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Apparently intended for a course in mathematical software, this book's orien- 
tation-overwhelmingly one of endorsing Mathematica as the answer, regard- 
less of the question-seems inappropriate as sole text for such a course. It 
may be viable as additional "symbolic methods" reading in combination with a 
numerical methods text. 

Part I (Using Mathematica as a Symbolic Pocket Calculator), 140 pages, and 
Part II (Mastering Mathematica as a Programming Language), 260 pages, fits 
somewhere between Blachman's introductory book [2] and Maeder's book on 
advanced programming [3]. Gray's introduction to selected parts of the system 
is not entirely authoritative (there are even occasional typos in the computer- 
generated figures) but may be just right for an audience of upper-division applied 
mathematics students. 

Part III in 1 10 pages illustrates computing in some areas of group theory and 
differentiable mappings of particular interest to the author. The last 1 10 pages 
are answers to problems. 

If you wish to learn about ideas of programming languages partly covered 
in Part II: functional programming, object-oriented programming, the use of a 
few ideas from lambda calculus, etc., you may find (for example) the text by 
Abelson et al. [1] far more complete and authoritative than the coverage here. 

Re-interpreting such ideas in a Mathematica framework has a number of 
failings, one of which is that it sometimes "reduces" simple ideas to complicated 
ones; another is that the "implementation" is extremely inefficient in execution 
time. However, a reader who would like to understand how something might 
be computed by relating it to an implementation in Mathematica may find 
the systematic development of such ideas as object-oriented programs of some 
interest. 

RICHARD J. FATEMAN 
Computer Science Division, EECS Dept. 
University of California 
Berkeley, CA 94720-1776 

1. H. Abelson, G. J. Sussman, and J. Sussman, Structure and interpretation of computer pro- 
grams, MIT Press, Cambridge, MA, 1985. 

2. N. Blachman, Mathematica, a practical approach, Prentice-Hall, Englewood Cliffs, NJ, 
1992. 

3. R. E. Maeder, Programming in mathematica, 2nd ed., Addison-Wesley, Reading, MA, 1991. 

19114-06, 13-06, 13P10, 14Qxx|.-DAVID EISENBUD & LORENZO ROBBIANO 
(Editors), Computational Algebraic Geometry and Commutative Algebra, Isti- 
tuto Nazionale di Alta Matematica Francesco Severi, Symposia Mathematica, 
Vol. 34, Cambridge Univ. Press, Cambridge, MA, 1993, x + 298 pp., 23! 
cm. Price $49.95. 

This small, attractively bound volume consists of a collection of papers from 
a conference on the topics in its title held in 1991 in Cortona, Italy. Most 
of the papers deal with the theory of Grobner bases, although there are some 
interesting exceptions. The papers are, as a group, of very high quality, and 
several of them are first-class contributions to the expository literature on this 
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important and interesting subject. Before discussing some of the papers in more 
detail, we will briefly consider the role of the Grobner basis algorithm. 

The Grobner basis algorithm is a generalization of the Euclidean algorithm 
to systems of polynomial equations in many variables. Using it, one may carry 
out explicitly many of the fundamental operations in commutative algebra, such 
as deciding if one polynomial belongs to the ideal generated by a finite list of 
others, or eliminating variables from a system of polynomial equations. More 
generally, the algorithm makes effective the process of determining syzygies- 
algebraic relations-among systems of polynomials. Since many questions in 
commutative algebra and algebraic geometry eventually boil down to problems 
involving syzygies, the Grobner basis algorithm is extremely useful in attacking 
computational problems in these fields. 

One of the more attractive features of the theory of the Grobner basis al- 
gorithm is its inherently interdisciplinary nature. The algorithm is of interest 
to algebraists and algebraic geometers who wish to carry out explicit computa- 
tions to answer questions in their "pure" research and to computer scientists 
interested in complexity bounds. These two groups are driven together because 
it has become clear that the behavior of the Grobner basis algorithm applied 
to a system of polynomials is determined by geometry of the algebraic vari- 
ety (or scheme) defined by that system. Computer scientists interested in the 
complexity of the algorithm must understand the geometric significance of that 
complexity, while algebraic geometers who want to be able to carry out a partic- 
ular calculation in a reasonable amount of time must understand the significance 
of the complexity results. Both the complexity theory and practical geometric 
applications of the Grobner basis algorithm are addressed in the volume under 
review, although the geometric applications receive more emphasis. 

We turn now to the articles in this volume. The first two articles, entitled 
"What can be computed in algebraic geometry?" by Dave Bayer and David 
Mumford, and "Open problems in computational algebraic geometry" by David 
Eisenbud, are beautiful presentations of the central issues in the field. They 
should become standard references in this area. The Bayer and Mumford article 
presents a very clear yet sophisticated introduction to the theory of Grobner 
bases, and discusses in detail the relationship between the regularity of an ideal, 
a cohomological measure of the complexity of the ideal, and the performance 
of the Grobner basis algorithm. They also present examples of various kinds 
of worst-case performance, keeping in mind the relationship between geometry 
and complexity. Finally, they discuss, in general terms, some applications of 
the algorithm. 

Eisenbud's article presents a series of open problems. Some of these problems 
fall into the general picture susceptible to attack by the Grobner basis algorithm, 
but others clearly do not. Some of the problems he discusses include resolving 
surface singularities and making the classification of surfaces effective; others 
of a different -flavor include finding rational points on varieties, which is clearly 
of a very different, non-Grobner character. For the geometer, this article helps 
to make clear what is meant by "computational" algebraic geometry, since it 
sharply points out the differences between what can be done "in theory" and 
what can be done, explicitly. 

The remainder of the articles in the volume are more specialized. Papers by 
D. Lazard ("Systems of algebraic equations: algorithms and complexity") and by 
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T. Mora and L. Robbiano ("Points in affine and projective spaces") consider the 
theory of zero-dimensional varieties from two points of view. Lazard describes 
various approaches to finding the solutions to a system of polynomial equations 
whose common zeros are a finite set of points; in this setting there are a number 
of algorithms more or less closely related to the Grobner basis method. Mora 
and Robbiano consider the opposite problem of finding the ideal of polynomials 
which vanish on a specified set of points or zero-dimensional subscheme of 
projective space. 

A long article by W. Vasconcelos ("Constructions in Commutative Algebra") 
surveys methods for solving certain explicit problems in algebra, such as com- 
puting integral closure and primary decomposition. The article applies homo- 
logical techniques (i.e., syzygies) as much as possible to these problems. To 
take advantage in practice of the methods discussed in this article, the reader 
should be familiar with algorithms for more elementary constructions, such as 
computing (I: J) for ideals I and J. 

In his article "Sparse elimination theory," Bernd Sturmfels discusses some of 
the connections of the Grobner basis algorithm with the combinatorial theory 
of polytopes and (implicitly) toric varieties. This article seems somewhat out 
of context in this volume, but in fact is an important signpost to a fascinating 
related area of beautiful mathematics. 

We will briefly mention the other articles in the volume. D. Bayer, A. Galligo, 
and M. Stillman, present an analysis of the behavior of Grobner bases under 
base extension ("Grobner bases and extensions of scalars"), which among other 
things provides a very concrete interpretation of the concepts of "flatness" and 
"faithful flatness." A paper by M. Giusti and J. Heintz ("La determination 
des points isoles et de la dimension d'une variete algebrique peut se faire en 
temps polynomial") analyzes the problem in its title in the spirit of complexity 
theory. Sheldon Katz shows how Macaulay, a system which actually carries 
out the Grobner basis algorithm and computes sheaf cohomology, can be used 
in practice to attack a problem in geometry ("Arithmetically Cohen-Macaulay 
curves cut out by quadrics"). Finally, Th. Dana-Picard and M. Schaps, in the 
only paper in the volume which does not at least mention Grobner bases ("A 
computer assisted project: classification of algebras"), consider the problem of 
classifying finite-dimensional algebras by homological methods. 

Physically, this volume has a professional quality binding and the papers were 
prepared in a reasonably consistent dialect of TEX. 

In summary, this is a compact conference proceedings volume containing 
generally high-quality papers and two excellent expository articles on computa- 
tional algebraic geometry and commutative algebra. 
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