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COMPUTING THE DEGREE OF THE MODULAR 
PARAMETRIZATION OF A MODULAR ELLIPTIC CURVE 

J. E. CREMONA 

ABSTRACT. The Weil-Taniyama conjecture states that every elliptic curve E/Q 
of conductor N can be parametrized by modular functions for the congruence 
subgroup [o(N) of the modular group r = PSL(2, Z) . Equivalently, there 
is a nonconstant map p from the modular curve Xo(N) to E. We present 
here a method of computing the degree of such a map (p for arbitrary N. 
Our method, which works for all subgroups of finite index in r and not just 
[o(N), is derived from a method of Zagier published in 1985; by using those 
ideas, together with techniques which have recently been used by the author to 
compute large tables of modular elliptic curves, we are able to derive an explicit 
and general formula which is simpler to implement than Zagier's. We discuss 
the results obtained, including a table of degrees for all the modular elliptic 
curves of conductors up to 200. 

1. INTRODUCTION 

The Weil-Taniyama conjecture states that every elliptic curve E/Q of con- 
ductor N can be parametrized by modular functions for the congruence sub- 
group ro(N) of the modular group F = PSL(2, Z). Equivalently, there is a 
nonconstant map # from the modular curve Xo(N) to E. We present here a 
method of computing the degree of such a map # for arbitrary N. Our method 
is derived from a method of Zagier in [5]; by using those ideas, together with 
techniques which have been used by the author to compute large tables of mod- 
ular elliptic curves (see [2]), we are able to derive an explicit formula which is 
in general much simpler to implement than Zagier's, for arbitrary subgroups of 
finite index in r. To implement this formula, one needs to have explicit coset 
representatives for the subgroup, but it is not necessary to determine an explicit 
fundamental domain for its action on the upper half-plane Z'. In particular, 
it is simple to implement for Io(N) for arbitrary N, in contrast with Zagier's 
formula, which is only completely explicit for N prime. 

In the following section, we review the necessary background on modular 
parametrizations of elliptic curves. In ?3 we introduce some machinery con- 
cerning coset representatives and fundamental regions, and state the main re- 
sult (Theorem 3). This formula for deg(() is proved in ?4. In ?5 we discuss 
the implementation of the method for the case of Io(N), and the results of 
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a systematic computation of the degree of the parametrization of all modular 
elliptic curves of conductors up to 3000, with a table of the results up to 200. 

2. MODULAR PARAMETRIZATIONS OF ELLIPTIC CURVES 

Let F = PSL(2, Z) be the modular group, and ro a subgroup of F of 
finite index. Both act discretely on the upper half-plane X and the extended 
upper half-plane R` = Z u Q u {xo} obtained by adjoining the cusps Q u {xI}, 
which form a single r-orbit. The quotient X = XrO = ro\X* can be given the 
structure of a Riemann surface; in the case we are most interested in, where ro 
is a congruence subgroup, X is also an algebraic curve defined over a number 
field, and is called a modular curve. 

An elliptic curve E defined over Q is called a modular elliptic curve if there 
is a nonconstant map p: X -+ E for some modular curve X. The pull-back of 
the unique (up to scalar multiplication) holomorphic differential on E is then 
of the form 27rif(T)dT, where f(T) is a holomorphic cusp form of weight 2 
for ro. According to the Weil-Taniyama conjecture, this should be the case 
for every elliptic curve defined over Q, with ro = ro(N), where N is the 
conductor of E. Moreover, the cusp form f(T) should be a newform in the 
usual sense. [It is also conjectured that f(T) should be normalized, with first 
coefficient equal to 1. In general, f will be a rational constant c times a 
normalized newform. In the sequel it will be irrelevant whether the "Manin 
constant" c is equal to 1, since we define the curve Ef below in terms of a 
normalized newform, and it is irrelevant whether or not this curve is minimal 
in the usual sense.] 

We will suppose that we are given a normalized cusp form f(T) of weight 2 
for ro. Since the differential f(T)dT is holomorphic, the function 

T 

(1(T) = 27ri f(?)dC (T EX*) 

is well defined (independent of the path from oc to T). Also, for y E ro, the 
function 

{y(T) 

CO(y) = (Iy(T)) - 01(T) = 27rij f(C)dC 

is independent of T, and defines a function 

C: rO-+ C, 
which is a homomorphism. The image Af of this map will, under suitable 
hypotheses on f which we will assume to hold, be a lattice of rank 2 in C, so 
that Ef = C/Af is an elliptic curve. Hence (p1 induces a map 

9: X = ro\R* -+ Ef = C/Af 

via 
(D (Tmod ro) = (PI (T) mod Af. 

The period map co: rO -+ Af is surjective (by definition) and its kernel con- 
tains all elliptic and parabolic elements of ro. We may write Af = Zco1 + Zco2 
with Im(co2/co0)> 0. Then 

co(y) = nl(y)col + n2(Y)C02, 

where nI, n2: rO -+ Z are homomorphisms. It is important to observe here 
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that these functions are explicitly and easily computable in terms of modular 
symbols: for the case ro = Fo(N), see [2] for details. Alternatively, given suf- 
ficiently many Fourier coefficients of the cusp form f(T), we may evaluate the 
period integrals (l (T) to sufficient precision that (assuming that the fundamen- 
tal periods co, and w02 are also known to some precision) one can determine 
the values of n I(y) and n2(Y) for all y E 0o. The latter approach is used in 
[5]. The advantage of the modular symbol approach here is that exact values are 
obtained directly, and that it is not necessary to compute (or even know) any 
Fourier coefficients of f (). On the other hand, it becomes computationally 
infeasible to carry out the modular symbol computations when the index of Jo 
in F is too large, whereas the approximate approach can still be used, provided 
that one has an explicit equation for the curve E at hand, from which one can 
compute the periods and the Fourier coefficients in terms of traces of Frobenius 
(assuming that E is modular and defined over Q). This method was used, for 
example, to compute deg((p) for the curve of rank 3 with conductor 5077, in 
[5]. 

The special case we are particularly interested in is where Jo = Io(N) and 
f(T) is a normalized newform for Fo(N) . Then f(T) is a Hecke eigenform with 
rational integer eigenvalues and therefore rational integer Fourier coefficients. 
The periods of 27r if (T) do in this case form a lattice Af, and the modular 
elliptic curve Ef = C/Af is defined over Q and has conductor N. 

In order to compute the degree of the map (o: X -- Ef, the idea used in 
[5] is to compute the Petersson norm IIfjI in two ways. The first way involves 
deg((p) explicitly, while the second expresses it as a sum of terms involving 
periods, which can be evaluated as above. 

Proposition 1. Let f(r) be a cusp form for FO as above, and p: X Ef the 
associated modular parametrization. Then 

47r211 f 112 = deg((o)Vol(Ef). 
Proof. From the definition 

11f 12 = J If(T)12dudv (where T = u + iv) 

we have, following [5] exactly, 

47r21if112 1 2i7r2 f(T)dT A f(T)dT 

- 2 J >(27rif(T)dT) A (27rif(T)dT) 

= (J9* (d z) A rp* (dz), 

since rp*(dz) = 27rif(T)dT, where z = x + iy is the coordinate on Ef, 

- deg((o)j dz A dz 

= deg((o) j dxdy 

=deg((o)Vol(Ef), 

as required. E 
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Remark. In terms of the fundamental periods w1, IW2 of Ef, the volume is 
given by 

Vol(Ef) = Im (71 W2)j. 
More generally, if w, co' E Af, with w = n (w)wI + n2(w)w(2 and c' = 

nI (w')w)oI + n2(W')W2, then (up to sign) we have 

n I(w) n I(w') Im (ZJ(d)') = Vol (Ef ) * n 2 ( c) n 2 (J' )| 

3. COSET REPRESENTATIVES AND FUNDAMENTAL DOMAINS 

Let S = ( and T = (I l) be the usual generators for F, so that S 

has order 2 and TS = ( l') has order 3. 
As fundamental domain for F we may take the triangular region F with 

vertices at 0, p = (1 + iv/3)/2, and oo. Since TS fixes p and permutes 0, oo 
and 1 cyclically, the three transforms of Y by I, TS and (TS)2 fit together 
around p to form an "ideal triangle" 5 with vertices at 0, 1 and oo. Let (y) 
denote the transform of S' by y for y E F. Then these triangles (y) form a 
triangulation of the upper half-plane *, whose vertices are precisely the cusps: 
the vertices of (y) are the cusps y(O), y(l) and y(oo). Note that 

(y)= (yTS) = (y(TS)2) 

but that otherwise the triangles are distinct. The triangle (y) has three (ori- 
ented) edges; in the modular symbol notation of [2], these are 

(y) = {y(O), Y(0)}, 
(yTS) = {yTS(0), yTS(ox)} = {y(oc), y(l)}, 

and 

(y(TS)2)- {y(TS)2(0), y(TS)2(oo)} = {y(l), y(O)}. 

Here the modular symbol {a, fl} denotes a geodesic path in X* from a to 
fi. 

Assume, for simplicity, that Fo has no nontrivial elements of finite order, 
i.e., no conjugates of either S or TS. (This assumption is merely for ease 
of exposition; in fact, it is easy to see that elliptic elements of FO contribute 
nothing to the formula in Theorem 2 below in any case.) Choose, once and for 
all, a set 5" of right coset representatives for J7O in F, such that y E 5" implies 
yTS E 5J; this is possible since, by hypothesis, Fo contains no conjugates of 
TS. 

Let 5' be a subset of Y5 which contains exactly one of each triple y, yTS, 
y(TS), so that 5" = 5"' U Y!'TS U 5"'(TS)2. Then a fundamental domain 
for the action of Fo on * is given by 

^ir) U 0Y) 
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In general, this set need not be connected, but this does not matter for our 
purposes: it can be treated as a disjoint union of triangles, whose total boundary 
is the sum of the oriented edges (y) for y E 9". 

The key idea in our algebraic reformulation of Zagier's method is to make 
use of the coset action of F on the set 5. We introduce notation for the 
actions of the generators S and T of F. 

Action of S. For each y E 5" we set yS = s(y)a(y), where s:5 --* ro is a 
function and a:5 -4 5 is a permutation. Since S2 is the identity, the same 
is true of a , and s(a(y)) = s(y)> . For brevity we will write y* = a(y), so 
that y**=y forall ye5Y. 

Note that the triangles (y) and (yS) are adjacent in the triangulation of 
', since they share the common side (y) = {y(O), y(oo)} = -(yS). (Here the 

minus sign denotes reverse orientation.) However, since in general we do not 
have yS E 5", in the fundamental domain jrO for I7o it is the triangles (y) 
and (y*) which are glued together by the element s(y) E Fo which takes (y*) 
to -(y) (the orientation is reversed). 

Action of T. Similarly, for y E 5 we set yT = t(y)T(y) with t(y) E rO 

and T(Y) E Y. The permutation T of Y plays a vital part in what follows. 
Lemma 1 will not be used later, but is included for its own interest as it explains 
the geometric significance of this algebraic permutation. 

Lemma 1. (a) Two elements y and y' of 5 are in the same T-orbit if and only 
if the cusps y(oo) and y'(oo) are ro-equivalent. 

(b) The length of the T-orbit of an element y E Y is the width of the cusp 
y(oo) of ro 

Proof. (a) y and y' are in the same T-orbit if and only if yo = y'TJy-1 e ro 
for some j, which is if and only if yoy(oo) = y'(oo), since the stabilizer of oo 
in r is the subgroup generated by T. 

(b) The length of the orbit of y is the least k > 0 such that yo = yTky-2 = 

(yTy-l )k E ro, which is the width of the cusp y(oo), since the stabilizer of 
y(oo) in r is generated by yTy1. 0 

Thus there is a one-one correspondence between the orbits of z on 5 and 
the classes of FO-inequivalent cusps, with the length of each orbit being the 
width of the corresponding cusp. 

In each T-orbit in 5", we choose an arbitrary base point Y I, and set yj+1 = 

z(yj) for 1 < j < k, where k is the length of the orbit and Yk+l = yi. Thus 
yjT = tQyj)yj+l, so that 

y1T' = t(yi)t(y2) t (Yi)Y+ 

In particular, y1 Tk = YoYI, where 

YO = t(YI)t(Y2) ... t(Yk) E Fo. 

Lemma 2. There holds 
k 

E O(tY)) = 0, 
j=l 
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where the sum is over a complete T-orbit on 5 and where co is the period map 
of the previous section. 
Proof. Since yo = y TkyVl is parabolic, we have co(yo) = 0. Since co is a 
homomorphism, the result follows. 11 

Lemma 3. We have s(y7TS) = t(y) for all y E 5. 
Proof. We have tQ(y) T) = yT = (yTS)S = s(yTS)a(yTS), since yTS E Y. 
Hence t(y) = s(yTS), and also T(y) = a(yTS). O 

Write y < y' if y and y' are in the same r-orbit in 5, and y precedes y' 
in the fixed ordering determined by choosing a base point for each orbit. In the 
notation above, y -< y' if and only if y = yi and y' = y., where 1 < i < j < k . 

We can now state our main results. 

Theorem 2. Let f be a cusp form of weight 2 for Iro with associated period 
function co: iTO -- C. Then (the square of) the Petersson norm of f is given by 

1f112 87r2 1E Im(w(t(y))w(t(y')))- 

Here the sum is over all ordered pairs y -< y' in 5 which are in the same 
orbit of the permutation T of 5 induced by right multiplication by T. 

Combining this result with Proposition 1 of the previous section, we immedi- 
ately obtain our explicit formula for the degree of the modular parametrization 

Theorem 3. With the above notation, 

deg_P I______ 1 o t() t(T n I (t (y)) n I (t (y')) 
deg(q7) - 2Vol(Ef) Z Im(c(t(y))w(t(y'))) = 2 n2(t(y)) n2 (t(y') 

Hence, to compute deg((p), we only have to compute the right coset action of 
T on an explicit set 5Y of coset representatives for ro in 1, and evaluate the 
integer-valued functions n, and n2 on each of the matrices t(y) for y E 5. 
In the case of Fo(N), these steps can easily be carried out within the framework 
described in [2], and we will give some further details in ?5 below. 

Remarks. 1. The formula given in Theorem 3 expresses deg((p) explicitly as 
a sum which can be grouped as a sum of terms, one term for each cusp, by 
collecting together the terms for each T-orbit. It is not at all clear what signif- 
icance, if any, can be given to the individual contributions of each cusp to the 
total. 

2. The form of our formula is identical to the one in [5]. However, we 
should stress that in [5], the analogue of our coset action T is defined not 
algebraically, as here, but geometrically, as a permutation of the edges of a 
fundamental polygonal domain for Jro (and dependent on the particular fun- 
damental domain used). Then it becomes necessary to have an explicit picture 
of such a fundamental domain, including explicit matrices which identify the 
edges of the domain in pairs. This is only carried out explicitly in [5] in the 
case Jro = Fo(N), where N is a prime. In our formulation, the details are 
all algebraic rather than geometric, which makes the evaluation of the formula 
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more practical to implement. Also, we have the possibility of evaluating the 
functions n1 and n2 exactly using modular symbols, instead of using numeri- 
cal evaluation of the periods, which reduces the computation of deg((o) entirely 
to linear algebra and integer arithmetic. 

3. There are other formulas for deg((p), involving special values of the L- 
function attached to the symmetric square of Ef . This connection is discussed 
in [ 1 ] and [3]. As pointed out by an anonymous referee, this formula implies that 
there should be a simple relation between the degrees of modular parametriza- 
tions of quadratic twists. Also, both deg((p) and the symmetric square L-value 
are related to so-called "congruence primes", see [4]. We do not go into these 
connections further here, but hope that our methods and the data which we 
have computed will help in these and other related investigations. 

In the next section we will prove Theorem 2. 

4. DERIVATION OF THE FORMULA FOR deg(p) 

Proof of Theorem 2. Starting from the definition of I If 112, we compute, using 
our triangulation, 

11f12 = i f(T)f(T)dT A dT 

-K |* ( Id ( (T) f(T) d T) 

- +r (PIQ (T)f(T)dz (by Stokes's Theorem) 

- +7l zj|( I (T)f(T)dT 

87r~ ~~ Ep IXy |))I(T) f(T) dT , 
- 

7tLZ 
- 

(1+ ) 

since *: 5 5" is an involution. But 

j I (T)f(T)dT =(I (T)f(T)dT 

= !JS) ol(s(Y)T)f(T)dT 
(ys) 

= - j l(s(Y)T)f(T)dT, 
(Y) 

since s(y) E ro, and we have used the ro-invariance of f(z)dT. Hence, 

l1fil2= I | [6P (T) - 0 I (S(y)T)] PT)* 

Now8r Z co(s(y)) f(T)dT . 

Now 
r t~~~~Y(o)1 

Jf(T)dT f (T)dT = ( If I(Y(0) - (pI(Y(O)) 
(Y) J(0) 27ti 
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so that 

iIfII2 = 
1672 E c(S(y))[I(I(y(oo)) - fI(y(0)) 

YE5" 

We have now reduced the double integral to a finite sum. But 

Z, (s(y))p i (Y(oo)) = Z (s(y*)) ((Y* (oo)) (permuting the sum) 

= - Z w(s(y))ol (Y*(oo)) (since s(y*) = s(y)-1) 
y 

= - Zw@(s(y))l(sI (Y)-y(0)) (since yS = s(y)y*) 

= - Z w)(s(Y))[0oi(y(O)) - @sy) 

= - Z w(s(y)) (PYo(0)) + Z Iw,j(s(y))12. 

Hence, since I If 112 is real, we obtain 

I/f/I2 = I2Im E (s(y))i (Y(O)). 

Since we have chosen the set of coset representatives 59 to be closed under 
right multiplication by TS, we can replace y by y TS in the previous sum, to 
get 

IIfII2 IM1 W-=JmZwE co(s(yTS)) (o (y(x)) 
2'r 

=82Im 
(O G(t (7)) (PI y(Yoo)), 

2'r y 

where we have also used Lemma 3. Finally, in the last expression for I/fl12, 
we divide the sum into T-orbits; using the notation of the previous section, the 
contribution from one orbit is 

k 

w (t(Yj)) oI (yj(o)) 
j=1 

k 

= Z (t(yj)) [o 1 (yj(o)) 
- ( I (yI (o))] (using Lemma 2) 

j=1 
k j-1 

= E w co(t(yj))[ I (Yi+i (oo)) - (O1 (Yi(OO))] 
j=l i=l 

k j-1 

= E w(t(y')) E (PI (Yi+I (co)) - (PI (t(Yi)Yi+I (xc)) 
j=l i=1 

=- E 0(Yj*t*(Yi))- 
1 <j<i<k 

Summing over all orbits, we obtain the result of Theorem 2. o 
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5. THE CASE OF Fo(N): IMPLEMENTATION AND RESULTS 

In this section we discuss the case Fo = Fo(N) in greater detail. We have 
implemented the algorithm in this case as part of our suite of modular elliptic 
curves programs which were described in [2]; to date (June 1994) we have 
computed all modular elliptic curves of conductors up to N = 3000, together 
with the degrees of their modular parametrizations (in all but a very small 
number of cases). It is not practical to give complete tables of these results 
here, as there are approximately 9500 curves (up to isogeny) with conductor 
up to 3000. Instead, we give results in a selection of specific cases, and a table 
for N < 200. A complete table of results is available electronically from the 
author, from which phenomena of interest (such as the growth of deg((p) in 
terms of N, or the set of primes dividing deg(o) ) can be observed. 

Let N be an arbitrary positive integer. The index of Fo(N) in F is given 
by 

[F: Fo(N)] = NJJ(I + l/p). 
pIN 

The right coset representatives of Fo(N) in r are in bijective correspondence 
with the set P1 (N) = P1 (Z/NZ) of "M-symbols" (c : d), where c, d E Z, 
gcd(c, d) = 1, and 

(c :d) =(c' :d') 4=:- cd'_=-c'd (mod N). 

We will also write (c, d) _ (c', d') for this equivalence relation on Z2. The 
correspondence with right cosets is given by 

(c :d) +-ro (N)(cd' 

where a, b E Z are chosen so that ad - bc = 1, different choices of a, b 
giving the same right coset. 

The right coset action of F on PI (N) is given simply by 

(c: d) (r ) = (cp+dr: cq+ds); 

in particular, we have 

o(c:d)= (c:d)S=(d: -c) and T(C: d) =(c:d)T= (c:c+d). 

Lemma 4. The length of the z-orbit containing (c : d) E PI (N) is N/ gcd(N, C2). 

Proof. Tk(c: d) = (c : d) 4==- (c : kc+d) = (c : d) 4=- cd -c(kc+d) 
(mod N) kc2 =,0 (mod N) - k 0 O (mod N/gcd(N, c2)). 0 

In our earlier work [2], where we used M-symbols to compute modular elliptic 
curves, it was immaterial exactly which coset representatives were used, or in 
practice which pair (c, d) was used to represent the M-symbol (c : d). For 
the application of Theorem 3, however, we must ensure that our set is closed 
under right multiplication by TS: 

(c: d)TS = (c + d: -c) 
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unless (c: d) is fixed by TS, which is if and only if c2 + cd + d2 = 0 (mod N). 
Thus each M-symbol (c: d) will be represented by a specific pair (c, d) E 2 
with gcd(c, d) = 1, in such a way that our set 5" of representatives contains 
the pairs (c + d, -c) and (-d, c + d) whenever it contains (c, d), unless 
(c: d) is fixed by TS. Even when working with pairs (c, d) we will identify 
(c,d) and (-c, -d). 

Fixing these triples of pairs (c, d) corresponds to fixing the triangles (y) 
which form a (possibly disconnected) fundamental domain for Fo(N). If 

= (d b),the pair (c, d) corresponds to the directed edge {y(O), y(oo)} 
= {b/d, a/c}. The other edges of (y) are {a/c, (a + b)/(c + d)} and 
{(a + b)/(c + d), b/d}. For this reason we will refer to the pairs (c, d) as 
edges, and the triples of pairs as triangles. Right multiplication by TS corre- 
sponds geometrically to moving round to the next edge of the triangle, while 
right multiplication by S corresponds to moving across to the next triangle 
(y*) adjacent to the current one. The T-action is given by composing these, 
taking (c: d) (or edge {b/d, a/c}) to the symbol (c: d) T = (c: c + d) with 
corresponding edge {(a + b)/(c + d), a/c}, up to translation by an element of 
ro(N) . Note how in this operation the endpoint at the cusp a/c is fixed, as in 
Lemma 1 above. 

We may therefore proceed as follows. For each orbit, start with a standard 
pair (c, d), chosen in an M-symbol class (c: d) not yet handled. Apply T 
to obtain the pair (c, c + d) . If this pair is the standard representative for the 
class (c: c + d), we need take no action and may continue with the orbit. But 
if (c, c + d) =(r, s), say, with (r, s) E 5", then we must record the "glueing 
matrix" , where 

a a+b (p q 
kc c+d r s) eF() 

and ad - bc = ps - qr = 1, whose period co(a) will contribute to the partial 
sum for this orbit. When this happens, we say that the orbit has a "jump" at 
this point. Different choices for a, b, p and q only change 3 by parabolic 
elements, and so do not affect the period co(a). We continue until we return 
to the starting pair, and then move to another orbit, until all M-symbols have 
been used. As checks on the computation we may use Lemmas 1 and 4: the 
length of the orbit starting at (c, d) can be precomputed as N/gcd(N, c2), 

and the number of orbits is the number of Fo(N)-inequivalent cusps, which is 
EdIN (p(gcd(d, N/d)). (Here (p denotes Euler's function, of course, not the 
modular parametrization.) 

Example 1: N = 11 . The 12 symbols form 4 triangles which we choose as 
follows: 

(1, 0), (-1, 1), (O, 1); (1, 1), (-2, 1), (-1, 2); 
(1, 2), (-3o),c n (-2, 3); (1, 3), (-4, 1), (-3, 4). 

There are two T-orbits, corresponding to the two cusps at oo (of width 1 ) and 
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at 0 (of width 1 1). The first contributes nothing. The second is as follows: 

(I1,0) (1, 1) +(I1, 2) +(I1, 3) +(I1, 4)_(-2, 3) F- (-2, 1) ~+(-2, 1 

_(-3, 4) F-+ (-3, 1) - (-3, -2) 
_(-4, 1) F-+ (-4, -3) _I-1 2) I > -, 1) -+(I1, 0). 

There are four jump matrices coming from the above sequence. From (1, 4) 
(-2, 3) we obtain 

(0 -1)(i -2j1( 2 -l) 
(1 1 4 ) -2 3 ) (1 1 S 5 

the others are 

2= (H1 3) '11 2) and 14=(l -4)- 

Hence, 

deg((p) = VorEn~I(w0(31)w(3)). 
I( )<i<j?4 

Now by using modular symbols, we can compute the coefficients of o(&) with 
respect to a period basis coI, o02, to obtain 

Co(3 ) = -c1; (0(32) = -02; 

WA(3) = 01,; (0(4) = O2. 

Hence we obtain deg(p) = 2(+1 + 0 + (-1) + 1 + 0 + 1) = 1. Of course, this 
answer was obvious a priori, since the modular curve X0( 11) has genus 1, so 
that (0 is the identity map in this case. The curve (1 Al in [2]) has coefficients 
[a,, a2, a3, a4, a6] = [0, -1, 1-10, -20]. 

Example 2: N = 26 = 2- 13. Here the genus is 2 and there are two new- 
forms. Of the four cusps, only 2 (of width 13) contributes to deg((o), which 
is 2 in both cases. The curves are 26A1 = [1, 0, 1, -5, -8] and 26B1 = 

[I1, -I1, 1, -3, 3]. 

Example 3: N = 30 = 2- 3 . 5. Here the genus is 3, there are two oldforms 
from level 15 and a newform. The cusps 2, 5 and I contribute respectively 2' 5 6 iuersetvl 
1, and I to deg(p), which equals 2. The curve is 30A =[1, 0, 1, 1, 2]. 

Example 4: N = 210 = 2- 3 *5 7. There are five newforms here giving five 
curves, A-E. There are 16 cusps, namely a (of width 21 O/d ) for d 1 210 . 
The contributions to deg((p) are as follows: 
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N=210 

d A B C D E 

1 0 0 0 0 0 
2 10 12 6 2 6 
3 2 27 2 0 16 
5 3 -5 5/2 4 -5/2 

6 14 21 19/2 1 89/2 
7 10 -13 4 0 49 
10 9 8 5/2 4 3/2 
14 -1 3 -5/2 0 21/2 

15 2 19 7/2 3 27/2 
21 3 4 5/2 0 3/2 
30 2 8 2 2 0 
35 -6 12 0 0 -12 
42 0 0 0 0 0 
70 0 0 0 0 0 
105 0 0 0 0 0 
210 0 0 0 0 0 

Total = deg((o) 48 96 32 16 128 

The curves are A = 210A1= [1, 0, 0, -41, -39], B =210B1= [1, 0, 1, 
-498, 4228], C = 210C1 =[1, 1, ,10, -13], D = 210D1 = [1, 1,0, 
-3, -3] and E = 210E1 = [1, 0, 0, 210, 900]. 

Finally we give a complete table of all results for N < 200. For convenience, 
we give for each curve the code from [2] and the Antwerp Code (in parentheses), 
and the coefficients of the curve in standard Weierstrass form. 



THE DEGREE OF A MODULAR PARAMETRIZATION 1247 

TABLE OF "STRONG WEIL" CURVES AND deg(fo) FOR N < 200 

N id [a1,a2,a3,a4,a6] deg((P) N id [a,,a2,a3,a4,a6] deg((p) 
I1I Al1(B) [0, -1,1, -10, -20] 1 54 B1 (A) [1, -1, 1, 1,-1] 2 
14 A1(C) [1,0,1,4,-6] 1 55 A1(B) [1,-1,0,-4,3] 2 
15 Al (C) [1, 1, 1, -10, -10] 1 56 Al (C) [0, 0,0, 1,2] 2 
17 A1(C) [1,-1,1,-1,-14] 1 56 B1(A) [0,-1,0,0,-4] 4 
19 AI(B) 0,l,I,-9,-151 1 57 A1(E) [0,-J,1,-2,2) 4 
20 A1(B) [0,1,0,4,4] 1 57 B1(B) [1,0,1,-7,5] 3 
21 A1(B) [1,0,0,-4,-1] 1 57 C1(F) [0,1,1,20,-32] 12 
24 A1(B) [0,-1,0,-4,4] 1 58 A1(A) [1,-1,0,-1,1] 4 
26 A1(B) [1,0,1,-5,-8] 2 58 B1(B) [1,1,1,5,9] 4 
26 B1(D) [1,-1,1,-3,3] 2 61 A1(A) [1,0,0,-2,1] 2 
27 A1(B) [0,0,1,0,-7] 1 62 A1(A) [1,-1,1,-1,l] 2 
30 AI(A) [1,0,1,1,2] 2 63 A1(A) [1,-1,0,9,0] 4 
32 A1(B) [0,0,0,4,0] 1 64 A1(B) [0,0,0,-4,0] 2 
33 A1(B) [1,1,0,-11,0] 3 65 A1(A) [1,0,0,-1,0] 2 
34 A1(A) [1,0,0,-3,1] 2 66 A1(A) [1,0,1,-6,4] 4 
35 A1(B) [0,1,1,9,1] 2 66 B1(E) [1,1,1,-2,-1] 4 
36 A1(A) [0,0,0,0,1] 1 66 C1(I) [1,0,0,-45,81] 20 
37 A1(A) [0,0,1,-1,0] 2 67 A1(A) [0,1,1,-12,-21] 5 
37 B1(C) [0,1,1,-23,-50] 2 69 A1(A) [1,0,1,-1,-1] 2 
38 A1(D) [1,0,1,9,90] 6 70 A1(A) [1,-1,1,2,-3] 4 
38 Bl(A) [1,1,1,0,1] 2 72 A1(A) [0,0,0,6,-7] 4 
39 Al (B) [1, 1,0, -4, -5] 2 73 Al (B) [1, -1,0,4, -3] 3 
40 A1(B) [0,0,0,-7,-6] 2 75 A1(A) [0,-1,1,-8,-7] 6 
42 A1(A) [1,1,1,-4,5] 4 75 B1(E) [1,0, , -1, 23] 6 
43 A1(A) [0,1,1,0,0] 2 75 C1(C) [0,1,1,2,4] 6 
44 A1(A) [0,1,0,3,-i] 2 76 A1(A) [0,-1,0,-21,-31] 6 
45 Al (A) [1, -1,0,0, -5] 2 77 Al (F) [0,0, 1,2,0] 4 
46 A1(A) [1,-1,0,-10,-12] 5 77 B1(D) [0,1,1,-49,600] 20 
48 A1(B) [0,1,0,-4,-4] 2 77 C1(A) [1,1,0,4,11] 6 
49 Al (A) [1, -1,0, -2, -1] 1 78 Al (A) [1, 1,0, -19, 685] 40 
50 A1(E) [1,0,1,-1,-2] 2 79 A1(A) [1,1,1,-2,0] 2 
50 B1(A) [I,1,1, -3,1] 2 80 Al(F) [0,0,0,-7,6] 4 
51 Al (A) [0, 1, 1, 1, -1] 2 80 Bi (B) [0, -1,0,4, -4] 4 
52 Al (B) [0,0,0, 1, -10] 3 82 Al (A) [1,0, 1, -2,0] 4 
53 A1(A) [1,-1,1,0,0] 2 83 A1(A) [1,1,1,1,0] 2 
54 Al (E) [1,-1, 0, 12,8] 6 84 Al (C) [0, 1,0,7,0] 6 
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N id [a1,a2,a3, a4,a6] deg((p) N id [a1,a2,a3, a4, a6] deg((p) 
84 B1(A) [0,-1,0,-1,-2] 6 114 C1(G) [1,1,1,-352,-2431] 60 
85 Al (A) [1, 1,0, -8, -13] 4 115 Al (A) [0,0, 1,7,-11] 10 
88 A1(A) [0,0,0,-4,4] 8 116 A1 (E) [0, 0, 0,-4831,-129242] 120 
89 A1(C) [1,1,1,-1,0] 2 116 B1(A) [0,1,0,-4,4] 8 
89 B1(A) [1,1,0,4,5] 5 116 C1(D) [0,-1,0,-4,24] 15 
90 A1(M) [1,-1,0,6,0] 8 117 Al(A) [1,-1,1,4,6] 8 
90 B1(A) [1,-1,1,-8,11] 8 118 A1(A) [1,1,0, 1, 1] 4 
90 C1 (E) [1,-1,1, 13,-61] 16 118 B1(B) [1,1,1,-25,39] 12 
91 Al(A) [0,0,1,1,0] 4 118 Cl(D) [1,1,1,-4,-5] 6 
91 Bi (B) [0,1, 1,-7,5] 4 118 Dl (E) [1, , 0,56,-192] 38 
92 Al(A) [0,1,0,2, 1] 2 120 Al (E) [0, 1, 0,-15, 18] 8 
92 Bi(C) [0,0,0,-1,l] 6 120 Bi(A) [0,1,0,4,0] 8 
94 Ai(A) [1,-l,1,0,-1] 2 121 Ai(H) [1,1,1,-30,-76] 6 
96 Al (E) [0 1, 0,-2,0] 4 121 Bi(D) [0,-1,l,-7,10] 4 
96 Bi(A) [0,-1,0,-2,0] 4 121 Ci(F) [1l,,0,-2,-7] 6 
98 Al (B) [1, 1,0, -25, -111] 16 121 DI (A) [0, -1, 1, -40, -221] 24 
99 Ai(A) [1,-1,1,-2,0] 4 122 Ai(A) [1,0,1,2,0] 8 
99 Bi(H) [1,-1,1,-59,186] 12 123 Ai(A) [0,1,1,-10,10] 20 
99 Ci(F) [1,-1,0,-15,8] 12 123 Bi(C) [0,-1,1,1,-1] 4 
99 DI(C) [0,0,1,-3,-5] 6 124 Ai(B) [0,1,0,-2,1] 6 
100 Al (A) [0, -1,0, -33, 62] 12 124 Bi (A) [0,0,0, -17, -27] 6 
101 Ai(A) [0,1,1,-1,-1] 2 126 Ai(A) [1,-1,1,-5,-7] 8 
102 Al (E) [1, 1, 0,-2,0] 8 126 Bi(G) [1,-1,0,-36,-176] 32 
102 Bi(G) [1,0,0,-34,68] 16 128 Ai(C) [0,1,0,1,1] 4 
102 Ci(A) [1,0,1,-256,1550] 24 128 Bi(F) [0,1,0,3,-5] 8 
104 Ai(A) [0,1,0,-16,-32] 8 128 Ci(A) [0,-1,0,1,-1] 4 
105 Ai(A) [1,0,1,-3,1] 4 128 DI(G) [0,-1,0,3,5] 8 
106 Ai(B) [1,0,0,1,1] 6 129 Al (E) [0,-1,1,-19,39] 8 
106 Bi(A) [1,1,0,-7,5] 8 129 Bi(B) [1,0,1,-30,-29] 15 
106 Ci (E) [1, 0,0, -283, -2351] 48 130 Al (E) [1, 0, 1, -33, 68] 24 
106 DI(D) [1,1,0,-27,-67] 10 130 Bi(A) [1,-1,1,-7,-1] 8 
108 Ai(A) [0,0,0,0,4] 6 130 Ci(J) [1,1,1,-841,-9737] 80 
109 Al(A) [1,-1,0,-8,-7] 4 131 Ai(A) [0,-1,1,1,0] 2 
110 Al (C) [1, 1, 1, 10, -45] 20 132 Al (A) [0, 1,0,3,0] 6 
110 Bi(A) [1,0,0,-l,l] 4 132 Bi(C) [0,-1,0,-77,330] 30 
110 Ci (E) [1, 0, 1, -89, 316] 28 135 Al (A) [0,0, 1, -3,4] 12 
112 Al (K) [0, 1,0,0,4] 8 135 Bi (B) [0,0, 1, -27, -115] 36 
112 Bi(A) [0.0,0,1,-2] 4 136 Ai(A) [0,1,0,-4,0] 8 
112 Ci (E) [0, -1,0, -8, -16] 8 136 Bi (C) [0, -1,0, -8, -4] 8 
113 Ai(B) [1,1,1,3,-4] 6 138 Al (E) [1, ,0,-1,1] 8 
114 Ai(A) [1,0,0,-8,0] 12 138 Bi(G) [1,0,1,-36,82] 16 
114 Bi (E) [1, 1,0, -95, -399] 20 138 Ci (A) [1, 1, 1,3, 3] 8 
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N id [a1, a2, a3, a4, a6] deg((p) N id [a, a2, a3, a4, a6] deg((p) 
139 Al(A) [1,1,0,-3,-4] 6 158 E1(F) [1,1,1,1, 1] 6 
140 Al (A) [0, 1,0, -5, -25] 12 160 Al (A) [0, 1,0, -6,4] 8 
140 B1(C) [0,0,0,32,212] 60 160 B1(D) [0,-1,0,-6,-4] 8 
141 A1(E) [0,1,1,-12,2] 28 161 A1(B) [1,-1,1,-9,8] 10 
141 B1(G) [1,1,1,-8,-16] 12 162 A1(K) [1,-1,0,-6,8] 12 
141 C1(A) [1,0,0,-2,3] 6 162 B1(G) [1,-1,1,-5,5] 6 
141 Dl (I) [0, -1, 1, -1,0] 4 162 Cl (A) [1, -1,0, 3, -1] 6 
141 El(H) [0,1,1,-26,-61] 12 162 Dl(E) [1,-1,1,4,-1] 12 
142 Al(F) [1,-1,1,-12,15] 36 163 Al(A) [0,0,1,-2,1] 6 
142 Bl(E) [1,1,0,-1,-1] 4 166 Al(A) [1,1,0,-6,4] 8 
142 Cl(A) [1,-1,0,-1,-3] 9 168 Al(B) [0,1,0,-7,-10] 8 
142 Dl (C) [1,0,0, -8,8] 4 168 Bi (E) [0, -1,0, -7, 52] 24 
142 El (G) [1, -1,0, -2626, 52244] 324 170 Al (A) [1,0, 1, -8,6] 16 
143 Al (A) [0, -1, 1, -1, -2] 4 170 Bl (H) [1,0, 1, -2554, 49452] 160 
144 Al(A) [0,0,0,0,-1] 4 170 Cl(F) [1,0,0,399,-919] 84 
144 Bl (E) [0,0,0, 6,7] 8 170 Dl (D) [1,0, 1, -3,6] 12 
145 Al(A) [1,-1,1,-3,2] 4 170 El(C) [1,-1,0,-10,-10] 20 
147 Al(C) [1, 1, 1,48,48] 24 171 Al(D) [1,-1,1,-14,20] 12 
147 Bl (I) [0, 1, 1, -114, 473] 42 171 Bl (A) [0,0, 1,6,0] 8 
147 Cl (A) [0, -1, 1, -2, -1] 6 171 Cl (I) [0,0, 1, 177, 1035] 96 
148 Al (A) [0, -1,0, -5, 1] 12 171 Dl (H) [0,0, 1, -21, -41] 32 
150 Al (A) [1,0,0, -3, -3] 8 172 Al (A) [0, 1,0, -13, 15] 12 
150 Bl (G) [1, 1, 0, -75, -375] 40 174 Al (I) [1,0, 1, -7705, 1226492] 1540 
150 Cl(I) [1,1,1,37,281] 48 174 B1(G) [1,0,0,-l, 137] 28 
152 Al (A) [0, 1,0, -1,3] 8 174 Cl (F) [1, 1, 1, -5, -7] 12 
152 Bl (B) [0, 1,0, -8, -16] 8 174 Dl (A) [1,0, 1,0, -2] 10 
153 Al (C) [0,0, 1, -3,2] 8 174 El (E) [1, 1,0, -56, -192] 52 
153 Bl (A) [0,0, 1,6,27] 16 175 Al (B) [0, -1, 1,2, -2] 8 
153 Cl (E) [1, -1,0, -6, -1] 8 175 Bl (C) [0, -1, 1, -33, 93] 16 
153 Dl (D) [0,0, 1, -27, -61] 24 175 Cl (F) [0, 1, 1,42, -131] 40 
154 Al (C) [1, -1,0, -29, 69] 24 176 Al (C) [0,0,0, -4, -4] 16 
154 B1(E) [1,-1,1,-4,-89] 24 176 B1(D) [0,1,0,-5,-13] 8 
154 Cl (A) [1, 1,0, -14, -28] 16 176 Cl (A) [0, -1,0, 3, 1] 8 
155 Al(D) [0,-1,1,10,6] 20 178 Al(A) [1,0,0,6,-28] 32 
155 B1(A) [1,1,1,-1,-2] 8 178 B1(C) [1,1,0,-44,80] 28 
155 Cl(C) [0,-1,1,-1,1] 4 179 Al(A) [0,0,1,-1,-1] 9 
156 Al (E) [0, -1,0, -5,6] 12 180 Al (A) [0,0,0, -12, -11] 12 
156 Bl (A) [0, 1,0, -13, -4] 12 182 Al (E) [1, -1, 1,866,6445] 180 
158 Al(E) [1,-1,1,-9,9] 32 182 B1(A) [1,0,0,7,-7] 12 
158 Bl (D) [1, 1,0, -3, 1] 8 182 Cl (J) [1,0, 1, -4609, 120244] 308 
158 Cl(H) [1,1,1,-420,3109] 48 182 D1(D) [1,-1,1,3,-5] 36 
158 Dl (B) [1,0, 1, -82, -92] 40 182 El (I) [1, -1,0, -22, 884] 140 
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N id [a1, a2, a3, a4, a6] deg(qp) N id [a, , a2, a3, a4, a6] deg(qp) 
184 A1 (C) [0, -1,0,0,1] 8 192 C1 (K) [0,1,0,3,3] 8 
184 B1 (B) [0, -1, 0, -4,5] 8 192 D1 (E) [0, -1, 0, 3, -3] 8 
184 C1 (D) [0, 0, 0, 5, 6] 12 194 A1 (A) [1, -1,1, -3, -1] 14 
184 Dl (A) [0, 0,0, -55, -157] 24 195 Al (A) [1,0,0, -110,435] 24 
185 Al (D) [0, 1, 1, -156, 700] 48 195 Bi (I) [0, 1, 1, 0, -1] 12 
185 B1 (A) [0, -1,1, -5,6] 8 195 C1 (K) [0,1,1, -66, -349] 84 
185 Cl (B) [1, 0, 1, -4, -3] 6 195 Dl (J) [0, -1, 1, -190, 1101] 84 
186 A1 (D) [1, 1, 0, -83, -369] 44 196 A1 (A) [0, -1,0, -2,1] 6 
186 Bi (B) [1, 0, O, 15, 9] 20 196 Bi (C) [0, 1, 0, -114, -127] 42 
186 Cl (A) [1,0, 1, -17, -28] 28 197 Al (A) [0,0, 1, -5,4] 10 
187 A1 (A) [0,1,1,11,30] 16 198 A1 (I) [1, -1,0, -18,4] 32 
187 B1 (C) [0, 0, 1, 7,1] 30 198 B1 (E) [1, -1, 1, -50, -115] 32 
189 A1 (A) [0,0,1, -3,0] 12 198 C1 (M) [1, -1,1, -65,209] 32 
189 Bi (C) [0, 0, 1, -24, 45] 12 198 Dl (A) [1, -1,0, -87, 333] 32 
189 Cl (F) [0,0, 1, -6, 3] 12 198 El (Q) [1, -1, 0, -405, -2187] 160 
189 Dl (B) [0, 0, 1, -27, -7] 36 200 Al (B) [0, 0, 0, 125, -1250] 120 
190 Al (D) [1, -1, 1, -48,147] 88 200 Bl (C) [0,1,0, -3, -2] 8 
190 Bi (C) [1, 1, 0, 2,2] 8 200 Cl (G) [0,0,0, -50, 125] 24 
190 C1 (A) [1,0,0, -30, -100] 24 200 DI (E) [0, -1, O, -83, -88] 40 
192 Al (Q) [0, -1, 0, -4, -2] 8 200 El (A) [0,0,0, 5, -10] 24 
192 Bl (A) [0,1,0, -4,2] 8 
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