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THE SOLUTION OF TRIANGULARLY CONNECTED 
DECOMPOSABLE FORM EQUATIONS 

N. P. SMART 

ABSTRACT. An algorithm is given to solve the equations of the title. It general- 
izes an earlier algorithm to solve discriminant form equations. An application 
is given to finding curves of genus 2 with good reduction outside a given finite 
set of primes and Weierstrass points in given number fields. 

In this paper we generalize the methods for Thue and Thue-Mahler equa- 
tions given by Tzanakis and de Weger, [23, 24, 25] (see also [1, 17, 28]), and 
the method for discriminant form equations given in [22] (see also [4, 5, 6]). 
All of the above-mentioned equations are examples of Triangularly Connected 
Decomposable Forms (TCDFs for short). These were first studied by Gyory, 
whose treatment relies on the finiteness results he established for linear equa- 
tions in S-units, [8]. In [8] an explicit bound was given on the solutions of 
equations of the type 

a1Xi + a2X2 + 1 = 0, 

where we are given a, and a2 E K, a given number field, and we wish to find 
xl and x2 in S-units of K. This result makes it possible, at least in principle, 
to determine all solutions. However, the bound is too large for practical use. I 
give an algorithm to solve such S-unit equations using the reduction techniques 
developed in [27]. Unlike the Thue-Mahler equation case, we have to consider 
linear forms with nonzero real and imaginary parts. This leads to a slightly 
different reduction technique than that used in [25]. 

Gyory, [7, 9, 1 1], used the above result to establish finiteness results on the 
solutions of TCDF equations by giving explicit upper bounds for the solutions. 
These bounds are also too large for practical use. I give a method to solve such 
TCDF equations using the above-mentioned algorithm for S-unit equations. 
But one need not stop here, since Gyory, [12] (see also [3]), extended the type 
of TCDFs that can be considered. But I shall not deal with these more general 
equations here, except to note that they are closely related to Gyory's work on 
graphs of sets of algebraic integers, see [10]. 

The work in this paper was started in the author's thesis, [21]. However, 
in this paper I take the opportunity to improve the method and correct some 
mistakes that appeared in the thesis. I would like to thank SERC for funding my 
Ph.D. work and the Wingate Foundation and the Royal Society for funding my 

Received by the editor November 18, 1992 and, in revised form, December 2, 1993. 
1991 Mathematics Subject Classification. Primary 1 lY50; Secondary 1 ID41. 

? 1995 American Mathematical Society 
0025-5718/95 $1.00+ $.25 per page 

819 



820 N. P. SMART 

post-Ph.D. work. I also wish to thank the Universities of Kent and Rotterdam 
for their hospitality and the use of their computing facilities, and the referee 
for many helpful suggestions and improvements. 

As usual, cl, C2, ... will denote positive real constants which are effectively 
computable, the notation ci(j) will mean that ci possibly takes a different value 
for every value of the parameter j, i.e., ci is an array of constants. 

1. TRIANGULARLY CONNECTED LINEAR FORMS 

Let L be a set of m linear forms, m > 3, in v variables with coefficients 
in the ring of integers of some number field K of degree n, i.e., 

v 

L. (x) =? li, jxi li,j E ZK , 1 <j <m. 

1=l 

Such a system is called triangularly connected, cf. [13, p. 312], if for all i, j, 
such that i :] j and 1 < i, j < m, there is-a sequence, Li = LiI, Li2, ..., Li. = 
Lj, in L, such that for each u, with 1 < u < w - 1, there exist nonzero 
ai e EZK for i = 1, 2, 3 (depending on u), such that 

a1Liu + a2Liu+l + a3Liu,u+l = 0 

with Liuu+l e L. 
To see why we call this triangularly connected, let GL be the hypergraph with 

vertices Li E L. Now, for three such vertices, say L1, L2, L3, we connect the 
vertices with an edge (triangle) if and only if 

a1L1 + a2L2 +Ca3L3 = 0 

has a solution al, a2, a3 E ZK, with ai :$ 0 for i = 1, 2, 3. So the hyper- 
graph consists entirely of triangles and L is triangularly connected if and only 
if GL is a connected hypergraph. 

2. TRIANGULARLY CONNECTED DECOMPOSABLE FORM EQUATIONS 

Let F (x) be a decomposable form of degree m in v variables, with coeffi- 
cients in 2, and with decomposition 

F(x) = aoL (x) ... L'(x) . 

where ao :$ 0 is a rational integer and Li(x) are linear forms with coefficients 
in a galois extension K of Q of degree n, given by 

-L'(x) = x + 12,jx2+ -+ lv jxv X j=1..,m, 

where 1', E K. Write lij = aOl,j for i > 2 and ll,j = ao. Then li,j e ZK 
for all i, j, and set 

m 

f(x) = am-F(x) = J Lj(x), 
j=1 

where 
v 

Lj()=Eli,jXi j = , M.= 1 
i=l 
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The form f(x) will be called triangularly connected if the set L = {Lj(x)} is 
triangularly connected. We wish to solve the equation F(x) = Ape' ...pZt in 
x E Zv and nonnegative integers zl, ..., zt, subject to gcd(x) = 1, where A 
is a given nonzero integer and {Pi, ..., Ptd are given distinct rational primes. 
This is equivalent to solving the equation 

(1) ~~~~~f(x) = a' -'Apzl ... pt 

Further, we shall assume 

1. f(x) is a TCDF; 
2. There is no x E Zv, with x O, such that Lj(x) =O for all j. 

Assumption 2 means that the matrix 

11,m ... lv,mJ 

has column rank v over Q. This in turn means that we must have v < mn, 
see [13]. 

We define a prime of K to be an equivalence class of nontrivial valuations 
on K. The infinite primes, SO,, are those containing archimedian valuations. 
An infinite prime will be called real (resp. complex) if it corresponds to a real 
(resp. complex) embedding of K. The number of real embeddings will be 
denoted by r1 and the number of nonconjugate complex embeddings will be 
denoted by r2 . Let Sf be a finite set of finite primes of K. Then we define S 
to be the set Sf U Sc. 

Let s denote the number of elements of Sf and r be the usual Dirichlet 
rank (so #SOO = r + 1 = r1 + r2). Because the sets of prime ideals and finite 
primes are equivalent, we shall also refer to Sf as a set of prime ideals. We 
place an order on S in the following way: for a E K and pi E S 

-fL ordpi (a) 
_ ~ Ef P -iod(c < i < S , pi E Sf 

a1,i -= la(i-s)I, s + I < i < s + r1, 

I la(i-s) 12 otherwise , 

where the a(i) of K are ordered in the usual way, see [25, p. 225], and pi, fi 
denote the rational prime lying below pi and its residual degree, respectively. 
The ramification index of pi will be denoted by ei. The S-units of K are the 
finitely generated group 

Us{= la EK: Ilal,= 1 forall p SI. 

Let Log denote the usual map Us DR{+s and hK the class number of K. 
Let x be a solution of equation (1) with gcd(x) = 1. For 1 < j < m 

set f37 = Lj (x). Now, if Sf denotes the set of prime ideals of K divid- 
ing (aoAp1 ... pt), then we see that f1j E Us. In particular, we see that if 
(L1, L2, L3), say, denotes any triangle of the hypergraph, then 

+ 2f2 + 1 = 0 
a3fl3 a3fl3 
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is an S-unit equation. In later sections I will show how to solve such an S- 
unit equation. First note that we have one S-unit equation for each triangle in 
the hypergraph. However, using the action of the galois group of K over Q, 
remembering that K is a galois extension, we can reduce the number of S-unit 
equations that need to be considered. 

Let G = Gal(K/Q) and let ' be a subhypergraph of GL. The group G 
naturally generates a subhypergraph, ?'G, of GL from F , where FG has 
vertices given by a(Li), where a E G and Li E F , if a(Li) E GL. The edges 
of FG are those triangles in GL which have all their vertices in ?#G. Thus, 
we have F c ?G C GL. To solve our TCDF, we only need to solve the S-unit 
equations represented by ' (rather than GL) for a ' such that 

1. FG is a connected hypergraph; 
2. FG contains all vertices of GL 

3. SOLVING AN S-UNIT EQUATION 

We now derive an effective bound for the solutions of S-unit equations. In 
[8], an explicit bound was given for the solutions. In the proof, some explicit 
estimates for linear forms in logarithms were involved. In our proof below we 
give a modified version of the proof of [8] and replace the estimates mentioned 
above by recent improved ones due to Yu [29] and Baker and Wustholz [2]. 

Let fli,j E Us for 1 < i < tj and j = 1, 2 such that Log(fil,j), 
Log(11tj, j) are linearly independent, hence tj < r + s . Now set 

ti 

Ti= I,jai, aj,i E Z i = I1,2. 
j=1 

We wish to solve the equation 

(2) alT1 + a2T2 + I = 0, 

where a1, a2 E X, a finite set of elements of K. In our case we have I, 1 = 

i,J,2 for i = 1, ..., tI, where tI = t2 = r+s and Ii, I, ..., Ir+s, 1 aregenerators 
of the nontorsion part of Us. Such generators are easily constructed. It may be 
possible to restrict the Ti to a subgroup of Us in some examples, for instance 
by considering the factorization of the form f(x) over Z. So we shall consider 
the more general S-unit equation, (2). 

Set H = max(Iai,jI), where the maximum is taken over 1 < i < tj and 
1 < j < 2. Our aim in this section is to find a large bound on H. Choose 
g, h, b suchthat b= 1, 2 and 1 < g, h < r+s+ 1 suchthat H= Iak,bl for 
some k and 

I log ITblvg I = maSx I log ITbloi I Ib, =h minS ITli 
piES pE 

We do not know at this stage what the values of b and h actually are, so we 
need to perform. our calculations for each possibility. It will turn out that the 
value of g is immaterial. 
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For i = 1, 2 let U = {ui, ..., uI be a subset of distinct elements of 
{1, ..., r +s+ I} such that the matrix 

/log 1,Iflj'IU, log lfiti, ijou 

Ci,u = .. E Rtixti 

ilog I ,Bl, i Iput,i log lfiti, ilputi, 

is invertible. Now by our assumption that Log(fil, i), ..., Log(fit,, i) are linearly 
independent such U do exist. Set cl = max(IICT-{ 11,), where the maximum 
is taken over i = 1, 2 and all U satisfying the above condition. Note, for a 
matrix A, that IIA 1k denotes the infinity norm of the matrix, see [14, ?5.6]. 

Lemma 1. We have 
H < clIlogITb Ig.- 

Proof. We have that for some U, 

a,, b~~ log ITbkI ui) 
at b b log I Tb I Putb 

So 

H < 11 Cb ul max(I log I Tb Iui 1) < cl I log I Tb I g I- u i EU 

Let C2 = l/cl and choose C3 such that 0 < C3 < c2/(r + s) . A good choice 
of C3 iS O-99c2/(r + s), assuming r + s is not too large (say < 50). It can be 

seen from what follows that the larger C3 is, the better the final bounds will 
be after our reduction steps. With present computing power an equation with 
r + s > 15 would seem to be impractical, so we always make the above choice 
of C3. 

Lemma 2. We have 
ITbIPh < eC3H. 

Proof: Assume that ITblvh > e-C3H. Then, by Lemma 1, we have two cases to 
consider. 
Case 1. ITbIog > ec2H. We have that 

r+s+ 1 

I TblgQi = 

and so 
r+s+ 1 

eC2H < ?Tbbg = 71IrbIs < e(r+s)C3H. 
i=1, i#g 

Therefore, H < 0, as C2 > (r + S)C3, which is impossible. 
Case 2. ITb I,g < e-C2H. We have 

e-C2H > ITblgg > ITblh > e.C3 

So H < 0, as C2 > C3, which is again impossible. o 



824 N. P. SMART 

Now for 1< i < r+s+ 1 set 

C4(i) = max IalI.- 

Set d = 3 - b, remembering that b = 1 or 2, and Ab = abTb = -adTd - 1 
Note, by Lemma 2, IAblph < c4(h)e-C3H. We now bound H in the case that 
1 <h <s. 

Lemma 3. There exists an effectively computable number Ko such that if 1 < 
h < s, then H < Ko. 
Proof. We have 

-fh ordPh (Ab) < c4(h)ec3H 

and so 

ordPh (Ab) > (C3H - log c4(h))/( fh log1ph) = eh (c5(h)H -C6(h)) 

where eh is the ramification index of ph. Assume H > c6(h)/c5(h) = c7(h). 
Then we have ordPh (Ab) > 0, and so ordPh(adTd) = 0. We can find Hi E K, 
0 < i < Sd, such that ordPh (MI) = 0 and 

Sd 

ckdrd = iifitd 

b=i 

where Sd = td or td - 1 for some variables, bi,d, which satisfy Ibi,d ? H. 
Hence by Yu's Theorem [29], we can find constants c8(h), cg(h) such that 

/Sd 
ordph io HMVId 1) < c8(h) logH + cg(h). 

Then we have, by a lemma of Petho and de Weger, [19, Lemma 2.2], 

2 ( ( c(h) H < () eh c6(h)+c9(h)+c8(h)log eh5(h) =C1o(h). 
eh c5 (h' eh '(h 

We set 
Ko = max (cI0(h), c7(h)). o 

1<h<s 

The ,ui's that appear in the above proof will need to be found for the p-adic 
reduction step. I shall now describe their construction. Let nj = ordPh (f, d) 

for j = 1, .., td, and no = ordPh (ad). If ni = 0 for all i, then we can take 
Hi = fi, d and Sd = td, so we shall assume otherwise. Now choose k $ 0 such 
that nk :$ 0 and 

Inkl = 1<minm Inil. I 
-li<td, nif 

The condition ordPh (ad Td) = 0 means that we have the equation 

td 

nO + , nIa1,d = 0- 
i=1 
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Then set jik = 1, and for j $ 0 or k set /ij = fl'k 
-ni Define ri and bi,d 

by aid = nkbi,d + ri with 0 < ri < Inkl, and 

td t 

( d ) jo O(I Ai'd) flk, dk i=1, ibk i= 1i, ilk 

We must have a 0 (mod nk), hence /to E K. We note that as ik = 1, 
we have reduced the number of variables by 1. So we relabel the ,us's and 
set Sd = td - 1. Note that we shall have a different /to for each possible set 
{ri, ..., rtd} satisfying a _ 0 (mod nk) . 

From the above proof it can be seen that one has a trivial bound on H in a 
very special case. 

Corollary 1. If ordh (ajTj) = ord.h (a2T2), then H < c7(h). 

In our example we shall later employ this result to remove the need for any 
p-adic linear forms in logarithms. 

Wenowbound H inthecasethat s+ I <h < r+s+ 1. 

Lemma 4. There exists an effectively computable number K1 such that, if s + 
1 < h < r + s + 1 , then H < K. 
Proof. Let k = h - s and define 

(cii(k), c12(k), C13(k)) 

f(log(4c4(h))/c3, 2c4(h), C3) if Ph is real, 
=(2 log(4 c4(h))/c3, 2fc4(h), c3/2) if Ph is complex. 

Now if H>cl (k),then IAk) _-1I<1/4, andso 

I logAk) ?< C2(k)e-C13(k)H 

The left-hand side of this last inequality is equal to 

td 

log(a (k) + Ea,d log(/ dk) + aO,d27rv S 

where lao,dl < (td + 1)H. We now apply the theorem of Baker and Wustholz 

[2] to find a constant c14(k) such that k logA(k) > exp(-c14(k) log(H(td + 1))). 

So -c14(k) log(H(td + 1)) < -c13(k)H+ log9C2(k) . In other words, 

H < (k) (log(c12(k))+ c14(k) log(H(td + 1))). 
c1 3(k) 

Hence, again by the lemma of Petho and de Weger, 

H< c23k) (log(cl2(k))+c14(k)logQ(td +)C14(k))) =C15(k). 

We finally set 
K1 = max(c,1 (k), c15(k)). * 

k 

So in all cases we have a bound on H. 
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4. THE REDUCTION OF THE BOUNDS 

In this section I show how to reduce the bounds. The p-adic reduction step 
is a slight modification on Evertse's trick, given in [25], which uses an idea given 
in [27, p. 19]. The complex reduction step uses a similar idea, see [27, p. 16], 
to remove the need for the use of the complex L3 reduction algorithm that 
was used in [21]. Both reduction steps use the real L3 reduction algorithm on 
lattices generated by integer matrices. So instead of using the algorithm given 
in [16], we use the fraction-free algorithm given in [26]. If a is a lattice in Rn 
and y E R , then we define ?(a, y) by 

minX ,x#o IIxII if y = O, 
- minxE! djx 

- yll otherwise. 

For properties of L3 bases I refer the reader to the discussion in [27]. 

p-adic reduction step. Assume that 1 < h < s; then ordph (Ab) > c5(h)H - c6(h) . 
Now, as in the proof of Lemma 3, if H > (1 + c6(h))/c5(h) = cl6(h) > c7(h), 
then 

Sd 

Ab= /to J4id- 

where ordPh(Mj) = 0 for all i. As H > c16(h), we have ordPh(Ab) > 1. So 

ord Ph(Ab) = ordPh (1ogPh (Ab + 1)) = ordPh (Ab) > C5(h)H -C6(h), 

where 
Sd 

Ab = 
logPh /to + E bi, d logPh Hi E KPhv 

i=1 

Let nh = [KPh QPh] and KPh = Qph(Qh) ; then 

nh -1 

Ab= E Ab,i'ih, 
i=O 

where 

Sd 

Ab,i =ao, + ZbJ,daj,i, aj,i E QPh, ? < i < nh-l. 

j=1 

By Evertse's trick, [25, p. 257], it follows that, for all i, 

ordPh (Ab, i) > C5 (h)H - C6 (h) - Dph (kh), 

where DPh (kh) = ordPh ( Disc (kh)) * Choose A E QPh such that 

ordPh(A) = mmi (min (ordPh(i,j))) 17(h)- 
l?iL?Sd \O?<?nhl I 
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Note. If cl7(h) > ordph (ao, i) for some i, then 

H < h) (c7(h) + c6(h) + 2Dp,(Oh)) 

So we shall assume that c17(h) < min(ordph(ao, )). Then 

ordph(Ab, i/A) > C5(h)H -C6(h) - 1DPh (Oh) -Cl 7(h) = C5(h)H -C 8(h), 

and we set 
Sd 

Ab, il = Ko,i +Z bj,dKi,i, Kj,i E Zph, 0 < i < nh - 
j=1 

Choose u such that Ph KOl+sd)/nh. For a E ?Ph, let a(u) denote the unique 
rational integer such that 0 < a(u) < pu - 1 and a = a(u) (mod pu) . Then set 

1 ~~~~~0 

01 
K1 . ... KSdU O P E Z(Sd+nh)X(Sd+nh) 

~K(u) ..K (U) 10 u 
iK 1,nh -1 I Ksd, nh- h 

0 

0 
y= K (u) E ZSd+nh 

K(u) 

Let Q denote the lattice generated over Z by the columns of ?? . Now Lemmas 
3.4, 3.5, and 3.6 of [27] give us a lower bound on t (!, y), and using the next 
lemma, we can probably reduce our bound for H. 

Lemma 5. If ? (a, y) > v's-dKo, then H < (u + c8(h))/c5(h). 

Proof. Assume H > (u + cI8(h))/c5(h); then C5(h)H - c18(h) > u i.e., 
ordPh(Ab,i/IA) > U for all i = 0, n.., nh - 1 . Then 

ordPh Ko, i+ bidKj,) > u. 

So, for all i, 
K(U) + d b dK ()i K0 i+ j = Ib, d j,u 

zi=~~~~~~'iEZ 
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Therefore, we can consider the lattice point 

b1,d bl,d 

X = g bsd, d = bsd,d x~~~~~~~4 ~~~(u) 

Znh-1z -K(U) 

Hence, 
bd 

X y bsd,d 

0 

i.e., 
Sd 

?(', y)2 < b2d < SdK. O 
i=l 

Note that in this p-adic method the value of u can be chosen to be smaller 
than that in the original version given in [25]. This means the p-adic logarithms 
do not have to be calculated to such a high accuracy as with previous methods. 
If our choice of u does not result in a new upper bound, we choose a larger 
u and repeat the process. Once a new upper bound has been found, we then 
choose a smaller u to try and reduce this new bound. 

Complex reduction step. Assume that s + I < h < r + s + I . Let k = h - s and 

td 

A - log((k)) + E ai,d log(fl7k) + aO,d27VT 
i=l 

By Lemma 4 we have the bounds Iai,dd < K1 and Iao,dI < (td + l)Ki . Now if 
H> cll(k), then 

JAI < C12(k)e-c13(k)H 

Our objective is to find a new bound, K1, which is lower than our original 
bound given by Lemma 4. Previously, we would have used the complex L3 
algorithm developed in [21]. We now show that this is unnecessary. 

Write A as A = Ko + Ztd I ai_dKi + aO,d2V. There are three cases to 
consider. 
Case 1. Totally Real, i.e., for all i, Ki E R. 
Case 2. Pure Imaginary, i.e., for all i, VZYKi e ER. 
Case 3. Mixed Case otherwise. 

Cases 1 and 2 are dealt with in [23]; therefore, we shall only consider here 
Case 3. 
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Case 3. Choose a constant C such that C 0 K(td+l1)2 and relabel {KI, 

Ktd} such that Re(Ktd) # 0. Then define Q to be the lattice generated by the 
columns of the matrix 

(~~~~~~~~~ 

g = 0 1 E Z(td+l)X(td+l) 

[C Re(Kl)] ... ... [C Re(Ktd)] 0 

\ [C Im(Kl)] ... ... [C Im(Ktd)] [C27r]I 

Let 

Y~~~~~~C . Ztd+l y 0 
-[C Re(Ko)] 
-[C Im(Ko)] 

where [.1 denotes rounding to the nearest integer. We find a lower bound K2 on 
?(a, y) by Lemmas 3.4, 3.5, and 3.6 of [27], and define S and T as follows: 

S= K2-t-1 )K12 , T = (I1 + (2td + 1)KI ) /v/X. 

Lemma 6. If K2> T2+(td- l)Kl, then 

H < (log(Cc12(k)) - log(S - T)). 
C13(k) 

Proof: Define 01, 02 as follows: 

td 

1I = [C Re(Ko)]+ Zai,d[C Re(Ki)], 
i=1 

td 

0P2 = [C Im(Ko)] + Z ai,d[C Im(Ki)] + ao,d[C27]. 
i=1 

Notice that I (D + \/TI2 - CAl < T; therefore, 

|dI1 + V'TD21 < T + Cc12(k)e-C13(k)H 

Now consider the lattice point x = 4z, where 

I, Id a d 

z SO 
( ox-Y 

= atda j 
ad,d )DI \ao,d/ 0I2/ 
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Therefore, 

td- 1 

ip2, y)2 < E d+ (D2 + (D2 < 2t-lK + 1, 
1 21 

i=l1 

< (td - 1)K2 + (T + Cc12(k)ec13(k)H) 

Note by assumption that S E R, so we have S - T < Cc12(k)ec13(k)H, and 
hence the inequality for H follows. o 

We expect this result to reduce our upper bound for H, as we believe the 
logarithms of algebraic numbers to behave as random complex numbers. There- 
fore we expect to reduce the bound. All experience shows (see [5, 22, 23, 24]) 
that this is indeed the case. As in the p-adic case, if we do not reduce our upper 
bound, then we choose a larger C and repeat the process. 

5. LOCATING THE SOLUTIONS 

When solving an exponential diophantine equation, we often need to sieve 
the solutions, that is, find a set of congruence conditions on the exponents 
involved. In our case we have 

(3) a 1,8 ..fit,i + a2 i2. fit22+1 -0 

where the 81i,j E ZK are given, the aj come from a finite set v and the 
ai, j E Z need to be found for 1 < i < tj and j = 1, 2. We may have some 
additional information in the form of linear equations amongst the ai, j's which 
need to be satisfied. In this case sieving the equation means finding congruence 
conditions on the al, j's. The idea of sieving an equation to locate the solutions 
goes back to [24]. The S-unit equations that were considered in that paper were 
very simple to sieve, as they had tI = t2 and ai, 1 = ai,2 for all i. For the 
more general S-unit equation one has to be more careful when organizing the 
sieving process, because there are many more cases to consider. Unlike [25], we 
find it more efficient to find the ai, j's up to congruence rather than enumerate 
all ai,j's up to our previously given upper bounds and then sieve all these 
cases. As the modulus for our congruences becomes larger, one can make use 
of the previously given upper bound to speed up the process. Often, however, 
a parallel computer is required. We explain how to organize the computations 
below. 

We now choose a rational prime p such that the minimal polynomial of 
a generator of the field K splits completely in IFp, p does not divide the 
discriminant of the polynomial and p does not lie below a prime of St. Also 
p should be chosen such that the ai's have a well-defined image in IFp for 
i = 1, 2, as explained below. This is to force the fi, j's to have small order 
when working modulo p. As K is a galois field, we expect, see [15, ?8.4], 
that on average l/n primes split completely in the field K. So, although one 
cannot guarantee that such small primes, say p < 300, exist, we expect that 
they do. Experience shows this indeed to be the case. We then solve equation 
(3) modulo p by working over the field IFp and enumerating all possibilities 
for the ai, j modulo p - 1. 
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Once this initial sieve has been performed, the given solutions can be sieved 
again by another prime until one has enough congruence conditions to easily 
locate all the actual solutions of equation (3). Note the smallest prime should 
be used first, as this is the time-critical step. This is contrary to the advice given 
in [25], and is dictated by the larger number of cases that we have to consider. 
After the first prime, the ai, j's will be determined modulo Pi - 1 . After the 
second prime, they will be determined modulo the least common multiple of 
Pi - 1 and P2 - 1, and so on. 

I now explain how one should organize finding the solutions for the smallest 
prime. Now for each conjugate of the field K, there is a completion of K with 
respect to the prime p; the primes p have been chosen so that this completion 
always lies in Qp . Hence, we have n images of Us in IFp given by the roots 
of the minimal polynomial modulo p. With these roots it is easy to calculate 
the numbers /3,ij modulo p for each such image. We then have n equations 
of the type (3) to solve modulo p. 

Now each fli, j has an order in each image, say Oi, j, k, 1 < k < n . Reorder- 
ing the roots if necessary, we can assume that 

Oi,j,k < flOi,j,k+l, 1 < k < n- 1. 
i,j i,j 

So searching in the box corresponding to the first root will be fast in comparison 
to searching in the other boxes. Hence, we solve the equations in the order 
given by the above ordering of the roots, i.e., by simply testing each possible 
congruence modulo p. We also take into account any linear equations that 
may exist amongst the exponential variables. It transpires that the search for 
the solutions with respect to the second root is now the most expensive in terms 
of CPU-time. 

If required, the system can be parallelized as follows: The first process solves 
the equation with respect to the first prime and the first root, with respect to the 
ordering above. The solutions of this are then farmed to workers who solve the 
equation with respect to the first prime and the other n - 1 roots. The results 
from the workers are then harvested and passed to the next process. The ai, j's 
determined up to congruence are then passed down a chain which solves the 
equation modulo other primes, thus giving higher modulo congruences on the 
ai, j's via the Chinese remainder theorem. These last processes will hardly have 
any data sent to them, so this last part of the chain should have one prime on 
each process. The results give the congruence conditions on the solutions ai,j. 

This method should also be used when using a serial computer, as it leads 
to significant improvements in CPU-time when compared to the original brute- 
force approach. 

6. CONNECTING THE SOLUTIONS TOGETHER 

Having given a method to derive upper bounds on the variables in an S-unit 
equation, and shown how to reduce them, we now use this to solve our TCDF 
equation. We shall use some arguments from the proof of Theorem 1 of [9] 
(see also [7] and [11]), where an explicit upper bound is given for the solutions 
of equation (1). For each set of solutions of the S-unit equations represented 
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by ', we use the action of G to produce a set of solutions of a connected set 
of S-unit equations. 

Before proceeding further, we need to calculate a constant for use later on. 
Choose I={il, ..., iv} and J={jl, .., jj},with 1 <ik < m and 1I < k < 
n, such that the matrix 

{11,1l ** * V, i 

I,iV *- Wiv 

is invertible. By Assumption 2 such I and J must exist. We have, obviously, 
det(AI, j) E ZK . So set 

C19= INK/IQ(det(A,,J))I. 
We then have the following result: 

Lemma 7. Let X E Z and ,j E ZK be such that Lj(x) = X'Ej; then we have 
IxI1 < C19. 

Proof. With the choice of I and J above we have A,, jX = Xbf, where b = 
(4Ji), (jV))t . Now by Cramer's rule, 

xi = X det(A()IJ)/ det(A1,j), 

where A(i) is the matrix obtained from A,, j by replacing column i of A,, j I, J 
by the vector b. Let yi = det(A(i)) and y = det(AI,j) ; then yi, Y E ZK and 
xi = XYi/Y. This implies that 

(x) * (Yi, *-., Yv) = (xI, *--, xv) * (y) = (y), 

and so INK/Q(X)I < INK/Q(Y)l = c9. O 

By Assumption 1, for each j, 1 < j < m, there exists a sequence 

L2 = Li,, Li.l = Lj 

such that for all u, 1 < u < w - 1, there exists a j, a ju-, ai j+u such that 

aiuLiu + aiu+lLiu+, + aiu u+1 = 0. 

If we let Ki denote our solutions for the Li above, then 

L1 = 0'K1, L2 = a K2, 

Liu = CuKu, iu, Liu+I = OUKu, iu+ K 

where a' and vu are unknown S-units. We then find that for all j, 1 < j < m, 

Lj = Liw, = KW-I,iw,Liw_-l1KW-I,iw_- = 'o 
*- = 
VXj = U'A 

where 
w-1 w-1 

kj = K2 J7 Ku,iu+ /Ij = J7 Ku,iu. 
u=l u=l 
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Let 7n, ..., irs be elements of K such that (7i) = , where pi are prime 
ideals dividing (aoApi ... Pt). Let 

(6) = pa1 ... as -i < hK 

(51, 2 E A implies 6, and (2 are not associates. 

For e E UK and a E A we have 

= a(5~' a' 

Now for each a E A repeat the following: 
For 1 < k < s choose bk to be the smallest integer such that for all i, 

1<i<m, 
bkhK > -ordpk (6Ai )- 

If bk > a', then, for some j, we have 

ordpk (C')Aj) = hKa' + ord4k (3Ri) 

< hK(bk - 1) + ordPkk(6Aj) < 0, 

so Lj 7 Z which is a contradiction. So we must have bk < ak. Set ak = 

a- bk 0 and then 

,5j = 7C I * * lSrij = e f 7l ...as 

where e E UK. SO Ij E ZK and Lj = cFaj forj= 1, ..., m. 

7. BOUNDING THE a1's 

Let pi denote the primes of Z 1 < i < u, which divide (aoAp ... pt), 
therefore, in particular u > t. Then for some g1, *--, E N 

(r1L1) = (am rjP) =i p . pgu. 

Fix k such that 1 < k < u, and let p denote an arbitrary prime ideal of K 
lying above Pk . If Pek IiPk, then ek does not depend on the choice of p since 
K/Q is a galois extension. 

Let dk be the greatest rational integer for which 

(4) gkek - ordp (rj) > mdkek 

holds for each p with lPk. Note that it is easy to see that dk > 0. Now by 
definition there exists a p lying above Pk such that 

(5) m(dk + l)ek > gkek - ordp (rit) 

By (4) we see that gkek - mdkek > 0, and by (5) we have 

0 < gkek - mdkek < mek + ord, ( )- 
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Note that for an arbitrary ideal g lying above Pk, with I(rq), 

(6) aqmhK+ ord, (l) g)ek 

If Pk i {Pi, *-, ptI, then gk is fixed and we have determined aq; otherwise, 
we have 0 < aq < ek(l + dk)/hK . So if we can bound dk, then we can bound 
aq. 

Now let X e Z be such that X = p ... pdu and choose 4 such that X% = 

*a, 7ZaS . It follows that 

ord&,(Xg) = hKaq = ekdk + ord,(,). 

So, from equations (4) and (6), we deduce that 4 is an algebraic integer. Write 
4 = E46j; then Lj(x) = x'Ej. Then we apply Lemma 7 to find IxIn < clg. 
Hence, if we set c20 = logll9/n, then 

dk < C20/logpk- 

8. FINDING THE SOLUTIONS 

Therefore, we have a finite set of cases, 

Lj= e7 7ra, . .. 7ras6. 

with the ai and 3j given, and we have the equation 

m 
em 7(rmal ... 7rmas flj = am-' ApA l ... PZt 

i=1 

Now, take ordp, of both sides to completely determine the zi. 
If K has fundamental units ?II .., *- , then e is of the form 

e = (:61' t1rVO ( E Tors(UK). 

So we have, for some given E E UK, 

(4VI 
. 

vr)m= 

This gives us the matrix equation 

log (I) *I. logI(i1)I) (Vi (logIol0) 

log I1(r+1)l log(r+l I Vr log I0(r+ )I 

Hence we can solve for VI, ..., Vr. This will be a floating-point solution. To 
obtain an integral solution, we round the result and test it in equation (7). 

Another method to solve for vI, ..., Vr is to find ao, A, PI, ..., Pt in terms 
of the generators of the S-units of K. We know the 3i in terms of such genera- 
tors. Hence, b can be written down as a product of powers of the fundamental 
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units of K and a unit of finite order. The unknowns v1, ..., v, can then be 
simply read off. 

We have the equations (with xi E Z unknown) 

v 

,l,jX, = v,r v, 7,a1l ..l 7 Za,aj. =Tj < j < m. 
i=l 

Let ZK have an integral basis, wi, ..., w,1. Then we can write Ti and li,j in 
terms of this basis as 

n n 

Ti= ti j , i= ri, j,kwOk , ti, j, ri, j,k E Z. 
j=1 k=1 

Hence, we have the m * n linear equations with Z coefficients and variables, 
given by, 

v 

Zri,j,k xi= ti,k, < j < m < k < n. 
i=l1 

We solve for the xi's to obtain our final solution (xl, ..., xv), which we check 
to satisfy 

F(x) = Ap ...p t and gcd(x)= 1. 

9. EXAMPLE 

Suppose we wish to find all monic quintic polynomials with integral coeffi- 
cients and with discriminant a product of powers of two and three only, which 
factor over Q as a product of one quadratic polynomial and one cubic poly- 
nomial. We first need to decide on the splitting fields of the two polynomials. 
Here I will deal with the case where the quadratic polynomial factors over Q(a) 
and the cubic factors over Q(,8), where 

a2+3=0 , 83-3,8- 1 =0. 

Hence, I will be able to give a list, by [18], of curves of genus 2 with one 
rational Weierstrass point (at infinity), two Weierstrass points in Q(a) and 
three in Q(,8) with good reduction outside the set {2, 3}. 

9.1. The initial bounds and reduction. Set K = Q(a, J) = Q(6), where f = 
06 _ 03 + 1 = 0. By using the package KANT, [20], we find that K has unit 
group given by UK = (4) X (11) X (12), where = 05 is a generator of the 
18 units of finite order and II = 02 _ 03 , 12 = _ 02 _ 03 + 04 + 05 are 
fundamental units. There is only one prime ideal above each of the rational 
primes 2 and 3, and both of these ideals are principal, 

(2)= 02 (3) = p6 = ((1 03 + 04)6 

We let nf = 1 - 03 + 04. In our previous notation we let Sf = {12, 03}. 
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We denote the roots of f by 0, ..., 06 and we order them in such a way 
that we have 

01 = 0 = 411, 02= I02 = 413, 03= 4 = V17 
04 = 605 + 02 = 67 05 =04 0 = 5 06 = 05= 

The galois group of K/Q is then given by G = (a), where a = (123456). We 
have that 

a('()= (e = 14 14-I1 Ir- 3 p1 1 

and 
a(a(l)) = a(2) =-a 

a7(f(l)) = fl(3) , (f8(2)) = 13(1) , (fi(3)) = 13(2) 

The automorphism a acts on ri and 7n in the following way: 

(,,)= 1-1413 5 (2) = a(n) = (7 1 

We let 
y=a+b(l+ca)/2, a = c+d(tf/ +vf2), 

where a, c, t, v E Z with (t, v) = 1 and b, d E {?2513: s2 , S2 E N}. Now 
Fi, j = y(i) -(i) must be an S-unit of K for i = 1, 2 and j 1= 1, 2, 3. This 
means that 21i, j is also an S-unit of K, so we set xl = 2a + b - 2c, X2 = 

b, X3 = -2dt, X4 = -2dv and form the linear forms 

l2i-1 = X1 + X2a + X3(i)+ x43X ) 

12i = X- X2Y + X3,f(i) + XJ3 ) 

for i = 1, 2, 3. Then LI ...L6 E Z[xI, ..., X4] is a decomposable form, but 
it is not triangularly connected. But we can produce a triangularly connected 
form by also defining L7 = 2x2a. Then we have a new form F(xI, ..., X4), 
which is triangularly connected, given by 

6 

F(x) = L7-(X)2 fJ Li(x) E Z[X]. 
i=1 

This is a TCDF, as we have L2i_1 - L2i - L7 = 0 for i = 1, 2, 3. Note that 
we have the relations 

(8) a3(L2 ) = L2, a(L1) = L6, 2(L1) = L3 , a(L7) =-L7. 

We wish to solve the equation 
6 

F(x) - L2 fLi = ?2z, 3Z2. 
i=1 

In view of the relations (8), we need only solve one S-unit equation, namely 

L1 _ L2 _ 1-0. 
L7 L7 

Also, as we have a3(L1/L7) = -L2/L7, this becomes 
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We set 
LI <a a, a2 2a37,a4. 
L7 11 

Then we have the following S-unit equation to solve: 

,a1 ata22a37,a4 + <17a+8a1 +12a2+7a4 n a, a2 2a3 7a4 1 = 0. 

So we have four exponential variables to bound and locate, rather than the 
initial eight exponential variables. We apply the previous algorithm for S-unit 
equations, noting that we can use Corollary 1. This gives initial bounds of 
Ko = 3.9 and K1 = 2.0 x 1032. We apply the reduction algorithms to obtain 
H < 245. Then we sieve the equation to find all solutions to this S-unit 
equation; they are given by the following table. 

a 3 15 4 6 13 17 2 12 0 7 10 3 8 4 15 2 3 
a, 0 0 -1 -1 0 0 1 1 0 1 1 0 0 1 1 0 0 

a2 0 0 0 0 1 1 -1 -1 0 1 1 0 0 0 0 1 1 

a3 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 

a4 0 0 0 0 0 0 0 0 0 -3 -3 -1 -1 -1 -1 -1 -1 

It took 39 hours and 18 minutes to find all these solutions on a SUN-4 and to 
show that these were the only solutions. The code to do this was written in 
c + + . This was with a serial sieve. If the sieve had been performed in parallel, 
on a MEIKO Transputer Surface, then the whole algorithm would have taken 
23 hours. 

From the above solutions to our S-unit equation we need to locate the so- 
lutions to our TCDF. This takes about 2 minutes of CPU-time. I shall now 
explain the details. 

If we set L7 = r', then we can express all of our linear forms in terms of -r' 
and a, a, .., a4 as follows: 

LI = TI,a a, a22a37a4 

L2 = -3(LI) T= /9+17a+8a +12a2+7a4 ,aj ,a2 2a37,a4 

L3 = a2(LI) = t.1l3a+4al+17a2+17a4 11-a,-a2-a4 12al2a37,a4 

L4 = -(L,) = Ti49+5a+lla2 ,laI-a2-a4Ial2a37Ea4 

Ls= = t4= 7a+llai+a2 7a2 ,-a,-a2-a42a37a4 1l 12 a a 

L6= = TL',9+1la+l3aI+l3a2+l3a4 ,a2 ,-al -a2-a4 2a37,a4 

We check that L3 - L4 - tt = 0 and Ls - L6 - tt = 0. This can be done by 
referring to the table of solutions of LI - L2 - ' = 0 given above. 

We then set z' - 2a 7a2 = 2x2a and carry out the following for each of 
our solutions to the S-unit equation. Set b1 = -a3 and b2 = -a4. Then put 
al'= a - b1, a' = a' - b2, and Aj = Lj/-r'. For j = 1, ..., 7 we set 

6j = 2b i > = 62a 1 7a2 ,Lj = It5j. 

We find that cl9,= 8916100448256, so we apply our method to find that 

0<a'<8, 0 < a' < 34. 
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We now need to find , but we note that this is easy, as we have for x2 = 

?2g1 3g2 

- E2a, 7a' 2x2= 
2bll7rb2 

= 21-bl+g1 7,6g2+3-b2,9v+g2+14 -1-2g2 -1-2g2 
L~~~~~~~?l~~i ?72 

where v =0 or 1, i.e., gl = a' + bi - 1 and g2 = (a' + b2 - 3)/6. Hence we 
have 

Lj = 49v+14+g2 161-)+2g2 2all alld 

It remains to determine xI, X3, X4; so we solve 
/ fl(1) 3(1)2 {xl\ /L1 -x2ca\ 
1 fl(2) fi(2)2 l x3 = L2-x2c 

V1 g(3) fl(3)2 X4 L3 - x2/ 

Given that x2 - 49v2g33g2, we can do this symbolically and hence get exact 
results for xi, X3, X4 and avoid rounding errors. 

From the 17 solutions to our S-unit equation we find the following solutions 
to our TCDF. 

?Xi +X2 ?X3 +X4 +XI ?X2 ?X3 ?X4 

-l -l -2 0 -11 -1 -2 4 
-l -l -4 2 -11 1 -2 4 
-1 -1 0 0 * -3 -l -2 2 
-l -l 2 2 -3 -1 0 0 * 

-l 1 -2 0 -3 1 0 0 * 

-1 1 -4 2 -3 1 -2 2 
-l 1 0 0 * -5 -l 0 2 
-l 1 2 2 -5 1 0 2 
0 1 0 0 * 

However, we do not require those solutions marked * for what follows, as they 
give curves with no Weierstrass points in %Q(f). Now by [18, Theorem 4] the 
curves that are required have Weierstrass points given by 

Yi = z(x1 + X2a('))/2 + c 

and 
Yj+2 = Z(-X3,8(i) - X4J(j) )/2 + c, 

where 1 < i <2, 1 < j < 3, CE Z and z E {+2s13S2 :1, S2 E Z} That is, 

5 

y2 = l(X - yi). 
i=l 

Now if we make the change of variable X = X' + c, we obtain an isomorphic 
curve 

y2 = (X' - (yi - c)). 
i=l 



DECOMPOSABLE FORM EQUATIONS 839 

So we may assume that c = 0. Now by passing to another isomorphic curve, 
we can take z to be ?2a3b, where 0 < a, b < 1 . So all curves (up to isomor- 
phism) of genus 2, with two Weierstrass points in Q(V/=X), three Weierstrass 
points in Q(,8) and one rational Weierstrass point with good reduction outside 
the set {2, 3} are given by 

y2 - XI + a1zX4 + a2Z2X3 + a3z3X2 + a4z4X + a5z5. 

a, a2 a3 a4 a5 
1 -2 -4 -4 -l 
7 10 8 2 -1 

23 202 820 1418 589 
9 30 48 36 9 
11 46 88 68 7 
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