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ANALYSIS OF COPPERSMITH'S BLOCK WIEDEMANN 
ALGORITHM FOR THE PARALLEL SOLUTION 

OF SPARSE LINEAR SYSTEMS 

ERICH KALTOFEN 

ABSTRACT. By using projections by a block of vectors in place of a single vec- 
tor it is possible to parallelize the outer loop of iterative methods for solving 
sparse linear systems. We analyze such a scheme proposed by Coppersmith for 
Wiedemann's coordinate recurrence algorithm, which is based in part on the 
Krylov subspace approach. We prove that by use of certain randomizations on 
the input system the parallel speed up is roughly by the number of vectors in the 
blocks when using as many processors. Our analysis is valid for fields of entries 
that have sufficiently large cardinality. Our analysis also deals with an arising 
subproblem of solving a singular block Toeplitz system by use of the theory of 
Toeplitz-like matrices. 

1. INTRODUCTION 

The problem of solving larger unstructured sparse linear systems with exact 
arithmetic arises in computer algebra and number theory. For instance, sieve- 
based integer factoring algorithms can lead to systems of over 200,000 equations 
and variables with over 11 million nonzero entries that need to be solved over 
the Galois field of two elements (Lenstra et al. [15]). One way problems of 
such a large size are tackled is by structured Gaussian elimination that prevents 
fill-in at the early stages, resulting in much denser systems of smaller dimen- 
sions (see, e.g., LaMacchia and Odlyzko [14] and Pomerance and Smith [21]), 
in the cited example about 72,000. An alternative approach is to use iterative 
methods. LaMacchia and Odlyzko [14] use an exact arithmetic version of the 
conjugate gradient algorithm, and Wiedemann [24] bases his method on finding 
linear relations in Krylov subspaces. Both approaches use the black-box model 
for sparse matrices; that is, they require a linear number of matrix times vector 
products and quadratically many field operations, both measured in the dimen- 
sion of the system. Therefore, the iterative methods do not depend on certain 
structural properties of the sparse matrix, in contrast to structured Gaussian 
elimination. Clearly, the iterative methods are subject to parallelization when 
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considering the steps inside the outer iteration loop, i.e., the matrix times vector 
products (see Schwabe et al. [22]). 

A more difficult task is the parallelization of the outer iterative loop in any 
of these algorithms. It seems natural to consider blocks of vectors instead of 
single vectors. Arithmetic is then performed on small square matrices in place 
of the individual field entries, and the length of the iteration should become a 
fraction of the original length, where the reduction should be proportional to 
the number of single column vectors in each block. Since the components of 
the blocks can be processed in parallel, the arithmetic necessary in each itera- 
tion can be carried out on a parallel system as fast as the unblocked iteration 
on a sequential computer. Therefore, the overall parallel speed-up should be 
roughly proportional to the number of vectors in each block. Coppersmith [4] 
suggests such a modification of the Wiedemann approach. He presents a com- 
plete algorithm, a heuristic mathematical argument, and experimental results 
that the blocking has the desired effect. In this paper we will give a full analysis 
for a variant of Coppersmith's method in the case that the field of entries has 
sufficiently many elements. The specifics are as follows. 

Wiedemann's [24] algorithm for computing the N-dimensional solution vec- 
tor of a possibly singular system of N linear equations over a finite field K 
requires < 3N multiplications of the coefficient matrix B by vectors and 
O(N2 log N) additional arithmetic operations in the coefficient field. Only O(N) 
additional field elements need to be stored. The method is randomized and 
computes first the sequence of field elements 

a(i)=utrBivE K for0<i<2N-l, 

where u and possibly v are vectors with random entries from K. The key 
property is that this sequence is generated by a linear recursion that, with high 
probability, corresponds to the minimum polynomial of B, and which can be 
computed by the Berklekamp/Massey algorithm, 

Coppersmith [4] proposes to use simultaneously m random vectors for u 
and n random vectors for v. The sequence now is a sequence of m x n 
matrices 

a-) = xtrBiy E Kmxn where xtr E KmxN and y E K xn. 

Clearly, the individual entries in a(i) can be computed independently and in 
parallel. Coppersmith then cleverly generalizes the Berlekamp/Massey algo- 
rithm needed to compute a linear recurrence that generates this sequence and 
observed experimentally that over the Galois field with two elements the linear 
recurrence is determined by the first N/m + N/n + 0(1) matrices a(i). Thus 
the algorithm, when executed in a parallel/distributed setting, performs much 
faster. 

We prove that if the coefficient matrix satisfies a certain condition regard- 
ing the degree of its minimum polynomial, then the algorithm is guaranteed 
to compute a solution with high probability. Moreover, that condition can be 
obtained by preconditioning the coefficient matrix by pre- and postmultiply- 
ing it with certain random structured matrices (Wiedemann [24]; Kaltofen and 
Saunders [13]). In all our estimates, we suppose that the field of entries is of 
sufficient cardinality. Furthermore, we give an alternative approach to comput- 
ing the linear generator for the sequence of < N/m + N/n + 2n/m + 1 matrices 
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a(i) . The problem can be cast as a homogeneous linear system of block Toeplitz 
structure, and the theory of Toeplitz-like matrices (Kailath et al. [9]) can be ap- 
plied. We show that by randomization such singular systems can be solved by 
generalizations of the Levinson and Durbin algorithms (see Gohberg et al. [8]) 
or by generalizations of doubling methods that achieve even faster asymptotic 
speeds by use of FFT-based polynomial multiplication (Bitmead and Anderson 
[1]; Morf [19]). By use of block Toeplitz solvers we are also able to probabilis- 
tically and efficiently compute the rank of a singular sparse matrix. Lastly, we 
show that all of our algorithms can be carried out on parallel computers. 

The key idea in our analysis is the observation that generically, i.e., when the 
projection blocks x and y are symbolic, the block method can be specialized to 
the original Wiedemann algorithm. From that specialization one then can prove 
that certain necessary rank conditions must hold generically. By the commonly 
used Schwartz/Zippel lemma those rank conditions will thus hold with high 
probability for random blocks. 

Our results also impact the sequential complexity of sparse linear system 
solving. Suppose, e.g., that B is nonsingular, and that E > 0. Using blocking, 
one can find a solution vector x = B-Ib, where b E KN, by (1 + e)N + 0(1) 
multiplications of B times vectors, and O(N2 logNloglogN) arithmetic op- 
erations in K, needing O(N) additional storage for field elements. The algo- 
rithm chooses O(N) random field elements and is successful with probability 
1 - O(N2)/(card(K) - 1 ), where card(K) denotes the cardinality of the field K. 
Here the constants implied by the big-0 notation grow with 1I /. Note that it 
had been an open problem how to speed the Wiedemann method such that no 
more than CN, where c < 2, matrix times vector products would be needed. 

Notation. We write KN for the set of column vectors over K, and 0N for 
the N-dimensional zero column vector; ONxM is the N x M zero matrix. 
By IN we denote the N x N identity matrix, and by e(N) we denote the N- 
dimensional ith unit vector, that is, a vector with 1 in the ith coordintae and 0 
everywhere else. Matrices are indicated by capital letters, e.g., A, B, G, V, W, 
and by bold lower-case letters, e.g., a, x, y, z, while single column vectors are 
written as lower-case symbols, e.g., b, v, w, etc. Matrices written in script 
font or bold lower-case Greek, such as 2?, 3', X', X, 9', a, have entries 
that contain indeterminates. Vector and matrix transposition is indicated by 
superscript tr. Individual entries in matrices or vectors are selected by square 
brackets; for instance, A[ 1, 1] denotes the left upper entry in the matrix A. 
We indicate a block matrix whose entries are matrices or vectors by vertical and 
horizontal strokes, such as [4j] . 

2. RANDOMIZATIONS 

Several randomization techniques for linear and polynomial algebra have 
been advanced in the past, which we will make use of below. We collect the 
needed results in this section. 

Theorem 1. Let F(xi, ... , x,) be a nonzero v-variate polynomial over an in- 
tegral domain, and let S be a subset of that domain. Then the probability of 
avoiding the zeros of F while evaluating in S is bounded as follows: 

Prob(F(s*, Sv)s) 0 1 sj E S for all < j < v)? 1 degF 
card S 



780 ERICH KALTOFEN 

Here, deg(F) denotes the total degree of F, i.e., the maximum of all term 
exponent sums, and card(S) denotes the cardinality of S. The theorem in the 
above form was given by Schwartz [23]. Somewhat different versions are due 
to DeMillo and Lipton [6] and Zippel [25; 26, ? 12]. 

In the following, we consider an N x N singular matrix A with entries from 
a field. By Ai we shall denote the leading i x i principal submatrix, i.e., the 
i x i submatrix located in the left upper corner of A, where 1 < i < N. We 
say that A has generic rank profile (cf. Delsarte et al. [5]) if Aj is nonsingular 
for all 1 < j < rank A. In such a case, no search for nonzero pivot elements 
would have to be performed during triangularization by Gaussian elimination. 
The following is Theorem 2 of Kaltofen and Saunders [13]. 

Theorem 2. For an N x N matrix A of rank r consider the matrix product 
A= VAW with 

V2 V3 *.. VN l 

1 V2 * 
VN-1 W2 1 0 

| Oa1 W3 W21 

L I i L~~ WN WN- I ... W2 IJ 

where the elements of the unit upper triangular Toeplitz matrix V and the el- 
ements of the unit lower triangular Toeplitz matrix W are randomly and uni- 
formly selected from a subset S of the field of entries. Then A has generic rank 
profile with probability no less than 1 - r(r + 1)/ card(S). Furthermore, if A is 
nonsingular, the product A W has generic rank profile with probability at least 
I1- I (N- l) N/card(S) . 

As we will see later, it is often useful to work with the matrix A, which has 
generic rank profile, instead of with A. The following technique from Kaltofen 
and Saunders [13, Theorem 4] shows how to find random solutions to linear 
systems. 

Proposition 1. Let A be an N x N matrix of rank r, and suppose that the 
leading r x r principal submatrix Ar is nonsingular. Then for a random column 
vector y with coordinates from the field of entries, the vector 

x= -y 

is a random solution to Ax = b, where the vector b' consists of the first r 
coordinates of b + Ay. 

The rank of a matrix can be related to the degree of the minimum polynomial 
of a certain product matrix by the following theorem (see Kaltofen and Saunders 
[13, Lemma 2]). 

Theorem 3. Let A be an N x N singular matrix that has generic rank profile, 
let r be the rank of A, and let G be a diagonal matrix where each entry on the 
diagonal has been uniformly selected from a subset S of the field of entries with 
O 0 S . Then the minimum polynomial of AG has degree 1 + r with probability 
at least 1 - Ir(r + 1)/ card(S) . 
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3. LINEARLY GENERATED SEQUENCES 

We now discuss some basic facts about linearly generated sequences of ele- 
ments in a vector space V over the field K. A sequence {ai}=0 , where ai E V, 
is linearly generated over K if there exist co, cl, ... , CN E K, N > 0, CL $ 0 
for some L with O < L < N, such that 

(1) Vj>O: coaj+***+cNaj+N =O 

The polynomial c0 + c1. + *. + cN,N is called a generating polynomial for 
{a1}i0. The set of all generating polynomials for {ai}J0 together with the 
zero polynomial forms an ideal in K[A]. The unique polynomial generating 
that ideal, normalized to have leading coefficient 1, is called the minimum poly- 
nomial of a linearly generated sequence {ai}J0. Every generating polynomial 
is divisible by the minimum polynomial. 

Let W be also a vector space over K, and let (D: V -- W be a linear map 
from V to W. Then the sequence {D(ai)}J0 is also linearly generated by 
a minimum polynomial that divides the minimum generating polynomial of 
{ai}%.= Let B E K NXN be a square matrix over a field. The sequence of 
N x N matrices {Bi}J0 is linearly generated, and its minimum polynomial 
is the minimum polynomial of B, which will be denoted by f B. For any 
column vector b E KN the vector sequence {Bib}=00, where Bib E KN, is 
also linearly generated by f B . However, its minimum polynomial denoted by 
f B,b, can be a proper divisor of f B. For any row vector Utr E K1xN the 
sequence {utrBib}i0=, where utrBib E K, is linearly generated as well, and its 
minimum polynomial, denoted by fuB b, is again a divisor of fB Bb. 

Wiedemann's method is based on the fact that for random vectors u and b 
one gets fUB b = f B with probability bounded away from 0. Below we shall give 
a new proof of this fact in the restricted case where the field has sufficiently many 
elements. But first we need to establish equality of the minimum polynomials 
for "generic" projections. 

Proposition 2. Let B E KNxN and let 

v= [ and = [ 

LVN J fiNJ 

be vectors whose entries are indeterminates. Then the sequence {VtrBifi}i=0 over 
the transcendental extension field K(vi, .I. , VN, flX .. ., flN) is linearly gener- 
atedby f B. 

Proof. Since VB 
6 is a monic factor of f B, the coefficients of LB' are all 

elements in the ground field K. Let ev denote the vth unit vector. By special- 
izing v to ej and ,B to ek, the sequence specializes to {(Bi)[j, k]}1?0, which 
is also linearly generated by fVB, 6. Therefore fB 

6 linearly generates {Bi}0=0 
and must be equal to f B. a 

The minimum generator for a sequence {ai}J0 of field elements ai E K 
can be computed by the Berlekamp/Massey algorithm [ 16]. This algorithm will 
determine the minimum polynomial f (min) of such a sequence from the first 
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2M elements, where M - deg(f (min)) . If more elements are given, the com- 
puted minimum polynomial cannot change. Therefore, we have the following 
theorem. 

Theorem 4. Suppose {ai}?OO, where ai E K, is linearly generated by the mini- 
mum polynomial f (min). Let M = deg(f (min)) and let M' > M. Suppose a 
polynomial g with deg(g) < M' linearly generates a sequence 

{aoal, .., a2M-, a2M1 a2MI+l,* -} 

whosefirst 2M' elements agree with {aiJ}?0. Then a = ai for all i > 2M' 
and g is a polynomial multiple of f (min). 

Now reconsider the linear equations arising from (1) when as E K. Setting 
CN = 1, we can solve the first N equations for Ck, where 0 < k < N. By 
Theorem 4 any monic polynomial whose coefficient vector is a solution to this 
system must linearly generate the entire sequence. Therefore, the arising N x N 
coefficient matrix, which is a Toeplitz matrix, is nonsingular if N is exactly the 
degree of the minimum polynomial, and is singular if N is larger than that 
degree, because then there are more than one such polynomial. We finally can 
establish the following fact. 

Theorem 5. Let B E KNXN, let b E KN and suppose that the coordinates of 
the vector u are selected uniformly randomly from a subset S of K. Then 
Prob(f B Kb = f B, b) > 1-deg(f B, b)/ card(S) > 1-N/ card(S) . 

Proof. Let v be the vector with the indeterminate coordinates vI, ..-, VN. 
As in Proposition 2 we have f B, b = foB b Therefore, for M = deg(f B, b) 
the M x M coefficient matrix arising from the linear recurrence given by the 
minimum polynomial fjB,b of {vtrBib}i0 is a nonsingular Toeplitz matrix 
over K(vl, ..., VN). Let A be the determinant of that matrix. Then for 
any vector u E KN with A(ul, ...U, u) :# 0 the sequence {utrBib}J0 can- 
not be generated by a smaller minimum polynomial, because otherwise the 
corresponding coefficient matrix would have to be singular as stated just be- 
fore. By Theorem 1 a zero of A is avoided with probability no less than 
1 - deg(A)/ card(S) > 1 - M/ card(S). 0 

4. COPPERSMITH'S BLOCK WIEDEMANN ALGORITHM 

In order to prepare for later discussion, we first give a particular variant of 
Wiedemann's coordinate recurrence method for solving a homogeneous linear 
system [24, ?III, first paragraph]. This variant already accounts for some changes 
necessitated by the later block version. Let B E KNXNN be a singular matrix, 
where K is a finite field; we seek a nonzero vector W E KN such that Bw = 0. 

Algorithm Homogeneous Wiedemann. 
Step W1: Pick random vectors u E KN and v E KN. For any integers 

M' > M > N, compute 

b = Bv, a(') = utrBlb, 0 < i < M + M'-1 . 

(The letters u and b now agree with the ones in Wiedemann's paper.) This 
requires at least 2M multiplications of B by vectors. 
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Step W2: Compute a nonzero solution to the linear homogeneous M' x 
(M + 1) Toeplitz system 

[ a(M) a (? a0) ' cC(M) 
,a,(m+I) a(M) a (2) a0 ) | tc( | M= 

a(M+M'-1) a(ma(M'-1) iL c(0)]M 

Define the generating polynomial 

f(A) = C(L)AL + C(L+l)AL + ... + C(m),(* 

where c(l) = 0 for all 0 < 1 < L < M and c(L) :# 0. Such a polynomial can 
be determined, e.g., by the Berlekamp/Massey algorithm, which then requires, 
for M' = M = N, O(N2) arithmetic operations in K. Here we introduce 
unnecessary generality for the later analysis of the block Wiedemann method. 
Note that 

utrBif(B)b = O for all 0 < j < M- 1, 

which implies by Theorem 4 that f(A) is a polynomial multiple of f"B b 
Furthermore, by Theorem 5 with probability no less than 1 - N/ card(K), f(i) 
is a polynomial multiple of the polynomial f B,b(,), i.e., 

(2) C(L)BLb + C(L+l)BL+lb + ... + c(M)BMb = 0. 

Step W3: Compute 

W = C(L)V + C(L+l)Bv + ... + C(M)BM-LV. 

This requires at most M - L additional multiplications of B times a vector. 
One may argue as follows that w # 0N with probability at least 1 - 1/ card(K) 
[4]: for v' = v + w0, where Wo0 E kernel(B), the vector b = Bv', and hence 
the sequence a(i) does not change. However, 

.I= C(L)V + C(L+l)Bv + ... + C(M)BM-LV/ = I + C(L)WO. 

Therefore, in the set of vectors v + kernel(B), at most one vector can pro- 
duce w' = 0. Note that the solution c() ..., c(M) is computed without any 
information on w0o. 

Suppose now that Wz o . Finally, determine the first integer i such that 
Biw' = ON and return w = Bi-lwz. By (2), this should happen, with high 
probability, for an integer i < L + 1 . At most L + 1 more multiplications of 
B by a vector are required. 0 

Let m, n < N. Coppersmith's [4] block version essentially uses 

Xtr E KmxN in place of utr, 

z E KNxn in place of v, and 

y = Bz E KNxn in place of b = Bv. 

(The letters B, x, y, and z agree with the ones in Coppersmith's paper; we 
use bold type to indicate their block nature.) Thus, the sequence consists of the 
m x n matrices 

a(i) = xtrBiy E Kmxn 0 < i. 
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(Coppersmith further transposes these matrices.) The main point is that a non- 
trivial linear dependence of the type (2) can be found from roughly N/rm + N/n 
sequence elements a(i). A brief description of a variant of the block Wiede- 
mann algorithm follows. 

Algorithm Block Wiedemann. 
Step Cl: Pick random vectors xl, ..X , x, z1, ... , Zn E KN. Let 

~xtr" 

xtr = [.] , y= B [z ... Zn]. 

Compute 

a(i) = xtrBiy for all O < i < N + N + 2n + 
m n m 

This requires less than 

(3) 1 + N + 2n 

multiplications of B times a vector. However, for every ye,, the vth columns 
of the sequence matrices a(i)> namely xtrBiyv, can be computed simultane- 
ously, yielding a coarse-grain parallelization. Alternatively, one may for each 
i perform the products B * (B''y,) in parallel, as Coppersmith does, which 
is finer grain and requires synchronization for each i. For instance, if the 
matrix is embedded on the distributed memory of a processor network [22], 
the entire block Bi-ly can be communicated through the network. Note that 
computing the products xtr. (Blyv) for all v and i requires some additional 
O((m + n)N2) arithmetic operations in K, if done sequentially. 

Step C2: Let D = [N/nl, S = n(D + 1), E = [S/ml, and let R =mE. 
Compute a nonzero solution to the linear homogeneous R x S linear system (of 
block Toeplitz structure) 

[ a(D) ... aM a(l) c(D) 

a (D+ 1) a (D) a (2) a( 1) c(D- 1 ) 
(4) . _.-=oR 

.~~~~~~I.I 
a(D+E- 1) ... a(E-) C(?) 

where c(') E Kn for all 0 < i < D. The dimensions are bounded as follows: 
N + n < S, < N + 2n, S < R ,and E < N/m + 2n/m + 1. Therefore, we have 

N N 2n 
D +E < -+ I + -+ -+ 1 n m m 

which determines the length of the sequence a(i) . Define the generating poly- 
nomial with (right-side) vector coefficients 

f(A) = ~ALyC(L) + )L+lyc(L+l) + ... + )Dyc(D), 

where c(l) = on for all 0 < 1 < L < D and c(L) $ on. Coppersmith in his 
paper computes such a nonzero vector polynomial by his generalization of the 
Berlekamp/Massey algorithm to polynomials with matrix coefficients. In any 
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case, we have xtrBif(B) = om for all 0 < j < E - 1. As we will argue later, 
with high probability the projections by Xtr do not introduce any additional 
linear dependence, so that 
(5) f(B) - BLyc(L) + BL+lyc(L+l) + ... + BDyc(D) = ON 

Step C3: Compute 

W = zc(L) + BZC(L+l) + ... + BD-LZc(D) 

This requires at most D - L additional multiplications of B times a vector 
(using a Homer evaluation scheme). One may argue as in Step C3 above that 
w O with probability at least 1 - 1/ card(K) (see also proof of Theorem 6 
in ?5). Suppose now that Wz o . Finally, determine the first integer i such 
that Biw, = ON and return w = Bi-Iw . By (5), this should happen, with high 
probability, for an integer i < L + 1 . At most L + 1 more multiplications of 
B by a vector are required. Altogether, this step performs 

N 
(6) D+1<-+2 

n 
multiplications of B by a vector. An additional O(N2) arithmetic operations 
in K are required to compute zc(i) for L < i < D and to add the D - L + 1 
vectors in the Homer scheme. Note that with n processors the parallel number 
of matrix-vector multiplication can be reduced (see Appendix B). o 

Coppersmith's paper raises two distinct problems with the block Wiedemann 
method. 

1. The efficient computation of a nontrivial solution to (4). He proposes a 
clever generalization of the Berlekamp/Massey algorithm to linearly generated 
sequences of matrices. Although one can define the notion of a minimum gen- 
erator, a proof that the algorithm produces it has so far eluded us. However, we 
may proceed directly by computing a nontrivial solution of our system by either 
a method for Toeplitz-like matrices or by the Wiedemann algorithm itself and 
by using a fast polynomial (over K) multiplication algorithm (see ?6). 

2. The probabilistic analysis, in particular the fact that with high probability 
the polynomial found, f(i), satisfies (5). We will show this to be true at least 
in the case that the minimum polynomial f B of the coefficient matrix B has 
degree deg(f B) = rank(B) + 1. Fortunately, by the randomizations of the 
Theorems 2 and 3 this condition can be enforced for any matrix B. Let us 
consider, e.g., solving a nonsingular system x = A'- b . We then can randomize 
A = A WG, where W is a random unit lower triangular Toeplitz matrix and G 
a random diagonal matrix, and execute the block Wiedemann method on the 
(N+ 1) x (N+ 1) matrix 

B= A ] 

ol0X N I0J 

Note that A has with high probability N distinct eigenvalues, and multiplica- 
tions of A by vectors are inexpensive because W is Toeplitz. 

5. PROBABILISTIC ANALYSIS 

We now justify Coppersmith's block version of the Wiedemann algorithm. 
We will prove the following theorem. 
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Theorem 6. Let K be a finite field, and let B E KNXN be a singular matrix 
whose minimal polynomial f B has degree deg(f B) = rank(B) + 1. Suppose 
that the vector blocks Xtr E KmXN and z E KNxn are chosen at random and 
that wA E KN is computed by the block Wiedemann algorithm of ?3. Then with 
probability no less than 1 - (2 rank(B) + 1)/ card(K) > 1 - (2N - 1)/ card(K) 
we have W $ oN and BL+lZ = 0N for some integer L < rN/ni. 

The key property for the algorithm to succeed is equation (5). We will prove 
(5) first if the entries in x and z are indeterminates 4 ,, / and CI,,, where 
1< S : m, 1.< v < n, and 1 < 1 < N. In this case, the algorithm is 
performed over the rational function field over K, 

L= EX(l,1 ** S N,4m, C1,, I* , N,n)* 

In order to distinguish when the algorithm is performed over K and when over 
L, we will write t and . for the undetermined x and z and 

/ = B2E LNxn, B(i) = E rBiy ELmxn. 

The equation (5) is equivalent to the solution vector c of (4) satisfying the 
following block Krylov system: 

c(D) 
' 

C(D-1) 

(7) [BD+1z... B2z Bz] - = 0. 

Clearly, any solution of (7) also solves (4). We first state that generically, i.e., 
over L, no other solutions to (4) exist. We will prove this fact later, using 
Proposition 4 stated below. 

Proposition 3. Suppose that the minimum polynomial f B of B has the degree 
deg(f B) = min{N, rank(B) + 11 . Then for D = rN/ni and E = rn(D+ 1)/ml 
we have the rank equalities 

e ?(D) ..(1) .S( (?) 

,5V(D+ 1) .SI (D) .SI?(2) .S/?(1 ) 

rank __X __ 

(D+E-1) ... (E-1) 

_ rank([B B ... IB'I]) = rank(B). 

The proof of this proposition is based on its validity for m = n = 1, which 
we shall first prove. In that case we will denote our generic sequence by 

a(i) - X()= 21trBi+l2l E L for i > 0. 

Proposition 4. Let M' > M > N. Define 

-<(M+1) .(M) C(2) a(?) - 
E Lm'x(M+1) 

ag(M+M'1) ... a(""- J 



ANALYSIS OF COPPERSMITH'S ALGORITHM 787 

and 
Y=[Bm.2j I... IB2.lIB.2B]ELNXML 

Then 

rank(Yr) = rank(,Z) = { deg(f B) if B is nonsingular, 
deg(f B) _ 1 if B is singular. 

Proof. Since f B(() linearly generates the sequence {Bij l},=o where BiZ1 E 
LN, we must have the rank inequality 

rank([BM2j I ... IBY, I 2i]) < deg(f B) 

for any vector .2 and any integer M > N. Moreover, by Proposition 2 of ?3 
the linear image {1',rB iY }, 1 is minimally generated by f B, so the minimum 
generator f B -1 cannot be a polynomial of lesser degree; hence 

rank([BNf I ... I B, I ])= deg(f B). 

If B is a nonsingular matrix, the minimum generating polynomial of the se- 
quence {B1k'1}0 = o{Bi+1-Y2}l does not change, while for singular B the 
minimum generating polynomial is f B(A)/I; thus the rank of X drops by 1. 
We define this polynomial by 

B fB () if B is nonsingular, 
fJ (A) f l fB (A/). if B is singular. 

So far, we have shown that rank(Z) - deg(fP). 
Second, we need to prove that rank(S7) = rank(Z) . As before, we can argue 

by making use of Proposition 2 that fi2 is the minimum generating polynomial 
of the sequence {a(i)}o. We finally show that rank(7) = deg(f!). Consider 
any nonzero solution y E LM+1 of 

-o(M) 
... 

.(l) Y(O) y(M) 1 
(8) SY = ta(M+I) cX(m) o/(2) ai(l) 1 y(M-1)] M/ 

(8) j7 0 
L Ci(M+M' 1) .......... ot(MI-1) J L y (O) J 

Then forall j = O,..., M- 1 < M' - 1 

(M+j) (M) +... + -j) 0() =; 

hence by.Theorem 4 of ?3 the polynomial 

(i) = yMAM + * + y(l) + y(O) E L[A] 

generates the entire sequence {a(i)}?=o . This implies that f! divides , so (0 
is in the linear span over L of 

(9) fB(A) iKf( ) ... , A&2(A), where a = M- deg(f2). 

Also, any coefficient vector of a polynomial in the linear span of (9) solves (8), 
since any such polynomial generates {() }I1=0 . Therefore, the dimension of the 
kernel of .7 is equal to the dimension of the space generated by (9), which is 
M + 1 - deg(f B); thus the rank of 3', M + 1 - (the dimension of the kernel 
of .7), is equal to deg(fP). O 
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Proof of Proposition 3. Consider the specialization 

2"' = [2"i | ,BD+l21 D B2(D+)1 j 2D... 1 B(n1)(D+1)Z]. 

2 3 X 

Then the set of columns in 

[BD2-1 I BD-12-1 .. 12,I] 

is equal to 
{1,- B.21 B 2z, ..,g(DB _ 

Since n (D + 1) > N, this set has rank equal deg(f B), as is argued in the proof 
of Proposition 2. Therefore, the "more generic" matrix 

DBD2 |BD2-1 ... 12] 

has rank > deg(f B) . Now define 

Z = [BD3 I BD3 V I ... 1 3/] = B * [BD I BD- 

which thus satisfies rank(X8) < rank(B). If B is nonsingular, the matrix Zi 
actually has full rank N, since by assumption deg(f B) = N. From Proposition 
4 we further get for a singular B that 

deg(f B) _ 1 = rank([BD+12" I BD'2' ... I BY']) < rank(.%8); 

hence deg(fB) - 1 < rank(X8) < rank(B), which implies by the assumption 
of the theorem that rank( 8) = rank(B). Note that if B is singular and 
deg(f B) = N, we automatically have rank(B) = N - 1 = deg(f B) _ 1. 

We will use a similar specialization for the columns of 2' to establish that 
the rank of 

- , Sa(D) | .. | *3(l) | V *3(0) - 
(lo)D+___ __(D) 1 (12 ) (V I 

(10) 

agrees with the rank of Y E LM' x(M+) of Proposition 4 with the dimensions 

M=n(D+ 1)- 1 =S- 1 >N and M' =mE=R>S- 1. 

Consider the specialization 2"' given above, and 

'= F, i (Btr)Et 
E 

(Btr)2Er I (Btr)(m-1)Er ] 

02 '3 

Then with V'(i) = 2t,trBi+12` there exist permutation matrices P E {0, 1 }RXR 
and Qe{O, I}SxS suchthat 

- WI(D) ._._._ s'/(1) t9(0) 1 
P3sQ = [ Q?ItD+ 1)| 

Q 
{"(D^) 

I 
|,Q(2) 

|________I 
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The row and column permutations move the entry 
It(D+I-J) = r/tr D+I- 

= y(trB(i- l)EBD+l+I-JB(j-l)(D+1)2- 

in the right-side block Toeplitz matrix, which is in row mI+ i, where 0 < I < E 
and 1 < i < m, andcolumn nJ+ j, where 0< J <D+ 1 and 1 < j < n, to 
row E(i- 1)+I+ 1 andcolumn (D+ 1)(n- j)+ J+ 1 in , namely 

1)+I+1, (D+1)(n-j)+J+ 1 = a(M+E(i- 1)+I+1 -((D+1)(n-j)+J+1)) 
= rtrBn(D+1)+E(i-1)+I+(D+1)(j-n)-J - 

Therefore, the rank of g9'B is no less than the rank of Y with the given 
dimensions, which by Proposition 3 and the assumptions is equal to deg(f B) - 

N for nonsingular B, and is equal to deg(f B) - 1 for singular B. Since the 
kernel of Zi is contained in the kernel of YM, the rank cannot be more. 0 

Proof of Theorem 6. Let 

A(41,1 *** (N, m ;1,l, *** CN,n) 

be a nonzero maximal minor of S9- in (10). Then for all matrices x and z 
with 

A(X1,1 , XN,m,, Z1,. I ZN,m) $A O 

any solution to (4) must also solve (7), because the ranks of both coefficient 
matrices will be equal to deg(f B) - 1 . Hence, 

BL+zc(L) + BL+2zc(L+l) + ... + BD+lzc(D) BL+l - ON 

for 0 < L < D such that c(L) :$ 0 and c(l) = 0 for all 0 < 1 < L. By Theorem 
1 the probability of hitting a zero of A is no more than deg(A)/ card(K) < 
2 rank(B)/ card(K) . 

It remains to estimate the probability that wb : 0. The argument, by Cop- 
persmith, is as that for Step W3 in the homogeneous Wiedemann algorithm. 
For a matrix y = Bz E KNxn consider the equivalence class 

(11) {z IE KNxnIy=Bz =Bz} 

of KNxn. Then for each member in that class 

W1 - ztC(L) + Bztc(L+l) + ... + B(DL)z c(D) 

- ZC(L) + Bzc(L+l) + ... + B(D-L)Zc(D) +(z -z)c(L) 

w 

where 

z' -z = [w Iw21 ... Iwn] with BwV = O for all 1 < v < n. 

Since, given any C(L) E Kn\{On}, for randomly chosen wv in the kernel of B 
the linear combination 

(~L)w +.+ (L)w C( )W1+ * *+ Cn )Wn 

uniformly samples vectors in the kernel of B, at most a fraction of 1/ card(K) 
matrices in the set ( 11) can give -wt as that linear combination and thus lead 
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to w' = 0 . Therefore, the probability that w' = 0 is no more than 1/ card(K). 
Summing both estimates bounds the probability of failure. 0 

6. FAST SOLUTION OF TOEPLITZ-LIKE SINGULAR SYSTEMS 

In ?7 we will give the asymptotic analysis of the block Wiedemann method 
described in ?4. There it will be necessary to efficiently compute a nonzero solu- 
tion of the block-Toeplitz system (4) in ?4. We know five different approaches to 
this subproblem. The first is the one given by Coppersmith [4] based on a gener- 
alization of the Berlekamp/Massey algorithm to linearly generated sequences of 
matrices. Coppersmith's method requires O((m + n)N2) arithmetic operations 
in K and needs no randomization, but the correctness of the algorithm remains 
an open problem. The second method is presented in Kaltofen [10, Proof of 
Theorem 2] and uses the Wiedemann method of ?4 and a fast matrix times 
vector routine for the arising block-Toeplitz coefficient matrix. Randomization 
and fast FFT-based polynomial multiplication is necessary, and the arithmetic 
cost is O((m + n)N2log N loglog N) . 

The last three methods are based on the theory of Toeplitz-like matrices [9] 
and also require randomization. Without fast FFT-based polynomial multipli- 
cation one can achieve arithmetic complexity O((m+n)N2), using a generaliza- 
tion of the Levinson-Durbin algorithm to Toeplitz-like matrices (see Gohberg 
et al. [8]). The fourth method is the speeded counterpart of that approach us- 
ing divide-and-conquer and fast FFT-based polynomial multiplication (Bitmead 
and Anderson [1]; Morf [19]). The number of arithmetic operations can then 
be bounded by O((m + n)2N(log N)2 log log N) . The fifth possibility is to adapt 
the processor-efficient parallel linear system solver by Kaltofen and Pan [ 12] to 
Toeplitz-like matrices. In this section we shall describe and analyze the gen- 
eralized Levinson-Durbin algorithm with emphasis on the singular case. The 
asymptotically faster divide-and-conquer algorithm is described in an appendix 
to this paper. 

First, we need to introduce the notion of the displacement rank of a matrix, 
which applies not only to block-Toeplitz matrices but also to their inverses. We 
consider N x N matrices; define the lower-shift matrix 

O 
1 0 0 

0 
1 0. 

and define the matrix shift operators 

lA=ZA and r A=AZtr. 
The matrix l A is equal to A after being shifted down by one row, filling the 
first row by zeros, and the matrix r A is equal to A after being shifted to the 
right by one column, filling the first column by zeros. Following Kailath et al. 
[9], we define 

++(A) = A- l (r A) = A - ZAZtr and a+(A) = rank++(A), 
the latter being the displacement rank of A with respect to the displacement 
operator k+. The fundamental property is that, given 2a column vectors 
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Yi, *--, ya and z1, ., z , the functional equation in the matrix X, 
a 

(12) X ( X) = t 

j=1 

has the unique solution 
a 

(13) X = ELl[y1jJU1[zrJJ, 
j=1 

where Lly] denotes a lower triangular Toeplitz matrix whose first column is 
y and U[ztrlI denotes an upper triangular Toeplitz matrix whose first row is 
ztr. Therefore, a matrix of displacement rank a with respect to k+ is a sum 
of a products of lower and upper triangular Toeplitz matrices. We. shall call 
the vectors Yi, .I. ya and z, ..., za in 

- tr- 

kl ~~~~~~~~~~~~~~~~~~~I 
(14) Y = Yjz)= [YI. I Y21 .. I Ya]L . Z 

ZtrJ 

the left and right generators of the N x N matrix Y. The matrix Y is usually 
a displaced matrix 0+(X). Furthermore, we shall call the representation (13) 
the LLU representation for X. That representation requires only the storage 
of O(aN) field elements. Clearly, one may derive a generator (14) for Y by 
choosing the vectors yj to be a linearly independent columns of Y, and the 
entries in each column of the right factor matrix with the rows zJr to be the 
linear combination that yields the corresponding column of Y. 

We can now sketch the generalized Levinson-Durbin algorithm as described 
in Gohberg et al. [8, ?1.C]. 
Algorithm Generalized Levinson-Durbin. 

Input. Vectors Y, .. ya, Z , z ..., Za, and b E KN such that 
a 

A = EL[yj iUJ[z'r/ E KxNN 

j=1 

has generic rank profile (see ?2). 
Output. An integer r < N and a vector x' E Kr such that r = rank(A) and 

Arx' = b', where Ar is the largest nonsingular leading principal submatrix of 
A, and b' E Kr is the vector consisting of the first r coordinates of b . 

Step LO: Initialize A[ , 1] Ea 
Y,y1[,] ZjlJ; Y(i) [1/A[1, 1]]; i(01) 

[yjI ]IA[ II 1]] for all i 1, I , ac; %()[b[lI]/A[ 1] . 
For k 2, 3,. .. Do Steps Ll-L5. 
Step LI: At this moment we have the (k - 1)-dimensional vectors y(k-1) 

X(k 1) and (0 k1) for 1 < i < a such that 

(k-1) e(k1) Aklx(k-1) = b(k 1) Ak 1~- 0 - 
Y= ( 

where ek_-tjI is the (k - 1)st unit vector of k - 1 dimensions, and y(k-1) 
and b(k1-) are vectors formed by the first k - 1 coordinates of yi and b, 
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respectively. Steps Li-L5 compute the k-dimensional versions of the vectors 
Y, X, and ~o. 

For i +-1, .I . a, compute the scalars 
k-1 

(k)-s Zi[i + 1] * y(k-l)[j]. 
j=1 

As is easily verified from the ELU representation of the leading principal sub- 
matrix Ak = Ea L[yik)'UI[(Zik))trlJ, where z(k) is the vector formed by the 
first k coordinates of zi, the 4L4k) satisfy 

(15) Ak [y(21)] = ek -,/k)y(k) 

Step L2: Compute the kth row of Ak, 

[A[k, 1] A[k, 2]... A[k, k]] 
a 

[O A[k-I , 1 ] . .. A[k -1, k - 1]] + E yi[k](Z) t 
i=1 

Step L3: For i +- 1, . .. , a compute the scalars 
k-i 

v k) . yiv[k]- A ][k, j] *Pqkl)[j]. 
j=1 

These scalars satisfy 

(16) (k= [ + vk (k) for all < i < a. 

Step L4: From (15) and (16) and the defining property for f(k) we obtain 
the following equation for y(k): 

(17) 2(k) [y(2k)] + Z,k) [k)( ] + (Z u(k)Vk)) y(k) 

If 1 - ,= 14k)V4k), then return r . k - 1 and x' -x(k-1). In this case, Ak 
must be singular, as we will explain below. Else set 

1 ~~~0 1 
a 

[(k0 1\ 
_1 (k1 i)Vi(k) ( y(k+l) ] EH 

and compute all (k) according to ( 16). 
Step L5: Similarly to (16), compute the scalar i(k) b[k] - ZJ?1' A[k, j] x 

(k- 1) [j] and the vector 

%(k) X(k1) + i(k)2y(k). C 

Clearly, the above method requires no more than O(aN2) arithmetic opera- 
tions in the field of entries. The correctness of the algorithm hinges on the fact 
that a possible zero division in the computation of y(k) indicates the singularity 
of the corresponding submatrix. 
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Lemma 1. In the algorithm Generalized Levinson-Durbin, 1 $ s= ju74)v) for 
all 1 < 1 < k if and only if A1, .l. , Ak are nonsingular. 

Proof. The proof is by induction on k. Suppose now that 1 :A E (k) V(k) 

Then by (17) a solution to AkY(k) - e(k) can be found, and hence a solution ex_ 
ists to AkX' = c' for any k-dimensional vector c' by the induction hypothesis 
and reapplication of the algorithm. Therefore, Ak must be invertible. Second, 
we must prove that for nonsingular A1, ... , Ak the division in Step L4 is in- 
deed possible. Assume that 1 = Ea1 #(k)V(k) and consider the last coordinate 
of (17): we must then have y(k-1)[k - 1] = 0, which contradicts the nonsin- 
gularity of Ak-2 when considering solving Ak ,(k-I1) - e(k _l) by Cramer's 
rule. 0 

We can now apply algorithm Generalized Levinson-Durbin to compute a 
random solution of (4) in ?4. First, we rearrange the R x S coefficient matrix 

A a(D+I) a(2) a(0) 

La (D2E-1) ... a E) 

into an m x n block matrix such that each block is a Toeplitz matrix, using 
the permutation matrices P and Q of the proof of Proposition 3. However, 
by inspection of the proof of Proposition 3 we see that we may drop the rows 
in position R, R - m, ... , R - (R - S - 1)m from A without affecting the 
probabilistic rank estimates, thus making a smaller coefficient matrix AO of the 
square dimensions S x S. Note the blocks are of dimensions (R/m) x (S/n), 
except in the last row of blocks, where the dimensions are (R/m - R + S) x 
(S/n). Briefly, the row permutation matrix P, which is now acting on AO, 
moves rows 1, m + 1, 2m + 1, ... into rows 1, 2, 3, ..., and rows 2, m + 
2, 2m + 2, ... into rows (R/m) + 1, (R/m) + 2, (R/m) + 3, ... , etc.; the 
column permutation matrix Q moves columns 1, n + 1, 2n + 1, ... of A? 
into columns 1, 2, 3, ... , and columns 2, n + 2, 2n + 2, ... into columns 
(S/n) + 1, (S/n) + 2, (S/n) + 3, ... , etc. 

The matrix PA?Q has displacement rank no more than m + n with respect 
to q+, and a ELU representation can be easily computed from the (known) 
generators of q+(PAOQ). By pre- and post-multiplication by random unit 
upper and unit lower triangular Toeplitz matrices, V, W E KSxS we obtain a 
matrix 

A= V (PAOQ) * W 

of generic rank profile (see Theorem 2), that with high probability. Moreover, a 
ILU representation for A of length no more than m + n + 4 can be computed 
in O((m + n)S2) arithmetic operations for the product by the usual product for- 
mulas for Toeplitz-like matrices (see Pan [20, Proposition A.3; also Proposition 
8 in the Appendix]). 

We now apply algorithm Generalized Levinson-Durbin to the ELU represen- 
tation of A and a right-side vector derived as in Proposition 1 of ?2. The algo- 
rithm returns an integer r that with high probability equals rank(A) = rank(B), 
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and a solution to Ar lb' . Using Proposition 1, we can now quickly obtain ran- 
dom vectors in the right null space of A. Note that the y(k) and f k) in the 
algorithm Generalized Levinson-Durbin need only be computed once, and then 
the system can be solved for new random b' in O(N2) arithmetic operations 
in K. 

7. ALGORITHMS AND THEIR RUNNING TIMES 

The block Wiedemann method of ?4 is used to solve both nonsingular and 
singular sparse linear systems, i.e., linear systems with an efficient way to mul- 
tiply the coefficient matrix by any vector. The method is randomized and can 
be executed sequentially or in parallel. Especially in the latter form the method 
becomes very efficient. We now present several variants of the block algorithm. 
One main point is that we are able to give both explicit expected running times 
and estimates on the success probability of the randomizations. We first deal 
with the sequential performance of the blocking. Parallel variants will be dis- 
cussed below. 

Theorem 7. Let B E KNXN be a singular matrix and 1 < m, n < N. Then one 
can compute the rank of B and a solution vector W E KN\{O} with Bw = 0 in 
no more than 

L(l +-+-)N+-+2n+2J 
m n m 

multiplications of B times a vector in KN, and an additional 

0 ((m + n)N2 + (1 +-) N2logNloglogN) 

arithmetic operations in K. The algorithm selects no more than (m + n + 6)N + 
6n - 4 random elements in K and computes the correct rank and succeeds to 
produce a solution with probability no less than 1 - 2(N + n)2/(card(K) - 1). 
The algorithm requires an additional 0((m + n)N) amount of storage for field 
elements in K. 
Proof. Consider the preconditioned matrix B = VBWG, where V E KNXN 

is a random unit upper triangular Toeplitz matrix, W E KNXN is a random 
unit lower triangular Toeplitz matrix, and G E KNXN is a random nonsingu- 
lar diagonal matrix. Then by Theorems 2 and 3 with probability of at least 
1 - (N - 1)N/(card(K) - 1) for the minimum polynomial f B of B we have 

deg(f B) = rank(B) + 1. Note that the cardinality of K in the estimate is 
decreased by 1 since the diagonal entries of G must be nonzero. Also, for 
a vector b E KN the product Bb can be computed by one multiplication of 
B by a vector, and an additional O(NlogNloglogN) arithmetic operations 
in K. This is because the product of V or W by an arbitrary vector can be 
reduced to polynomial multiplication, which over arbitrary fields is doable in 
O(N log N log log N) [3]. We remark that by using matrices corresponding to 
Benes networks in place of V and W [24, ?V] one can reduce the arithmetic 
complexity by the log log N factor at the cost of requiring O(N log N) random 
field elements. 

Now, the matrix B satisfies the assumptions of Theorem 6, and we can find 
a solution wi $ 0 to Biw = 0. Thus, w = VGwz $ 0 solves Bw = 0. By (3) 
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and (6) of ?4 the method multiplies B by a vector no more than 

(1 + _+?) N+3?+2n+2 m n m 

many times. The extra work in terms of arithmetic operations in K is 
0((m + n)N2) plus the work it takes to solve (4), which by the results of ?6 is 
doable in 0((m + n)N2) additional arithmetic operations. 

Let us suppose that B has the properties required by Theorem 6. The prob- 
abilistic analysis depends on the algorithm used for solving (4), whose S x S 
coefficient matrix we denote by A. In order to obtain a nonzero solution to 
Ac = 0, the additional randomization A = VAW discussed at the end of 
?6 must make the matrix A of generic rank profile. This is true for random 
V and W with probability > 1 - I(N + 2n - 1)(N + 2n)/card(K), since 
S < N + 2n (see Step C2 in ?4). Furthermore, the vector selected by the 
randomization of Proposition 1 must be nonzero. This will happen with proba- 
bility at least 1 - 1 / card(K) . Note that the computation of r and Ar 1 b' when 
accomplished by the generalized Levinson-Durbin algorithm needs no further 
randomization. Moreover, by Proposition 3 and the proof of Theorem 6 the 
computed rank r = rank(A) is equal to rank(B) = rank(B), provided A and 
B have the properties stated above. Once a nonzero vector c is found, which 
can of course be verified on the spot, the estimates of Theorem 6 become valid. 
Therefore, the overall probability of success is at least 

1 3 (N- I)N + !(N+ 2n - 1)(N+ 2n) 
_ _1 > 2(N+ n)2 

2card(K) - 1 2 cardK cardK,j card(K) - I 

The randomization for B requires 3N - 2 random nonzero field elements, 
that for A no more than 2N + 4n - 2, and that for b of Proposition 1 no more 
than N + 2n . The block Wiedemann algorithm itself needs (m + n)N random 
field elements, so the total is no more than the one stated above. Finally, the 
algorithm only needs to store a(i) and the ILU representation of the matrix 
A and the ?UL representation of the incremental inverses. 0 

Theorem 7 can be employed to solve nonsingular systems as outlined in the 
last paragraph of ?4. We shall formulate the result not in terms of the block 
sizes m and n, but in terms of the quantity e = (n/m) + (1/n). For suitable 
constant block sizes, e can be made arbitrarily close to 0. Thus we have the 
following sequential complexity result. 

Corollary. Let B E K NXN be a nonsingular matrix, and let e > 0 befixed. Then 
one can compute the solution vector w = B'- b with b E KN in no more than 
(1 + e)N + 0(1) multiplications of B times a vector in KN, and an additional 
O(N2 log N log log N) arithmetic operations in K. The algorithm selects O(N) 
random elements in K and succeeds to produce the solution with probability no 
less than 1 - O(N2)/(card(K) - 1). The algorithm requires an additional O(N) 
amount of storage for field elements in K. Note that here all big-0 estimates 
depend on e. 

Of course, the main application of blocking is to compute the sequence of 
matrices a(i) in parallel. In order to make the statement of the next theorem 
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simpler, we suppose that m/n is constant and that we have n parallel proces- 
sors. 

Theorem 8. Let m, n > 0 be integers < N with m/n = 0(l). Suppose there 
is a network of n < N processors, each of which can independently multiply 
the matrix B E KNXN by an arbitrary vector. Here, B can either be stored 
in memory shared by all processors or be distributed over the local memories of 
the processors. Then a random solution to the linear system Bw = b, where 
b E KN is a vector in the space spanned by the columns of B, can be computed 
in no more than 2N/m + 4N/n + 0(1) multiplications of B by vectors car- 
ried out simultaneously by each processor. Furthermore, each processor performs 
O(N2 log N log log N) additional arithmetic operations in K and stores O(N) 
intermediately computed field elements. As an extra intermediate substep the 
network of processors can solve a singular homogeneous system of displacement 
rank m + n in O(N2) parallel time. 

Proof. The linear system Bw = b under consideration is inhomogeneous and 
singular. We appeal to Proposition 1. The method first computes the rank r 
of B and then solves a nonsingular r x r system, thus executing the block 
Wiedemann algorithm essentially twice. As in the proof of Theorem 7, be- 
fore we can apply the block Wiedemann algorithm of ?4, we must randomly 
precondition the matrix B to B = VBWG. Now the product of B times a 
vector requires an additional 0(NlogNloglogN) arithmetic steps in K. In 
Step Cl of ?4, each processor independently computes the sequence of col- 
umn vectors {XtrBiy,} for the vth columns yv of y. These sequences have 
length N/im + N/n + 0(1) . Finally, a single processor carries out the computa- 
tions of Step C3, which require an additional N/n + 0(1) matrix times vector 
products. The work required to compute each Xtr- (B'yv) in Step Cl and the 
single-processor work of Step C3 amount to O(N2log N log log N) arithmetic 
operations in K for each processor. 

The rank of the coefficient matrix of (4), which is equal to the rank of B 
with high probability, is computed in parallel by the methods described in ?6. 
That entails first computing a ELU representation for A and then applying 
algorithm Generalized Levinson-Durbin. By the well-known product formula 
for Toeplitz-like matrices [20, Proposition A.3; also Proposition 8 in the Ap- 
pendix] the derivation of the generators for 0+(A) can be distributed over the 
n processors, each performing O(N2) arithmetic. Finally, the work in Steps 
LI, L2, L3, and L4 of the Generalized Levinson-Durbin algorithm can be di- 
vided among n = 0(a) processors, such that each processor performs O(N) 
arithmetic operations. For instance, the sums of a vectors of k dimensions 
required in Steps L2 and L4 can be computed in parallel by letting each pro- 
cessor compute the sum of [k/al coordinates. Note that this scheme has a 
high communication cost, especially if the ith processor locally has stored the 
vectors yi, zi, (i and the scalars ,i and vi, and it may be more efficient to 
perform a binary tree addition, that at a cost of O(N log n) . 

Once the rank of B is known, we can apply Proposition 1 to the system 
Bx = Vb, from which we obtain the random solution x = WGx. In- order to 
compute B1 lb' of Proposition 1, we execute the block Wiedemann algorithm 
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on the (r + 1) x (r + 1) matrix 

fBr |bsl 
Loixr I 

following the ideas in the last paragraph of ?4. Clearly, multiplying Br 
by a vector can be accomplished in a single B times a vector product plus 
O(N log N log log N) field operations. 0 

We remark that the above proof may be overly complex. A nonzero solution 
of the homogeneous linear system 

(B-[clb I c2b | |cNb])w =O, 
where cl, ..., CN are random field elements, may yield 

clw[l]+ ++CNW[N] 
b 

provided the division is not by zero. However, since the block Wiedemann 
algorithm does not return a random vector in the null space of B, we cannot 
make any guarantees. Furthermore, Step C3 of the Block Wiedemann algorithm 
can be parallelized (see Appendix B), reducing the number of parallel matrix- 
vector multiplications. 

8. CONCLUSION 

Our main contribution in this paper is to give a theoretical basis for the block 
generalization of the Wiedemann method. We could prove our algorithm for 
sufficiently large fields and by using a certain preconditioning of the input ma- 
trix. The algorithm can still be valid without the assumptions on the degree 
of the minimum polynomial. For instance, the matrices arising in our poly- 
nomial factorization algorithm [11] clearly have (degree of minimum polyno- 
mial) < (rank -1), while the algorithm still produces a solution. Coppersmith 
observes, however, that for certain "pathological" cases the straightforward al- 
gorithm might fail to compute a solution. Also, Coppersmith's application of 
factorization of integers leads to sparse systems over the field K = F2 of two 
elements. In that situation, Proposition 3 could be relaxed. If the rank of (4) 
were one or two less than the rank of (7), with probability 1/2 or 1/4 we still 
would find a solution to (7). For very large finite fields such a rank deficiency 
would make the problem quite infeasible. Nonetheless, the case of very small 
finite fields remains to be resolved, which is an important open problem. We 
remark that if we have blocking by single vectors, the probability of success 
of the block Wiedemann algorithm is o(l) for K = F2 (see Wiedemann [24, 
Proposition 3]). 

Our algorithms are formulated for finite fields only, but it is not difficult to 
extend them to fields such as the rational numbers and functions by the use of 
Chinese remaindering, interpolation, and p-adic lifting [17, 12]. 

Further problems left unresolved regard the solution of the block-Toeplitz 
system arising in the course of the block algorithm. We have shown how by 
randomization the system can be brought into a regular form, namely of generic 
rank profile, and how it can then be solved very fast. It may be possible to 
avoid the condition that the coefficient matrix be of generic rank profile (cf. 
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Delsarte et al. [5]), thus avoiding randomization. Coppersmith's generalized 
Berlekamp/Massey approach needs no randomizations either, but it remains 
open how to prove the algorithm correct or how to speed it by use of FFT- 
based polynomial multiplication (cf. Brent et al. [2, ?8]). More importantly, 
it is unclear to us if the asymptotically faster divide-and-conquer algorithm by 
Bitmead-Anderson/Morf can in practice outperform the generalized Levinson- 
Durbin algorithm. 

With Austin Lobo we have implemented several versions of the block Wiede- 
mann algorithm in the programming language C for K = Fp and executed it 
using simultaneously a network of eight Sun Sparc 2 computers, each rated 
28.5MIPS. For p = 32749, for instance, we can solve a 20, 000 x 20, 000 sys- 
tem with 1.32 million nonzero entries on four computers in about 60 CPU 
hours. Our implementation also covers the case of small coefficient fields. For 
example, for p = 2 we can solve a 100, 000 x 100, 000 system with 10.3 million 
nonzero entries on three 28.5MIPS-computers in about 54 CPU hours. In that 
case we use "double blocking," where each of the computers processes blocks 
of 32 vectors by 32 bit logic. The details of this experiment are published in 
[7]. We have also applied the method to the problem of factoring polynomials 
of degree 10,000 and more over finite fields [11]. In that application, the coef- 
ficient matrix has a true black-box representation with a fast function for the 
matrix-times-vector product. 

APPENDIX A 

By use of FFT-based polynomial arithmetic and a divide-and-conquer strat- 
egy, the block-Toeplitz system (4) of ?4 can be solved in 

O((m + n)2N(log N)2 log log N) 

arithmetic operations. We shall describe and analyze a version of the Bitmead- 
Anderson/Morf method suitable for such singular inputs. This approach will 
need to reduce a XLU representation of ?6 for a matrix X to one with a 
minimum number of terms under the sum (13). Here, we solve this problem 
by randomization. Consider that we are given I.?> a generators for a matrix 
Y = 0+(X), 

Y= 9 2, 9 K ENxfl 

and we wish to determine the displacement rank a = a+(X) and a XLU rep- 
resentation of length a for X. We pick random matrices V and W as in 
Theorem 2 of ?2. Then the matrix Y = VYW has, with high probability, 
generic rank profile. Since rank(Y) = rank(Y), every column to the right of 
the first a columns of Y is a linear combination of the first a columns. These 
linear combinations determine generators for Y; namely, y = ytr, where 

y E KNxoa. Here, y are the first a columns of Y and each column in 
ztr = [Ia ... ] corresponds to the linear combination yielding the column of Y 
in the same position. The minimum-length generators for Y are then obtained 
as Y = (V-'y) * (jW-1). The running time of this method is stated in the next 
proposition. 

Proposition 5. From a ZLU representation of X E KNXN of length 1, namely 
X = k4=l Lt9)]U[r], one can compute in O(aoN + flNlogN'loglogN) 
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arithmetic steps in K a 2'LU representation X = J LIyjf UIzJr]i where 
a = rank 0+ (X) is minimum. The algorithm is randomized and requires 2N- 2 
uniformly sampled elements from a set S c K; it returns with probability no less 
than 1 - a(a + 1)/card(S) a correct result. 
Proof. First we note that the multiplication of an N-dimensional row vector 
by a triangular N x N Toeplitz matrix or its inverse can be carried out in 
O(NlogNloglogN) arithmetic operations by use of asymptotically fast poly- 
nomial multiplication or power series inversion. Thus, we may compute VJy 
and tr rVW in O(/BN log N log log N) arithmetic operations. Next, one can incre- 
mentally compute and invert the leading principal submatrices Yi of Y until a 
singular Ya+j is found. This costs 0(a2fl) arithmetic operations in K. Then 
the first a rows and columns of Y are found from V9 and 2trW in O(a43N) 
steps. Using Yka, we can also compute ztr in 0(a2N) arithmetic steps. Fi- 
nally, we have to pre- and post-multiply the generators of Y with V-1 and 
W- 1, costing O(aN log N log log N) arithmetic steps in K. El 

The main property of matrices of small displacement rank is that their in- 
verses also have small displacement rank. Clearly, the inverse of a Toeplitz 
matrix is not Toeplitz but, as we will see, it is Toeplitz-like. However, the dis- 
placement operator 0+ does not directly apply to the inverse; instead, a dual 
operator is used, which we now introduce. Consider the shift operators 

TA=ZtrA and tIA=AZ. 
The matrix t A is equal to A after being shifted up by one row, filling the last 
row by zeros, and the matrix I A is equal to A after being shifted to the left 
by one column, filling the last column by zeros. Now define 

0_(A)=A-t(1A)=A-ZtrAZ and a_(A)=rank0_(A), 
the latter being the displacement rank with respect to the displacement operator 
0q. By transposition along the antidiagonal of the matrix X in (12), one 
obtains a dual to the XLU representation; namely, 

(18) X- T ( X) -kr x = EUF 
k=1 k=1 

where zrev is the reverse of a vector z; that is, 

zre =J.z withJ= ? 1 ]EKNXN. 

LI 0 O0 

We will call the right side of (18) the XUL representation of X. There is an 
explicit formula for converting a XLU representation to a XUL representation 
(cf. Bitmead and Anderson [1, Lemma 5]), which we will need later: 

(19) Ljy]jUjZtr] = IL12 + U -ytr I- [(ZJy)tr]LI[ZJz] for y, z E KN, 

where ztr is the reversed last row of L[y]UIztr], and y the reversed last 
column of L[y] UIztr] but with the first entry set to 0. Note that I is the 
N x N identity matrix. From (19) and the dual formula 

(20) Ujztr]Ljy] = LUI]I + IUI?tr] - LIZJz]Uj(ZJy)tr] for y, z E KN, 
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where ztr is the first row of UIztrjLjy], and y is the first column of 
Ulztr ]L[y] with its first entry set to 0, we conclude that for any square ma- 
trix A the inequalities -2 < a+(A) - a-(A) < 2 must hold. Moreover, the 
conversions (19) and (20) can be carried out in O(N log N log log N) arithmetic 
operations in K. We finally can formulate the closure property with respect to 
matrix inversion. 

Proposition 6. For any nonsingular matrix A E KNXN wehave a+(A)= _(A1) 
and a_(A) = a+(A-1). 

An elegant proof of this property is found in [20, Proposition A.4]. 
At task is to compute the XUL representation for the inverse of a nonsin- 

gular matrix A given in FLU representation. If A is singular, but of generic 
rank profile, we seek the XUL representation for the largest nonsingular lead- 
ing principal submatrix. The algorithm follows a divide-and-conquer matrix 
partitioning a la Strassen: let 
(21) 

A 11 Al1, 1 f AI,, E KXM, A 2 Ar 1 K Mx(N-M) 

A A2 1 A2 2] A2w2 E K(N-M)x(N-M). 

If A1, 1 is nonsingular, we consider the Schur complement 

A = A2,2 -A2, AI,1AI, 2. 
If both AI, 1 and A are nonsingular, the inverse can be computed as 

A-' 1, 1, 2,A-IA2, I 1, 2A1] 

=_ [An +AT1A-,2A-IA2-1A' 1 -A -1A 
L - 2l, -1 J 

The key property is 

Proposition 7. If A, AI, 1, and A are the matrices defined above, AI, 1 is non- 
singular, and if the top-left entry of A, A[ 1, 1 ], is nonzero, then a+ (A) < a+ (A) . 
Proof. In case that A is a nonsingular matrix, the stated displacement rank in- 
equality for the Schur complement is proven (without the condition on A[ 1, 1 ]) 
in Bitmead and Anderson [1, Lemma 8] and it is also stated in Morf [19]. We 
will reduce the singular case to the nonsingular case. Consider a minimum- 
length FLU representation of A; namely, A = E L(U) UW, and suppose 
without loss of generality that (L(O)U( ))[1, 1] # 0. The latter condition is 
necessitated by our assumption on the nonvanishing of the top-left entry of A. 
Therefore, the parametrized matrix 

A(A) = (L(1) + AI)U(1) + E LU) UW = A + AUM EK(A)NxN 

j=2 

is nonsingular of displacement rank a with respect to q+S. Partitioning A(i) 
corresponding to (21), we obtain a parametrized Schur complement 

5A(i) = A2, 2 +AU(') - A2, I (Al, I +AU,(')l I- X1 AU(O)). 

It follows from the nonsingular version of this proposition that a+(A(A)) < a. 
We may write A(i) as power series in A with matrix coefficients, 

A(A) =A + A(U(,)2 + A2, lA-', U() )A-' lA, ,-A2, IA- 1 UMl)) 2+ 2 higher-order2tejms,2 
+ higher-order terms, 
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using the series expansion 

(G + AH)-1 = (I + ,AG-'H)-l G-1 

= G-1 - G-'HG-' + A2(G-1H)2G +*G-1 . 

Since no negative powers of A occur, the constant term in this power series for 
A(i), which is A, cannot have a higher displacement rank than A(i), which 
proves the proposition. El 

The last property of Toeplitz-like matrices that we need for our algorithm is 
the fact that their products remain Toeplitz-like. Because we encounter rectan- 
gular matrices in our algorithm, we first have to extend the definitions of the 
displacement operators to such matrices. By subscripting ZN we shall indi- 
cate that the shift matrix Z is of dimensions N x N; we define a rectangular 
displacement operator 

0+(X) = X-ZMXZ,r for X E KMXN. 

Again, 0+(X) is generated by a =a+(X) = rank 0+(X) vectors yi, ... , y E 
KM and zi, ..., za E KN: 0+(X) = Ea I yj zJr . We now have the following 

product rule (cf. [20, Proposition A.3]). 

Proposition 8. Let G E KLXM and H E KMXN be rectangular matrices with dis- 
placement ranks y = a+ (G) and 3 = a+ (H) . Then 0+ (GH) can be generated 
by y + 3 + 1 vectors. 
Proof. First, we observe that IM = ZMZM + eMeM, where IM is the M x M 

identity matrix and eM is the Mth unit vector. Therefore, 

0+(GH) = GH - ZLGIMHZN 

(22) = GH - (ZLGZtMr)(ZMHZr) - ZL GeMem HZNr 
= (G - ZLGZMt)H + ZLGZM (H - ZMHZ tr - ghtr 

= 0+ (G)H + ZL GZtM ?+ (H) - ghtr 

where g = ZLGeM E KL and h = ZNIPreM E KN. 

We can now sketch the main algorithm (cf. [1, p. 1 10]). 

Algorithm Leading Principal Inverse. 

Input. Vectors Yi, ... ,Ya, Zl, ... , za E KN such that A == L[yj] UIzjr] 

E KNXN has generic rank profile. 
Output. An integer r < N and vectors ETh, ..., Y-, zi, ..., !> E Kr with 

a < a such that with high probability 

1- 

r = rank(A) and Ar-Z UlyLtkI k, 

k=l 

where Ar is the largest nonsingular leading principal submatrix of A. 
If N < a then expand the XLU representation of A and compute A7- 

explicitly; finally, from q5 (A-') explicitly determine the XUL representation 
and return. 

Now, let the matrix A be partitioned as in (21) with M = [N/21. 
Step 1: Call the algorithm recursively to process Al, . Note that the XLU 

representation of AI, is given by the first M entries of yj and z;. If the 
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returned rank of A1, 1 is less than M, we are done. Otherwise, the algorithm 
has produced a XUL representation of A-11. 

Step 2: Compute a XLU representation of length no more than a for the 
Schur complement A = A2 - A2 11 A1- , 2. We further explain this task in 
the analysis of the algorithm. If A[ 1, 1] = 0, then M = rank(A); else perform 
the next steps. 

Step 3: Call the algorithm recursively to process A. Note that, with high 
probability, rank(A) = M + rank(A) = r. 

Step 4: Consider the leading principal submatrix Ar partitioned as 

Ar [Ai,1I A'] whr Al,1I E Kmxm A', Alr E KMx(rM), A, A A J 'w Al2 e K(r-M)x(r-M). 

At this point we have the XUL representations for A-11 and for A'-1, where 
'A = Al2 - Al A-'1Ai2. Compute (possibly nonminimum-length) genera- 
tors for +i(B 1), 0(Bl12), and 0-(B2 1), where B2 =--' Al, 

B21 -A'1A2 1, and = - 2 2A 1 Finally, compute a 
minimum-length XUL representation for 

A =B>I BL2 I 
A' w ]1 

We can now state and prove the running time of the above algorithm. 

Theorem 9. Algorithm Leading Principal Inverse finishes after 

O(a2N(log N)2 log log N) 

arithmetic operations in K. It requires O(N log N) random field elements that 
are uniformly sampled from a subset S c K, and it returns with probability 
no less than 1 - 4Nca/ card(S) a correct rank and ZUL representation of the 
largest leading principal submatrix. 
Proof. Let T(a, N) denote the maximum number of arithmetic operations 
required for any input of dimension N and of at most a displacement rank. 
Step 1 requires at most T(a, FN/21) arithmetic operations. By Proposition 7, 
Step 3 requires at most T(a, LN/21) arithmetic operations. We shall show 
that both Step 2 and Step 4 have arithmetic complexity 0(a2N log N log log N) . 
Hence, for a constant C, we must have 

T(a, N) < T(a, FN/21) + T(a, LN/22) + Co2NlogNloglogN, 

which yields the arithmetic complexity T(a, N) = 0(a2N(log N)2 log log N). 
In Step 2, we first compute generators for 0+ (A) of length ,. < 4a + 8, which 

we then reduce by Propositions 5 and 7 to a length of no more than a. The 
former is accomplished as follows: generators of length no more than a + 2 
can be derived for 0+(A2,2) from generators for 0+(A) by correcting for the 
shift into A2,2 of parts of row M and parts of column M of A. Similarly, 
generators of length no more than a + 1 can be derived for 0+ (A2,1) and 
0+(A 1,2) (cf. Bitmead and Anderson [1, Lemma 8]). The XUL representation 
for A- 11 can be converted to a ELU representation of length no more than a++2 
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by using formula (20). We do not have _LU representations for the rectangular 
matrices A2,1 and A1,2. However, we have the ELU representation of A 
restricted to these submatrices. Thus, we may effectively use the product rule 
(22) of Proposition 8. For instance, the generators 

ZN-MA2, 1ZM?q$+(A1, 1) 

arising in the computation of generators for k+(A2TIA 1i) are found by mul- 
tiplying each y-vector of the generators of 0+(A 11); first by ZM, then by 
A2,1, and finally by ZN-M. Clearly, from the ELU representation of A 
restricted to A2,1, such multiplication can be carried out for a single vec- 
tor in O(aNlogNloglogN) arithmetic operations. Therefore, the compu- 
tation of the generators for A2, IA- TAl,2 dominates this step at a cost of 
O(a 2N log N log log N) arithmetic operations. 

The tasks of Step 4 are carried out similarly. After converting the ELU 
representation of A to a EUL representation using formula (19), we can obtain 
generators of length no more than a + 3 for q- (A" 1) and q5 (A',2). Note 
that here we need a generalized 0- operator on rectangular matrices. Then, as 
in Step 2 with a product formula for 0 (GH) dual to (22), we find generators 
for 

+k-(B1,2) with a 1Bj,2) < 3a + 5, 
I-(B2 1) with a- (B2, 1) < 3a + 5, 
5(B1 1) with a-(BI 1) < 6a + 10. 

Finally, the generators for the blocks can be "puzzled" together to a generator 
of 0-(A-1) of length no more than 13a + 22. Note that the length is the 
sum of the individual lengths corrected by two extra generators, which make 
up for the "cross" of a row and a column missing in the shift of the individ- 
ual blocks. Finally, we reduce the XUL representation of A-1 to minimum 
length, again appealing to a dual of Proposition 5. The overall cost in this step 
is again dominated by the implementation of the product formula, which is 
0(a2N log N log log N). 

Finally, we argue that the algorithm produces, with the stated probability, the 
correct result. By Proposition 7, the displacement rank of the Schur complement 
A is no more than a. Furthermore, A has generic rank profile, as can be 
deduced from the factorization 

[A2,1AT 1 IN-M] [AIi A,]- 

Thus, the algorithm produces a correct result if the randomizations of Propo- 
sition 5 needed in Steps 2 and 4 result in correct _LU representations and 
the recursive calls return correct _UL representations. Let Pf(a, N) be the 
probability that the algorithm fails to compute a correct result. We have the 
recursive estimate 

2a(a + 1) 
Pf(a, N) < Pf(a, fN/21) + Pf(a, LN/2J) + - 

cardS 
and Pf(a, L) = 0 for all L < a, which by induction yields 

Pf(a N)? (a2N _ I) 2a(a+1) for N > a. 
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The number of random elements required, El(a, N), satisfies the recursive 
inequality 

El(a, N) < El(a, FN/21 ) + El(a, LN12]) + 4N -4, 

and El(a, L) = 0 for all L < ar, which yields El(a, N) = O(N log N). E 

APPENDIX B 

In Theorem 8 we have supposed that Step C3 of the algorithm Block Wiede- 
mann of ?4 is carried out by a single processor, i.e., sequentially. One of the 
referees has suggested the following parallelization that with n processors re- 
quires only about N(1 + log2 n)/n2 matrix-vector multiplications for Step C3, 
thus leading to a total of about 

N N (1+og2n)N+ 
m n n2 

parallel matrix-times-vector products in the entire Block Wiedemann algorithm. 
This improvement has practical potential in applications where the matrix- 
vector multiplication is costly, as in the polynomial factoring algorithm of 
Kaltofen and Lobo [1 1]. Note that in such applications one also chooses m > 
n. 

During Step C1, store the vector blocks 

Uj = BirN/n2 z = BirN/n21 y 

for all j = 1, ..., n - 1. Note that these blocks are available, since the Biy 
are computed for 0 < i < N/rm + N/n + 2n/m + 1 . Define uo = z . By binary 
search, we find the exponent k, where 0 < k < L/ [N/n21 < n, such that 

(23) BkwN/n2lz 0 but B(k+1)wN/n2li = 0. 

Temporarily, let 1 = k FN/n21. The value of 

B1Wi- Bl ZC(L) + Bl+lZC(L+l) + ... + BD-L+ zc(D) 

is found by having each processor compute the vector 

(j+ 1) rN/n21I -N/n21-1 

E BiZC(L+il) 
- z Biu1C(L+i+irN/n21_1) 

i=jrN/n21 i=O 

The latter requires no more than N/n2 parallel matrix-times-vector products 
using Homer evaluation. Once an exponent k satisfying (23) is discovered, 
one sequentially computes Bk N/n21+zw for i = 1, 2, ... until the zero vector 
is produced. 
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