGURE 8. Same as Fig. 5, but the test function is f(x) e-lxl 

The rational expansion method has two further advantages. First, it obviates 
the need for selecting a relationship L vs. N. A fixed value of L leads to 
convergence as N -' oo for each of the test Examples 1-7. This is not true for 
the rectangle rule: keeping L fixed as N -+ oc does not lead to convergence 
as is clear from Figs. 5-8. Second, the rational eigenfunction method can be 
used to compute asymptotic values of X{f}(x), x - ?moo. Consider for 
example kf{e-x2}(x) = -(2/V3)D(x), and suppose we would like to confirm 
that D(x) 1/(2x), x -- oo. Define the approximate Dawson function DN(X) 
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TABLE 2. Numerical verification of 2xD(x) 1 as x -- 00 

x 2xDN(x) - 1 
10 5.1(-3) 

100 5.0(-5) 
1000 5.0(-7) 

through Nr{e-x2}(x) = -(2/Vi)DN(x), and evaluate (24) with Horner's rule. 
With N = 64, L = 1, this produces the results in Table 2. It is not clear how 
such large-x calculations can be performed efficiently with the rectangle rule or 
the Fourier-transform method. 

7. CONCLUSIONS 

In this paper we introduced what we believe to be a new method for the 
computation of the Hilbert transform on the real line. Convergence rates for 
some simple classes of functions were established, and these results were verified 
numerically for the test problems in Table 1. 

The method was found to yield higher accuracy than its competitors in several 
(but not all) test problems considered. In addition, it has several attractive 
features which sets it apart from its rivals: First, no grid refinement strategy 
(L vs. N) is required. Second, it is useful for asymptotic calculations such as 
those presented in Table 2. Third, it can be implemented by the FFT. 

We also presented some preliminary results on the rate of decay of the ex- 
pansion coefficients an for some test functions (?3). These estimates are not 
only applicable to the calculation of the Hilbert transform. It may also be useful 
for computing Fourier transforms using Weber's method [21], for the inversion 
of the Laplace transform with Weeks' method [22], or for solving differential 
equations using expansions in the basis functions pn(X) [5, 8, 23]. 

One problem that has not been resolved completely is the selection of the 
optimal parameter L in our method. As is clear from Figs. 5-8, the optimal 
L typically depends on N, but in general the precise relationship is hard to 
determine. However, for individual test examples asymptotic analysis may pro- 
vide the answer. The case f(x) = e-x2 was analyzed in detail in [24]. The 
optimal choice was shown to be L = 2- 1/4N1/2 , which correlates well with the 
numerical results presented in Fig. 7. 

We conclude with some remarks on two applications, namely the complex 
error function and the Benjamin-Ono equation. Certain refinements of our 
algorithm lead to a very efficient algorithm for calculating the complex error 
function w(z) = e-z2erfc(-iz), which can be represented as a Hilbert trans- 
form of f(x) = ex2 extended into the complex plane. See [24, 25] for details. 

We also implemented the method on the Benjamin-Ono (BO) equation 

(28) ut + uux + {UXX}= 0, -oo < X < , 

which, together with a suitable initial condition u(x, 0), describes waves in 
stratified fluids [3, 17]. This equation is similar to the well-known Korteweg- 
de Vries equation (KdV), which replaces the term I{uxx} with uxxx . Like the 
KdV equation the BO equation admits soliton solutions. These are solitary wave 
solutions which preserve their shape during nonlinear interaction. However, 
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the BO solitons are algebraic, i.e., rational functions in x and t (see [17]). By 
contrast KdV solitons decay exponentially as Ixi oo. 

This rational nature of the BO solitons makes the present method especially 
suitable for the BO equation. The function u(x, t) was expanded in terms of 
the basis functions pn (x) with time-dependent coefficients. The x-derivatives 
were computed by the methods described in [8, 15, 23], and the Hilbert trans- 
form was computed by the method introduced here. This led to a nonlinear 
system of ordinary differential equations in the t variable, which we integrated 
with the explicit midpoint method. This approach turned out to be very ac- 
curate, at least in the initial stages before the waves move too far from the 
origin. When this occurs, the increasing grid-spacing (recall xj = tan(7rj/2N)) 
leads to a lack of resolution, and the quality of the approximation deteriorates. 
Numerical results are presented in [15]. 
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