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A THUE EQUATION WITH QUADRATIC INTEGERS AS VARIABLES 

B. M. M. DE WEGER 

ABSTRACT. In an earlier paper we determined all the solutions in Z of a cubic 
Thue equation with coefficients in a quadratic number field. It is now shown 
that the method used there can be used to solve the more general problem of 
determining all the solutions of the Thue equation in a ring of quadratic integers. 

1. INTRODUCTION 

In the paper [4], we were interested in a cubic Thue equation with coefficients 
in a quadratic number field, but with rational integers as variables, namely 

(1) X3+(9 + 2V )x2y-(12 + )xy2-_ 11 + 33xy3 (3 +- ) 

(see [4, equation (18)]; we have replaced 2n by n, to be slightly more gen- 
eral). We showed in [4, Theorem 3] that it has only the solutions (x, y, n) = 
(1 , 0, 0) , (0, -I1, 2) . 

It was only after the paper [4] was accepted for publication, that I realized that 
for the solution method used there it is not at all essential that x, y be rational 
integers, and that the method in fact detects all the solutions x, y in the ring of 
integers of Q(VB), as will be shown below. We give our new results in ?2, and 
details of the proof in ?3. This will require only minor modifications in the proof 
of [4, ?3.3]. As far as I know, this is the first time a Thue equation over a ring 
of quadratic integers is completely solved by Baker theory and computational 
diophantine approximation methods. Clearly, any "reasonable" Thue equation 
over a ring of integers can be treated by the same method. 

All our results are based on a Key Lemma, which is about a unit equation in 
a sextic number field. This Key Lemma is given in ?3.1, and was implicitly also 
present in [4], but in the proof presented there we used that x, y E Z. Now we 
remove this assumption from the proof. Moreover, we will use the recent very 
sharp result [1] by A. Baker and G. Wustholz on linear forms in logarithms, to 
derive a new upper bound for the parameter B, replacing [4, equation (36)]. 
The new upper bound is only slightly larger than the (incorrect) one given in 
[4, equation (36)], and is equal to the corrected bound given in the Correction 
to [4], even though it holds in the present more general situation. Details are 
given below in ?3.2. 
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Fortunately, it turns out that we do not have to redo the computational part 
of the first reduction step, as done in [4, ?3.4]. However, the conclusion drawn 
there from these computations is again based on the assumption x, y E Z, so 
we have to redo the subsequent reduction steps. In ?3.3 below we give details. 

Finally, ?3.4 contains the derivation of the results of ?2 from the Key Lemma. 

2. A CUBIC THUE EQUATION OVER A QUADRATIC NUMBER FIELD 

AND RELATED EQUATIONS OF DEGREE SIX 

Let &P denote the ring of integers &(3), and put a = 3+ .iOur main 
result is the following. 

Theorem 1. The only solutions of equation (1) in x, y E 9 and n E Z are 
(x, y, n) = (am, 0, 3m), (0, -Cm, 3m + 2), where m runs through Z. 

In ?3.1 we present the Key Lemma needed in the proof of this theorem. In 
?3.4 we show how this lemma implies Theorem 1 and some other results as 
by-products. As examples of such by-products we mention the following results 
on sextic diophantine equations with variables in Z. Compare this with [4, 
equation (20)]. 

Theorem 2. (i) The diophantine equation 

v6 + 18v5w + 5V4w2 _ 175v3w3 + 1 1ov2w4 + 93vw5 + w6 133 

in v,weZ has only the solutions (v,w)=+(3,-1),+(4,3). 
(ii) The diophantine equation 

t6 +4t5u -2t4U2 _ 9t3u3 + 2t2u4 + 4tu - _ u6 -1 

in t, u E Z has onlythe solutions (t, u) = +(, 0), +(0, 1), (1, 1), ?(l, -1). 

Theorem 3. The diophantine equation 

(2) 
e6 - 27f6 _ g6 + 27h6 + e5(3f + 4g + 2h) 

+f5(27e + 18g - 108h) +g5(4e + 2f - 3h) + h5(18e - 108f - 27g) 
+ e4(-6f2 - 2g2 - 46h2 + 10fg - 8fh - 28gh) 

+ f4(18e2 + 60g2 + 54h2 + 24eg + 90eh + 216gh) 
+ g4(2e2 + 20f2 + 6h2 - 24ef + 1Oeh - 8fh) 
+ h4(-138e2 - 54f2 - 18g2 + 252ef + 24eg + 90fg) 
- 17e3f3 - 9e3g3 + 137e3h3 - 71 f3g3 + 243f3h3 + 17g3h3 

+ e3(-16f2g - 34f2h + 22fg2 + 38fh2 - 20g2h + 55gh2) 
+ f3(-34e2g + 48e2h - 92eg2 - 270eh2 - 204g2h - 63gh2) 

+ g3(-7e2f + 30e2h + 68ef2 _ 16eh2 + 92f2h - 34fh2) 

+ h3(- 165e2f- 38e2g - 180ef2 - 34eg2 _ 198f2g + 48fg2) 

+ 48e 3fgh - 300ef3 gh - 100efg3h + 144efgh3 
+ 10e2f2g2 + 204e2f2h2 + 68e2g2h2 + 30f2g2h2 + 88e2f2gh 

- 69e2fg2h - 236e2fgh2 + 323ef2g2 h + 207ef2gh2 - 88efg2h2 2 ?1 
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has only the solutions (e, f, g, h) E Z given by 

(e, f, g, h) = ?(en, fn, gni hn) 
for n E Z. Here the sequences (en), (fn), (gn), (hn) are binary recurrence 
sequences, all satisfying 

Un+2 = 3un+i + Un 

for u 3 e, f, g, h, that are determined by their initial values for n - 0, 1, for 
which there are the following 27 cases: 

eO fA ho e eO fo go ho el fi gi h1 
-5 1 3-1 -2 -3 0 1 - 1 -5 3 2 1 4 1 
-1 0 -2 1 -1 -1 1 0 0 -1 -2 0 -3 -2 -2 -2 
-1 1 2 -1 2 1 -1 0 2 0 -1 1 2 2 2 1 

1 0 3 -1 1 1 0 1 -2 0 0 -1 -2 -2 -3 -2 
0 1 -5 3 3 2 4 1 5 -1 -5 2 2 3 1 -1 
1 0 0 0 1 1 0 0 1 0 0 1 1 1 3 2 
0 0 1 0 0 0 1 1 -4 3 7 -2 5 2 1 3 

-1 0 1 0 -1 -1 1 1 -1 0 1 -1 -1 -1 -2 -1 
0 1 1 0 3 2 1 1 -1 1 2 0 2 1 2 2 
2 -1 -1 1 -1 0 2 1 -3 0 1 -2 -3 -3 -5 -3 

-1 1 1 0 2 1 1 1 5 -3 -5 1 -4 -1 -2 -3 
-1 0 -1 0 -1 -1 -1 -1 3 -1 1 0 0 1 1 1 

1 -2 -3 0 -5 3 -3 -3 2 -3 -7 0 -7 -4 -7 -7 
-7 0 1 -3 --7 -7 -8 -5 

Equation (2) is the most horrible diophantine equation I have ever seen com- 
pletely solved. 

3. THE KEY LEMMA AND PROOFS 

3.1. The key lemma. The results of the previous section (as well as [4, Theo- 
rem 3], as was shown in [4, p. 154, bottom], and hence also the main result [4, 
Theorem 1] of that paper) follow from the following Key Lemma. We adopt 
the notation (4 , E , . . . ) of [4]. In particular, 4 is a root of x3 + (9 + 24vT)X2 
- (12 + VTi3)x - = 0, ca permutes the three roots of this equation, and 
e denotes a unit in the field Q(4). A crucial fact in the reasoning below is that 
a is a Q(vl3)-automorphism. 

The Key Lemma gives the set of solutions e of the unit equation 

(3) (() - a2( ))8 + (a2(g) _ 4)a(E) + ( - a(4))ar2(g) = 0. 

This is [4, equation (24)], and in [4] it is argued that it is equivalent to [4, 
equation (28)], up to multiplication by a power of a. 

Key Lemma. The unit equation (3) with e = ?Gal, a2 (a3Xa5 has exactly the 27 
solutions presented in the table in [4, p. 155]. 

This lemma still needs a proof, since the proof presented in [4, ?3] uses 
the assumption that x, y E Z. We do this in the subsequent two sections by 
following a slight variant of the method of Tzanakis and de Weger [2, ?9] and 
using the new result on linear forms in logarithms of Baker and Wustholz [1]. 

3.2. Proof of Key Lemma, part I: An upper bound. Let the index set I = 

{1, 2, 4, 5}, and let the matrix U1 be defined as in [4, ?3.3]. Then the row 



858 B. M. M. DE WEGER 

norm N[U7 1], defined as in [3, ?9], satisfies N[U7 1] < 2.7352. Let k E 
{1, ...,6} be such that I log l(k)II is maximal. Then by 

/ logle(2)I - log IC3)I 

b = c + U-1 log re(3)l - log le(l) 1I 

log I(65)1 - log C(4)6 

we obtain 

B < 3 + 2N[U71]l log |C(k) I I< 3 + 5.47041 log |C(k) I |. 

Hence, for this k, 

either 1e(k)I > e54704 or <(k)j < 5e-47 

Note that 

N ( I= -2V) = N -1, NK/Q(V)(p) = 1, 

so that 
Il= Il la(e)l Ia2(e)l = 1. 

Let io E {1, ..., 6} be such that Ie(io)I is minimal. We now claim that if 
B > 100 then 

15(io)I <e-0.08865B 

Indeed, assume the contrary. Then either 

B-3< Ci 12 173 
e5.4704 < Ekl=|TEk)-|T(()l1<l(0l2< eO.173 

implying B < 99.7, or 
- B-30085 e 5.4704 > |ek|> 18(io)l > e-0865 

implying B < 5.9. 
The next step is to show that some linear form in logarithms is extremely 

small. Put, as in [4, p. 147], 

A1 = log ,:(E) 2 ?(,(i)) *2(g(i)) 

which is of interest because it is related to the unit equation (3), namely by 

eAi _ a(e) _ 1- () _ ()2() e 
U ?(<) U2(g) U(4) - U 2(g)a 

Now notice that the unit equation (3) also leads to 

e-Ai _ I= -U() a2(e) _ 1 = 
a - 

g). e 

For i = io we have 

max{Ilo(e(io))l qIU2(g(io))l} > IU(g(io))Il/21U2(e(io))I1/2 = I-(io)l-1/2 

hence 

minleAIo - 11 le-Aio - I } < 10. 1 17 1 00) 13/2 < 10. 1 17e-l03297B. 
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By B > 100 this implies 

(4) lAio I < 10.11 8e-0- 
an inequality which replaces [4, equation (34)]. 

As explained in [4, ?3.2], we may assume that io = 1. We find (see [1] for 
the definition of the heights h, h'): 

P 0-2 Y/ x 
h(.) < 2.5302 1.9942 3.4366 2.5302 
h'( <)< 0.4217 0.3324 0.5728 0.4217 

From the main theorem of Baker and Wustholz [1], with n = 4, d = 6, we 
infer 

(5) tAil }> e-1.4524x 10" logB 

Now (4) and (5) imply 

(6) B < 5.4670 x 1021, 

which is slightly worse than the (incorrect) [4, equation (36)], and exactly equal 
to the bound given in the Correction to [4]. 

3.3. Proof of Key Lemma, part II: Reducing the upper bound. Using (4) and 
(6), we follow the line of argument as presented in [4, ?3.4]. Note that in the 
present situation, [2, Proposition 3.1] can be stated as 

(7) if l> V BOthenB?< 01 3975log 10. 18C 

L ~ ~ l-3IB - 4BOj 

where C is a parameter defining the lattice, Bo is an upper bound for B, 
and 1 = min IxI, the minimum taken over all nonzero lattice points x . Then 
certainly / > lb,l/2V2. 

Our new upper bound Bo is only a little bit larger than the old incorrect 
one used in [4, ?3.4]. Fortunately, this means that in the first reduction step 
it is sufficient to take again C = 1096. Hence again Itb, > 5.1249 x 1023 > 

2V'2ix/Y95.4670 x 1021, and now (7) implies B < 1277. That this is not as 
good as the result of the first reduction step of [4] is due to the fact that (4) is 
weaker than [4, equation (34)]. This is the price we have to pay for removing 
the assumption x, y E Z. 

For the second reduction step we take C = 1017, and we take a somewhat 
closer look at the lattice. Let q' be the matrix containing as columns the output 
of the L3-algorithm, i.e., the vectors b1, b2, b3, b4. We computed 

4617 2580 -5838 9956 
-5307 -2829 -3883 12592 
-1864 357 -16173 -8467 , 
-2696 9770 2169 4283/ 
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with lb,I > 7760.4. Now 7760.4 < 2v/2v'h 1277, so we cannot apply (7) 
directly with I replaced by Ib Il/2 v'. However, it is not difficult to com- 
pute 1. Namely, for every x = (xI, x2, X3, x4)V in the lattice there is a 
Y = (Y1, Y2, y3, y4)t E Z4 such that x = Ry. Put -I = (bi,j) . Then 
if ixi < 7760.5 it follows that Iyij < 7760.5 E4 I/bi,jl, which is easily seen 
to imply IYiI < 1, IY21 < 1, Y3 = Y4 = 0. Hence it is easy to find the nonzero 
lattice point nearest to the origin, which in fact is b, . Thus in (7) we may take 
1 = lb,I > 7760.4, and this leads to B < 253. 

We did a third reduction step with C = 1014. Then the output of the 
L3 algorithm are the column vectors b1, b2, b3, b4 of the matrix 

-966 772 737 2968 
-1439 1121 -33 -2193 

- -43 984 1637 -1525 
591 1343 -496 2063 / 

so that lb, I > 1831.6. As in the second reduction step above, we found from 
yi K 1832 E4- Ilb1,l that lyll < 2, 1Y21 ? 1, 1Y31 < 2, y4 = 0. Hence it is 
easy to show that the nonzero lattice point nearest to the origin is b, . Thus in 
(7) we may take / = lb, I> 1831.6, and this leads to B < 209. 

For 100 < B < 210 we checked (4) in 18-digit precision, which is amply 
sufficient. Note that by IAII /I log I (1) I I < 0.5 , the value of b5 e Z is determined 
uniquely by b2, b3, b4. Hence there are (2 x 210 + 1)2 - (2 x 99)2 - 6.7 x I07 
possibilities to be checked. There are 31 solutions, which we further checked 
for [4, equation (28)]. None survived. 

For 50 < B < 100 we can replace (4) by the somewhat weaker inequality 

IAiJI < 10.199e-0.i2S74B 

We tested this inequality for all - 7.2 x 106 possibilities, and found 20272 
solutions, none of which satisfies [4, equation (28)]. 

Finally we checked [4, equation (28)] directly for all z 108 possibilities 
with B < 50, and this produced exactly the 27 solutions already known. This 
completes the proof of the lemma. D 

Total computation time was less than 2 hours on a 80486 personal computer. 

3.4. Proofs of theorems. 

Proof of Theorem 1. Equation (1) leads to (and is in fact equivalent to) 

(8) x -yX = e. 

The unit equation (3) is obtained by applying the Q(VT.3)-automorphisms a, a2 
of Q(4) to equation (8), and then eliminating x, y from the three conjugate 
equations so obtained. This argument remains valid if we take x, y E Q(VT3) 
such that x - y E a. So does [4, equation (25)], which can be used to recover 
x and y from a solution c of the unit equation (3). (Note that [4, equation 
(26)] uses x, y e Z, so we cannot use it here). 

To produce an algebraic integer x - yX in equation (8), it is not necessary 
for x, y to be algebraic integers. The reason is that 4 = (3 + 4)/v'Tf is an 
algebraic integer too. Hence for the moment, for the solutions of (1) we take 
x, y ei ? such that x + 3y EL,. 
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From the Key Lemma, by [4, equation (25)], we computed the 27 classes of 
solutions of equation (1). It is easily seen (by working modulo 13) that 25 of 
the 27 classes do not lead to any solution x, y E a at all. The remaining two 
classes are given by e = ?am and e = ?am0868i92X4, and they lead to only 
x, y E &', namely exactly those mentioned in the statement of the theorem. 
This completes the proof of Theorem 1. o 

Proof of Theorem 2. Using an argument similar to [4, equation (25), (26)], we 
found that the only solutions of (1) with x, y E 1LZ such that x + 3y is an 

algebraic integer are (x, y, n) = ( -, , -1), (3, 1) . On putting 
v = xX/Y-, w = yv/Y1 and taking the Q(v/T)-norm of (1), we obtain Theorem 
2(i). Further, using a similar argument with x, y replaced by t = x + 3y, u = 
yvx/3 and requiring t, u E Z, we obtain Theorem 2(ii). We leave the details 
of deriving Theorem 2 from the Key Lemma to the reader. O 

Proof of Theorem 3. In view of the fact that 4 = (3 + 0)/V3 E & , we write 

x-y4=(x+3y)-y;\fl3= e+f. 2 ) (2h 

where e, f, g, h E Z. We substitute this in equation (1) and then take the 
Q(X/i7_)-norm. The Key Lemma immediately yields the result (in fact, is equiv- 
alent to it), where again we leave further details to the reader. 0 
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