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ERROR ESTIMATORS FOR NONCONFORMING FINITE ELEMENT 
APPROXIMATIONS OF THE STOKES PROBLEM 

ENZO DARI, RICARDO DURAN, AND CLAUDIO PADRA 

ABSTRACT. In this paper we define and analyze a posteriori error estimators for 
nonconforming approximations of the Stokes equations. We prove that these 
estimators are equivalent to an appropriate norm of the error. For the case of 
piecewise linear elements we define two estimators. Both of them are easy to 
compute, but the second is simpler because it can be computed using only the 
right-hand side and the approximate velocity. We show how the first estimator 
can be generalized to higher-order elements. Finally, we present several numer- 
ical examples in which one of our estimators is used for adaptive refinement. 

1. INTRODUCTION 

In recent years there has been considerable interest in the development of 
computable a posteriori error estimates in the finite element method (see [3, 4, 5, 
and 12] and references therein). The object of this work is to define and analyze 
a posteriori error estimators for nonconforming finite element approximations 
of the Stokes equations. 

The use of nonconforming elements for the Stokes problem is motivated by 
the fact that standard low-order elements do not satisfy the inf-sup condition. 
In contrast, the nonconforming linear elements of Crouzeix and Raviart [8] 
and the quadratic elements of Fortin and Soulie [10] do satisfy that stability 
condition and therefore provide optimal order of convergence. 

In the conforming case there are several ways to define error estimators by 
using the residual equation. In particular, for the Stokes problem, Verfurth [16] 
and Bank and Welfert [6, 7] introduced several error estimators and proved that 
they are equivalent to the energy norm of the error. 

In the nonconforming case there is an estimator introduced by Verfurth [ 17] 
who proved the equivalence of it with the norm of the error but neglecting the 
consistency terms in the error equations. However, these terms are not in general 
of higher order, and therefore the estimators have to contain a term related to 
them, which are the jumps of the tangential derivatives of the approximate 
solution, as we show in this paper. Indeed, these terms are very important and 
cannot be neglected, as is shown by our Theorem 3.3. Otherwise, it would be 
possible to construct an estimator equivalent to the error which would depend 
only on the right-hand side f. This estimator would be of order h whenever 
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f is regular, and therefore it cannot be equivalent to the norm of the error in 
problems with singular solutions. 

In [9] we considered the simpler case of nonconforming approximations of 
a scalar second-order elliptic problem, and we introduced a technique which 
allowed us to define two error estimators which are equivalent to the error. In 
this paper we show that, with appropriate modifications, the ideas in [9] can 
be extended to the Stokes problem. We define two error estimators based on 
suitable evaluations of the residual and prove that they are equivalent to the 
energy norm of the error. 

In ?2 we introduce some notations and recall the Crouzeix-Raviart elements. 
In ?3 we define the error estimators and prove their equivalence with the error. 
Section 4 deals with the extension to the quadratic elements of Fortin and Soulie 
and finally, in ?5 we present some numerical computations in which one of our 
error estimators is used for adaptive refinement. 

2. PRELIMINARIES AND NOTATIONS 

Given a simply connected polygon Q c R2, we consider the Stokes problem 

-Au+Vp=f inQ, 
(2.1) divu= O in Q, 

u= O on aQ, 
where u stands for the velocity and p for the pressure. The weak formulation 
appropriate for mixed methods is then: 

Find u E Ho(Q) and p E L 2(Q) such that 

(2.2) Qf Vu:Vv- fp divv= f*v, VvEHI(Q), 
lf q divu=O, VqEL2(Q). 

where, HIo(Q) - Ho(Q) x Ho(Q), L2(Q) - {q E L2(Q): fAq = 0}, Vu is 
the matrix ( '), and we use the standard notation for the contraction of two 
matrices A and B, i.e., 

2 

A:B= Z AijBi, 
i,j=l 

and for Sobolev spaces. Also, j1 IIi,D and I Ii,D will denote the usual j norm 
and seminorm, respectively, on D, and when D = Q the subscript D will be 
supressed. 

Assume that we have a family {k} of regular triangulations of Q such 
that any two triangles in S share at most a vertex or an edge. The Crouzeix- 
Raviart nonconforming finite element spaces are defined by 

Vk = IV E L2(Q) x L2(Q): VIT E YA X YA, VT E Sk, 

v is continuous at midpoints of edges and 0 at midpoints 
of edges contained in aQ} 

and 
Qk = {q E Lo(Q): qIT Ego, VT E Sk} 

(where 24 denotes the space of polynomials of degree not greater than r) . 
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The approximate solution (Uk, pk) E Vk x Qk of problem (2.1) is defined by 

(2.3) k{JTE Vu : Vv-J p divv}= f* v, Vv EVk 

E q divuk= o Vq E Qk. 
TES T 

Note that the second equation means that for every T E Sk, div(Uk IT) = 0. 
In the analysis of the error estimators we will also use the standard conform- 

ing space 
Mk = {VE Hl(Q): VIT E91 x9l, VTEk}. 

We end this section with some notation. For a vector function w = (W ) we 
define the matrix curl w by 

/w O19Ow1 
curl w= 9X2 ax, 

aX2 Ax, 

and for a matrix A the divergence of A is the vector, 
( AA, + OAA2 \ 

div A = ax, OX2 
i9A2, + i9Ay 
A9x, aX2 

Observe that with these notations we have 

jdivA.w=-jA:Vw+j An.w 
D D A~~~~D 

for any A and w with the appropriate regularity, where n is the outward 
normal to AD. 

Also, 

j Vv: curl w = J Vvt * w 
D A~~D 

for any v E HI (D) and w E HI (D), where t is the tangent to AD . 

3. ERROR ESTIMATORS 

In this section we introduce the error estimators and prove their equivalence 
with the error. 

To define the estimators we need to introduce some jumps associated with the 
discrete solution (Uk, pk) E Vk X Qk. Given an interior edge 1, we choose an 
arbitrary normal direction n, and denote with Tin and Tout the two triangles 
sharing this edge, with n, pointing out of Tin as in Fig. 3.1. 

F7IG 

FIGURE 3. 1 
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If n, = ( ) ,we define the tangent tl - ( 2). When lisa boundary edge, 
n, is the outward normal. 

We define 

D1(Vuk -pkI)njij = IV(ukITout) - [outl]n-[V(uk I") _pkI |TI]nl, 

where I is the identity matrix, and 

IVuktl li - V(ukITOut)tl - V(ukI|T)tl. 

Let E be the set of interior edges of Sk, and for an element T, let ET 
be the set of edges of T. 

Now set 
I(Vuk -pkI)nl]l if l E EI, 

Jln= if c au 
and 

[ IVuktl]l if l E EI, 
2Vukt if I c au. 

With these notations we introduce the local error estimator IT defined by 

2= TI IIfII2oT + 2I I 12(IJj, 12 + IJ, 12) 
lEET 

and the global one, 

6= (E: "' 
Let e = u - uk and e = p - pk be the errors in velocity and pressure, 

respectively. 
For a piecewise regular vector function v we define the discrete gradient as 

the L2-matrix defined by 
VkVIT = V(VIT). 

We will use the following error equation, which is obtained subtracting (2.3) 
from (2.2) for any v E Ho(Q) n Vk: 

(3.1) JVke: Vv- edivv=O, VvEHo(Q)nVk. 

For a function v E HI (Q) we take vI E Mk as a suitable interpolation of v 
satisfying 

(3.2) lv - VI 110 T < C-1 I'l 2 IV 

and 

(3.3) IIv-v'IIo,l ? CIlI 2 Ivl for l E ET, 

where T is the union of all the elements sharing a vertex with T. We recall 
that if v E Ho(Q), then vI can be taken in Ho(Q) n Mk (see for example [14] 
for the construction of this kind of interpolation). Here and hereafter the letter 
C denotes a generic constant which depends only on the minimum angle of the 
triangulation. 
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First we will show that the norm of the error, 

11i1lo + IIVkello, 

is dominated by the estimator. This will be a consequence of two lemmas. The 
first shows that the error in pressure is dominated by the error in velocity plus 
the estimator, and the second bounds the velocity error by a constant times the 
estimator. 

Lemma 3.1. The following estimate holds: 

11ilo < C{t + IIVkello}. 
Proof. Since e E Lo(Q), there exists v E Ho(Q) 1 1] such that 

(3.4) hello < cfe div v 
lv Ii 

Now, since vi E Mk n Ho(Q) C Vk n Ho(Q), we can use the error equation (3.1) 
to obtain 

jedivv = Jediv(v - v) + jedivvi 

= Je div(v - vI) + jVke: Vvi 

=J| ediv(v - v) - J Vke: V(v - v) + Vke: Vv. 

Thus, integration by parts in each element yields 

J edivv= {J (-VP +Au) (v - v) 

+ (VkUk_pkI)n (v - v)} + Vke: Vv ATQ 

SE{ T ( -V) 2l tJin (v-v )} + lVke: Vv. 
T 1~~~~~~EET 

Now, using the Schwarz inequality, (3.2) and (3.3), we obtain 

8 div v < C(I + iiVkelio) ivl , 

which together with (3.4) proves the lemma. 0 

Lemma 3.2. The following estimate holds: 

iiVkelo < Cr. 

Proof. First we decompose the error as 

(3.5) Vke = Vr - qI + curl s 

with r E Ho(Q), q E Lo(Q) and s E H' (Q) satisfying 

(3.6) llrillI + llsill < CiiVkello 

and 

(3.7) divr=O. 
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This decomposition can be obtained as follows. Let r E Ho(Q) and 
q E Lo be the solution of the Stokes problem with right-hand side 
- div(Vke) E H- I (Q), i.e., 

(3.8) ~ ~ f-Ar +Vq =-div(Vke), 

(3.8) { divr = 0. 

From standard a priori estimates we know that 

(3.9) llrlll + llqllo < CIIVkello. 

On the other hand, the first equation in (3.8) can be written as 

div(Vr - qI - Vke) = 0. 

Therefore, there exists s E H1 (Q), with integral zero, such that (3.5) holds, and 
the bound for Ilsl I follows from (3.9) and (3.5). 

Now we estimate the velocity error using the decomposition (3.5). First 
observe that 

JVke: qI = EJqdive = 0 
Q ~~TT 

because div(el) = 0. Therefore, since divr = 0, we have 

(3.10) IIVkeIIg = JVke: Vr- Jedivr+ JVke: curl s. 

Using the error equation (3.1) for v = r1 E HI n V and the orthogonality 
relation 

(3.11) jVke: curl si = 0, 

which is known [1] and easy to verify, we obtain from (3.10) that 

iiVkeli = J Vke: V(r - r') - J e div(r - r') + J Vke: curl (s - s) 

= J(Vke -,eI): V(r - rI) + Vke: curl (s - s). 

Integrating by parts in each element, we obtain 

11VkelI = {J - (r -r)- (VkU p II)nT (r - r)-j Vku kt (s - S)} 
T 

= E {| IT (r- rl) + 2E [j-)Ji,n (r- r) + JJr (s - SI)]} 

(where t denotes the tangent to A T), and applying the Schwarz inequality, 
(3.2), (3.3) and (3.6), we obtain the lemma. 0 

As an immediate consequence of the two lemmas above we have the following 

Theorem 3.1. There exists a constant C such that 

lielb + 11Vkello < Ci. W 
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In the next theorem we show that the estimator is essentially dominated by 
the error. Indeed, we extend to our case the technique introduced in [16] for 
conforming elements and prove that the estimator is bounded by a constant 
times the error plus a higher-order term which depends on local regularity of 
the right-hand side. 

Theorem 3.2. Let fT = T fT fT. Then there exists a constant C such that 

1?< C {IIeIIo + IIVkello + (Z TI If fTII2T) }. 

Proof. Proceeding as in Lemma 3.2, we see that 

JVke: (Vr + curl s) - e div r 

(3.12) - E {| fT r+ [j JI,n r+ JlJt S] + (f -fT) r} 

for every r E Ho(Q) and every s E H(Q). 
Now we choose r and s such that 

I fT r IfT12, VT E Sk 

(3.13) jJi nr= 12IJ,nI2, V1i E1E, 

jJit . S= 11121Ji,t12, Vl E EI, Vl c aQ 

and 

(3.14) Irl I, T + ISI 1, T < C1T. 

These functions can be taken in the following way: 

r = CaTfTbT + E fl/JI, n 
IEET 

and 

s= Z Y1J11ep1 
IEET 

where bT is a usual bubble function on T (i.e., a cubic polynomial vanishing 
on A T), (pi is the standard quadratic basis function which takes the value 1 
at the midpoint 'of I and 0 at the other nodes, and aXT , f31 and y, are scalars 
chosen such that conditions (3.13) are satisfied. The estimate (3.14) follows 
from standard scaling arguments. 
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From (3.12) and (3.13) we get 

JVke: (Vr + curl s) - e divr 

= >3 {ITI21fl2 + 2 j11(1 2J nl,2 + IJi, t 2) + I(f fT) r} 

- >3 fITI llflloT + 2 > IlI2(IJi,nI2 + IJi,tI2) 
T IEET 

+ (f * r- ITI lIf-fTI12T} 

q2 + f- {T fT) (r- rT) 
- TI lf- fTII2T} T 

Therefore, using the Schwarz inequality, (3.14), the known estimate IIr - rTIIo, T 
1 1 

? CITlr2 rli ,T and ITIl2 Ilf- fTIIo,T < q?T, we obtain 

<2 II(Vl11 + 11Vkello)(IrIl + lsIl) 

+ C>E |f-fTIIo,TIT 2 (Irl,T + ?1T) 
T 

? C {IeIIo + IIVkello + (i lf- fThlo,TITI) } T , 

and the theorem is proved. 0 

We now introduce an estimator which is equivalent to I and simpler to 
compute. 

To do this, we show that the terms corresponding to Jl, n can be eliminated. 

Lemma 3.3. Given an edge 1 E E,, the following inequality holds (we use the 
notation of Fig. 3.1): 

jJ,,nj21112 < llfl 12Tin , + I,flloI out I IJ1, n I in 0~ jfg, 0~ITout I 
Proof. Let y/' be the basis function associated with the midpoint of 1, that is, 
v'i is one at this midpoint and vanishes at all other nodes. 

Taking v - ( ) and v2 - (?) as test functions in (2.3), and integrating 
by parts, we obtain 

f*v' = f VkU: Vvi_ pk divvi + Vk: Vvi_ pk divvi 
Tin U Tout Tin fin tout 

- (Vuk - pkI)n1 1 - I - pkI)n1 . 

T iin Tout 

=J|, Jln - V 
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Therefore, denoting by Jl n and f i, i = 1, 2, the two components of J1, n 
and f, respectively, we have 

jlnlll= I fi ,V1 
u TiUOut 

and so 

IJ1,nI Ill < IlfIlo, T_IIn1M/IIo,Ti + IIfIIo,T0t1II/jII0o, T0r t 
I I 

= llfllo,i (I in) 
2+ lif lo,To0. 

ITu 1 
2 

which concludes the proof. 0 

Consequently, we define the estimator q by 
2= E 6 

T 

with 
2 = ITI IIfII2 lll2l 11 jl,tl2. T 0 I~I,T + 1 

2 
lEET 

From Lemma 3.3 and Theorems 3.1 and 3.2 we obtain for q analogous 
estimates as for I: 

Theorem 3.3. There exist constants Ci and C2 such that 

11i1lo + 1IVkello < Cl1 

and 

q < C2 {IIe10 + IIVkello + I TI Ilf_ fTII0,T) T }* 

Remark 3.1. The estimator q depends only on the right-hand side f and the 
approximate velocity uk, and not on pk . Therefore, it can be computed with- 
out knowing the approximate pressure. This fact is useful if one computes only 
uk by using a divergence-free basis of Vk . 

Remark 3.2. Following the proof of Lemma 3.1, we see that the part of I 
corresponding to JI, t does not appear in the bound of that lemma. Therefore, 
in view of Lemma 3.3, we obtain the better estimate 

hello < c { (z TI llfll0,T) + lIvkello}e 

4. THE SECOND-ORDER ELEMENTS OF FORTIN AND SOULIE 

We have introduced and analyzed the error estimators only for the lowest- 
degree nonconforming space for the sake of simplicity. In fact, the first estima- 
tor and the results concerning it can be extended straightforwardly to higher- 
order elements. 
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Let us consider the second-order elements of Fortin and Soulie [10]. As 
was shown in [10], the situation is quite different than in the piecewise linear 
elements case, since the natural nodes (i.e., the six Gaussian nodes of the sides 
of T) cannot be taken as degrees of freedom. The reason is that there exists a 
quadratic polynomial that vanishes at these six nodes. If Ai are the barycentric 
coordinates of T, this polynomial is 

PT(A) = 2 - 3(A2 + A2 + A2). 

Fortin and Soulie showed that the space of piecewise quadratic functions 
continuous at the two Gaussian nodes of each side coincides with the standard 
continuous piecewise quadratic elements enriched with an interior node in each 
triangle associated with PT. The computational cost for these elements is es- 
sentially the same as that for the standard quadratic elements since the internal 
degree of freedom can be condensed. 

On the other hand, the inf-sup condition is satisfied when these elements are 
used for the velocity together with discontinuous piecewise linear pressures. 

To extend the techniques of ?3 to this case, we observe that the orthogonality 
relation (3.11) holds also in this case; indeed, denoting with [uk I the jump of 
uk at l, we have 

jVke: curl si = Zj VkUk: curls1 
Q ~~~~TT 

= -Zju k (curl sI)n 

= - Zj|I[ukIl * (curl sl)n, = 0 

because IIukJl vanishes at the two Gaussian points of 1. 
To define the estimator, we have to replace the term containing IIf1I0, r in 

the piecewise linear case by the local residual (in fact, f was the local residual 
in that case). Also we have to take into account that J1 ,n and Jl t are not 
constant in this case. So, we define 

2r = ITI lIf+Auk-VpkIIo T + _ V Ilk(2J, 112,l + IIJ,t112gl). 
IEET 

The results of Theorem 3.1 and 3.2 hold in this case with fT replaced by the 
local L2-projection of f into the linear functions. 

Remark 4.1. The proof of Lemma 3.3 cannot be immediately extended to this 
case. Therefore there is not a straightforward generalization of the estimator 4 
to this case. 

5. NUMERICAL RESULTS 

In this section we present the results of numerical computations with the 
Crouzeix-Raviart elements. We have used 'iT as a local error indicator for 
adaptive refinement in problems involving singularities. 
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The adaptive procedure is as follows. First, we compute u? and p0 corre- 
sponding to an initial triangulation J?0. Then, the partition gTk+1 is obtained 
from Sk by refining those elements such that 

?IT ? 0.7?lmax, 

where 

tlmax = max ?7T. 
TE,7k 

The refinement is propagated using the method introduced in [13]. In this way, 
the minimum angle of S?k is not less than half of the minimum angle of 9?0. 

In our theoretical results we have assumed, for the sake of simplicity, ho- 
mogeneous Dirichlet boundary conditions. However, the estimators can be 
defined with simple modifications for general boundary conditions, and the 
results are essentially the same. In this case we define J1,, as before and 
J -,t = 2(Vg' - Vuk) . t1 if 1 c aQ*, where gI is the linear interpolation of 
the Dirichlet boundary datum g and Q* is a polygonal domain approximating 
Q. The only difference is the presence of higher-order terms in the equivalence 
between error and estimator depending on local regularity of the data (see [2, 
9] for details in similar situations). 

Examples land 2. Let Q = {(r, p): 0< r < 1,0< p < k},with k = 3 for 
Example 1 and k = 4 for Example 2. We solve -Au + Vp = 0 with homo- 
geneous Dirichlet boundary conditions on the straight parts of the boundary, 
and nonhomogeneous Dirichlet boundary conditions on the curved part of the 
boundary. The exact solutions are given by 

u (ra[(l + a) sin [i yI((o ) + cos qay/(()], 
ra[sin (pap ((p) - ( I + a) cos (p ((p)]) 

p =a- r-I[(l + a)20a y/(qp) + alyI((o)]/(l - ) 

with 

y((p) = sin(( 1 + a)(p) cos(aw)/( 1 + a) - cos(( 1 + a)(p) 
+ sin((a - l)(o) cos(aw)/(1 - a) + cos((a - 1)q), 

a = 856399/1572864, co= 3X/2, 

for Example 1, and 

((p) = 3 sin(O.5(p) - sin(1.5p), 
a=0.5, co=2 , 

for Example 2. 
Table 1 shows the error lIVkello + 1EllO and the estimator for five steps of the 

refinement procedure for Example 1. The integer N stands for the number of 
unknowns. Table 2 shows similar results for Example 2. 
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TABLE 1 TABLE 2 

k N q Error k N I Error 
0 112 2.11 5.30 0 148 3.55 10.74 
1 242 1.93 3.91 1 302 3.38 8.53 
2 388 1.77 3.07 2 592 3.06 6.32 
3 502 1.71 2.63 3 834 2.82 5.01 
4 744 1.54 2.10 4 1076 2.66 4.25 
5 1220 1.39 1.55 5 1630 2.36 3.16 

From these results, it follows that optimal order of convergence is obtained 
for these singular solutions, i.e., 

11Ej|lo + IIVkello = =(N 112). 

This is shown in Fig. 1. This order of convergence is the same as that obtained 
for regular solutions with uniform refinement. 

Ilello + hlVkello 

2 

10 i + + + + Example 1 s 
~~~~~x x x x xExml2 

3 

2 

. ,,,,., 1 

100 2 3 4 5 6 781000 2 

Number of unknowns 

FIGURE 1 

Figure 2 shows the meshes 5rk for k = 0, 1, 3, 5 obtained in Example 1. 
Figure 3 shows the same meshes for Example 2. 

Example 3. This last example is the standard square lid driven cavity. Table 3 
shows the estimator for five steps of the refinement procedure. 

The results in Table 3 show that I = &(N-112), which, according to the 
theorems proved above guarantees the optimal order of convergence also for 
this problem. The meshes S7k for k = 0, 1, 3, 5 obtained in this example 
are shown in Fig. 4. 
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FIGURE 2 
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FIGURE 3 
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TABLE 3 
k N 
0 198 1.50 
1 362 1.26 
2 726 0.99 
3 1176 0.83 
4 1616 0.72 
5 2280 0.62 

FIGURE 4 

6. CONCLUDING REMARKS 

We have introduced and analyzed a posteriori error estimators for noncon- 
forming approximations of the Stokes problem. 

For the case of piecewise linear elements of Crouzeix and Raviart we defined 
two estimators which are equivalent to the error. Both estimators are easy to 
compute. However, the second is simpler and depends only on the right-hand 
side and the approximate velocity; therefore, it can be used when one computes 
only the velocity by using a divergence-free basis. 
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Our numerical computations show good behavior of our first estimator when 
used as an error indicator for adaptive refinement. 

Also, we showed how the first estimator can be generalized for the quadratic 
elements of Fortin and Soulie. As is easily seen, it can also be generalized 
for the method of Stenberg and Baroudi [15] in which one component of the 
velocity is approximated with nonconforming linear elements and the other 
with standard conforming linear elements. For the same triangulation, the total 
number of degrees of freedom for these elements is lower than for the Crouzeix 
and Raviart elements. These two elements have the additional advantage that 
they can also be used for the elasticity equations. 
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