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A RECURSIVE METHOD TO CALCULATE 
THE NUMBER OF SOLUTIONS OF 

QUADRATIC EQUATIONS OVER FINITE FIELDS 

KENICHI IYANAGA 

ABSTRACT. The number Sm (a) of solutions of the quadratic equation 

x 2+ x2+...+x2 = a (X4 $+xj2 for i$ j) 

for given m , with a and xi belonging to a finite field, is studied and a recursive 
method to compute Sm (a) is established. 

INTRODUCTION 

Given a finite field IFq (q = pfn, p: odd prime), the estimation of the number 
of solutions of the quadratic equation in the abstract (xi e F*) is reduced to the 
study of certain vectors uIm, and a recursive method to calculate this number 
is established. When q = p, the latter computation may be applied to calculate 
the number Nm of solutions of the congruence 

2 +..+2 p -i XI+ +Xm-O (modp), 1?Xl < .. <Xm < 2 

The number Nm is known to be related to the class number of Q(Q/p) (Agoh 
[1]), and an algorithm, different from ours, to calculate it is given by Maohua 
[3] (see also Sun [4, 5]). 

1. PREPARATORY LEMMAS AND PROPOSITION 

1.1. In this section we shall establish three lemmas and a proposition, which 
will be used to prove Theorem 1. The latter gives an algorithm for computing 
the number of solutions of the quadratic equation specified in the abstract. 

Given an odd prime number p and q = pfn, we let IF = IFq and set 

F2 = {x2Ix E F*'}. 

We also set, for 4 e IF*, 

(1)=2 q Q+()) ' Z= 2 (1j-q()). 
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Lemma 1. Given E 7 e F*, we have 

(i) ZoxV + V4 = ~ 1, 4 = 0, >4 = V>4 (M) => 

(ii) 2v v, = vo + vj + vP - 
(iii) 2 zo,v = vo< + v' - Q. 
Proof. Assertion (i) follows directly from the definition. Since 

G) = 2- 1, 

we have 

(4)=2zv4,j- I = (2vz - 1)(2vj, - 1), 

which implies (ii). Similarly, since 

( ) = 1 - 2v<, 

(iii) follows from 

(4Z1) = 1 - 2zo< = (1 - 2vz)(1 - 2v'). El 

It is convenient to introduce the following notation: 

[ q-l if z-1= 1, 
(2) P 4 

~~if l'1= 0. 

We note that 

(3) 
~~q - 1 

+ -v (3) 4 2 

1.2. Given a, ,B, y belonging to IF, we set 

(4) A7)y = {(X, y) eIF2 x F21aX + ly =y, y =1 if f= O} 

and 

(5) A(A)y = #A(`), Af, = A(l) 

These numbers will be used in the algorithm described in Theorem 1. 
The following relations are easily deduced from the definitions: 

(6) -(a) =( l (a F*) 

(7) A~~~2fll 412y = A . y , e IF*), 

(8) A0?0) = 2p + Iv/, A(?)0 = AM?) = O, AM?) (2p + Iv/, I)IVy Y3 ye F*), 

(9) Ao,o=0, Afl,o-(2p+v'j)v_f, Ao,y=vy 3Y EF). 

Given /B, y e IF*, it is known that fl, y may be computed by using Jacobi 
sums [2]. In the following, we shall show that group-theoretical considerations 
can be used to compute fl, y . 
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1.3. We set, for a given a E IF*, 

Act={XEM2(F)IX(? I )=(? I )x} 

and 
A* =A, n GL2(IF), Al-A_ nSL2(F). 

We have 

Aa,={(jx Y)aX,YEF} 

Lemma 2. The following sequence is exact: 

1 -+A 1 A t,F* 1. 

Proof. It is sufficient to show, for a given ,B 8 IF*, that there exist X, y E F* 

satisfying x2 - ay2 = fl or, equivalently, X2 = ay2 + ,B. We now have 

O{X2IX E F}= -{ay2 + fIY E F} = 2 
+ 

whence 
{x2Ix E F}ln {ay2 +fIy E F} $0, 

which implies Lemma 2. 

Lemma 3. Given a E F*, we have 

(i)~ ~ ~ ~~O *A, = (q- 1 )(q + I1- 2vo,), (i) c 

(ii) OA'-= q +1I- 2v,>. 

Proof. We have 

A= Act {(x a)y x2 _ ay2 =0} 

whence we readily obtain (i). The second assertion (ii) then follows from 

Lemma 2. El 

Proposition 1. Given a, f, y E F*, we have 

(i) 4Afy q + I - 2(v-fl + vy + vfly), 

(ii) AY = { p + VP I vlfl (Vfly=l) 

(ii) fl~~~~ - P +- V"ily (V,6 y = 0). 
Proof. Since 

OA1 ,6= 0{(X, y) F x FIX2 + fly2 = 1} 

- 1{(X, y) E F x Fix2 + fly2 = yl 

- 42.y + 0{(x, Y) E F x Flx2 + fy2 = y, xy 0} 

the first claim (i) follows from Lemma 3(ii). We have 

,Aja) ,A 

_q+ 1 1 
4 (V(k -I fl + lk- ' y + i/fly) 

q -1 1 1 
- 4 +(Ib'aIl+V/(,k+Vy + Vf6y) 

4 2 2 

= p + 2(1 + I - V-afl - -.- i/fly). 
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If v'l, = 1, we have 

= P + - (Cf --- 1/aft). 

Whence, by Lemma 1 (ii), we obtain 

A(,a) = P - _- I a,. 

If, on the other hand, vzoA = 0, we have 

fl,7y 
= p + -(I + V/-1 - 

V-0'fl- Va7) ,3ja) 1 

= p + m2(V1V-ay + lay), 

whence, by Lemma 1 (iii), 

A(0 = P + VI IVl ZJY. 

2. A RECURSIVE METHOD TO COMPUTE THE NUMBER OF SOLUTIONS 

OF CERTAIN QUADRATIC EQUATIONS 

2. 1. Given a E F and m (I1 m <(I + vtl2< we set 
( ~~~~m 

(10) Sm(a)= = (XI,..., Xm)IXiE F 1F, Ex7 = a, xj7 $x (i 2 

In order to compute this number, we consider the following set: 

Mm(f) - f(J, x) IJ C F2 J: irreducible, 

(1 1) 

xEJ,WJ=m, fx+ Y=a 

yEJ-{x} ) 

where ,B e IF and J is defined to be irreducible if and only if it does not contain 
any pair {z, -z}. Further, we set 

(12) Mm,a = {J C F2IJ: irreducible, OJ = m, Ex= Ia 
XEJ 

(13) Im,a) - _m /lm,a = $Mm,a. 

We have 

(14) (=z) F* 

(15) H() = 

(16) Sm(a) = 2mm!/um,,. 
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2.2. Now fix an element r E F* such that ZJr = 0 and consider the following 
vectors (,B E IF, I < m < (I + vo1)4 

( 1 7) z~~~M =(M, 0 ' ltm, I, # m,r) , 

( 18) #m = (Pm , 0 , tm, I, 1 m , r) 

Since Sm (a) equals either Sm (0), Sm (1) or Sm (r), the problem of computing 
Sm (a) is, by virtue of (16), reduced to the computation of the vectors 'mm. 

2.3. Given an element ,B E IF and a fixed element r E F* such that ZJr = 0, 
we shall introduce here a matrix LA which will be used to compute Im: 

AO) AO) AO) \ 0,0 0,1 0,r 

(1 9) LO= A(Jl A(Jl ,)jr 1,0 1,1 1,r 

1 )r,j01) r,1 r,r r 

The following proposition follows easily from (8), (9) and Proposition 1 (ii). 

Proposition 2. We have 

(i) L() = (2p + v/1 )E3. 

For fi E FIF 

/ 0 /fl MA \ 

(ii) ~~~L(4)= (2p + IV/)l7-8pI-I4P I-17 . 

(2p + vL )vL p + vI1Vl,s p- v-lv,B, 

Theorem 1. Given 4 E F*, set 

V4 2 (1 + 4) X < 2 q1-() 

Also, given a elF and 1 <m < (1 + v,I)lz , set 

Sm(a) ={(XI, *--, Xm)|Xi E IF*, EX? = a, X7? :A +X (i : j)} 

and let Im# = GUm), 11m1' jdm4r) and I'm = (Jm,0, jUm,I, Jtm,r) be the vectors 
defined by (17) and (18) (,B E F, Vr = 0, r Ez F*), and let LO) be the matrix 
defined by (19). We then have 

(i Sm(av)= 2mm!/tmc, (a =0, 1, r), 

(ii) I'm = 'm,c 

(iii) ,u~(? = (0, v<, VI) (,B $0), I'?) = 10 
q ) 

(iv) gm)= #m- 10 L(4)-fm- - V- _1#0 (1 1 < m). 
#M m-1~__ 1/Im-1 

Proof. The first three statements (i), (ii) and (iii) are clear from the definitions 
(see (15), (16)); the fourth, (iv), is equivalent to 

Am, ca = Am- 1, O21A + Atm-1, + A-m-1 ,r, c - 1 -A 



1324 KENICHI IYANAGA 

In order to prove the above, suppose we are given (J, x) e M(i)( with J = 

{x, Yi l,. , Ym-1} satisfying 
m-i 

fix + yi = a. 
i=l1 

Then, the set J' = {Yl, ... Ym-1} belongs to Mm-,,,-fix. We have 

a -,Bx = O or a -,Bx = y2 or a -/,x = rz2 (y, z E IF*), 

and accordingly, 

(J', (x, 1)) E Mm-i,o x A(f) (y-2J', (x, y2)) E Mm-i,i x A(f) 

or 
(z-2J' (x, z2)) E Mm-l,r x AVfi, 

where 
wJ' = {WYI, .., WYml-} (w E IF*) 

Conversely, given 

(x,y) EA) (y=O, 1, r; y= 1 if y=O), 

and J' = {y, ... , hm-I} belonging to Mm-iy, we have 

({X , YYI , YYm- I 1, X) E M(fi)c 

unless 
x = +yyj forsome j (I < j < m- 1) 

(x = -yyj may occur only when v-, = 1). Let us set J={x, YYl, * * YYm-i}. 

If x = yyj, then J = {yyl, . .., yym-i}, and we have 

(6 + 1)yyj + E YYk =a 
k$j 

whence (J, yyj) E M(f+1). If, on the other hand, x = -yyj (v-. = 1), then 

(/3- 1)X+ZYk =a 

k5j 

and we have 

({X, Yyl, ..,YYj-l , YYj+l ,* YYm-l} , X) E M(fl,1) 

Combining the above, we obtain (iv). This completes the proof. El 

Specifically, for 1 < m < (1 + v' l) q1, we obtain the following: 

(0) = #m-IO L(?) _M (- 1) 

= (2p + vL 1),um-i - (m - 1).Um-I - I - l)lm m-, 

whence 

(20)~~~~~~~0 (20) #$M) = ( 2p + vJ_ l-(m m-1 )( + zV- IA))m- I 

2.4. We set (1 + V' ) IZ< = K. Given 1 < m < K, we have 

O{J c FF21J: irreducible, OJ = m} = f 2m) f ' - 1, 
(K) if V_I=O0. 
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Hence, we have 

(21) q-1 ~~~~~ ~ r ~2mm (K) if V_1, (21) (0)? + q (0() I (m)r) = m) 
#Mo+ 2 (Jm,i +m, r 

- j m(K) ifv =_0. 

In particular, we have 

(22) Lm,O + - (m I + Jlm, ) = { 2() if V1 1 
2 m _~~~~if1 =0. 

For m = K, we have 

(23) IK, o +2 ifYvK-O 

2 
~~~~~Iif 

v1,=0. When q = 3, we have Kc= 1 and JUK =JUI = (0,1, 0); whereas when v_- =0 
and q > 3, we have q > and therefore K =(1, 0, 0). 

2.5. We now compute /12 and #3. We have 

2/12 = p2 
=_jIgIL(l) - j(2) (0) 

(0 1 
= (0, 1, O ) 2pv- I P- V_ p + V- I -(O, V2, V2) 

(2p+ l)v'L p p 
- v-1(2p+ V-L1)(1 , 0,0) 

= (0, p-V11 -V2, P + Vi -V2) 

= (0, P-lVi -V2, P- V-1 + V2). 

Whence, we obtain 

(24) 2/12 = (, p - V1 - V2, p V-1 + V2). 

We also have 

3/13 = /3 

- /2L(' i ) -2(2) (0) /2 ~-/2 

c2) =,g,L ( - (3) - (1) 

= (0, 1, 0)L(2) - (0, V3, V3) (0, V-1, 0). 

By Proposition 2 (ii), we have 

/(2) - ((2p + v' I)V12, p-V-1 -V3-V-12, P-VI + V/L12), 

and, by the remark made following the proof of Theorem 1, 

V (1/0)=V_1(2p+v-1-v-1)al=2v_1(p-1), 

and therefore, 

6/13 = (2p2 + (1 - 3v-4-4v 2 -14V-2 + 2v2)p + v1I(v2 - 2/V-2), 

2p; - (2 + 7v-i)p + 7v-1 + 3vlv2 + 2V3, 

2p2 - (1 + 3v-,)p + 2v3 - 3v L1v2). 
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Lemma 1 implies that 

2v-lJ2 = v-1 + V2 + V-2-1, 

whence 

33= (p2+ ( - 2-_-3V-2 P+ (2 - -2 

(25) 2 (i + 
7 +3 l~ (25) ~~p2 _ 1 V-1) P + -V-1 + -V_Iv2 + V3, 

p2- 1- + 2v 1-l)p + (IJ3-2Z-1Z2 

2.6. We note here that some of the classical formulas concerning quadratic 
residues can be obtained from the formulas (24) and (25) describing /12 and 

,U3. The formula (24) for /2 leads to 

(26) P--V-1 +1V2 (mod 2), 

or, equivalently, 

l/2EE : (mod 2) if (i)=1, 

lq4 3(mod 2) if ( !)=-1; 

the latter implies the classical formula 

(q) (-1) 8 

(The above formula for q = p, may also be deduced from computing the 
number of solutions of x2 + x2 - 4 (mod p), as shown by Kenneth S. Williams 

[6].) 
The formula (25) describing /3, on the other hand, implies 

(27) p2+ (3 - 2-1) P+ I (V 2V 2) O (mod 3), 

(28) p2 (1 +v)p+ v+ 2 +2V32 (mod3) 

(29) (2 ( v-i)p+ (V - 7iv2) 7 O (mod 3). 

When zo- = 1, it follows from the formulas (27) and (29) that 
22 2 

p2 _-p _p2-_2p + ZoO (mod 3), 

whence 

(30) p - VI (mod 3). 

When, on the other handv v1 = 0, it follows from formula (28) that 

(31) p2 _p+v3-O (mod 3). 
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Combining the congruences (30) and (31), we obtain the following special case 
of the law of quadratic reciprocity: 

3 q q-1~i~ 3-' 
(q) (3) = (-1) 2 2* 

2.7. We now illustrate how Theorem 1 may be used to compute the vectors 
1um by looking at an example: q = p = 17. In this case, we have 

p=4, V-= 1, l'12= 1, l'13=0. 

We use the general formulas derived above to compute ,i1 , /12, and 413: 

4111 = (0, 1, 0) (Theorem 1(iii)). 

Now, by virtue of (24), we have 

412 = I(?0 P-v1 -v2, p-v1 + V2) = 2(0, 2, 4) = (0, 1, 2). 

By (25), we have 

83 3 (p2 + (2 - 2ZV 3'-2) P + VJ/ 1 ( &-z-2) 

2 (i + V-1 P + V-1 + V-1V2 + 1/3, 

2 2 + 1- 1 3 

(0, 3, 9) =(0, 1, 3). 3 
Also, 

= (1) 
4,c4 = #4) 

= #3LM - ) (32) -1/L3(0) 

(2) 
= 2L(2) #(3) _ ,# (1) 

(3) = (3) _ (4) (2) 

L(1 = L(2 I 2p . I- p , and 

LM1) L (2)=(2p p- Ip 

<2p p p -l 
and therefore, 

1(3) =(0, 1, o)L (3)-_(o, 1 , 0) - (0, 1, 0) 

= (0, p - 2, p) 

=(0, 2,4), 
-2) - 2L(2)_'a3) - 

2,12 

= (0, 1, 2)L(2) -(0, 2, 4) -(0, 2, 4) 
= (2p, 3p - 5, 3p - 8) 

= (8, 7, 4). 
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We have, by (20), 

(?) = (2p +' - 2(1 + l-1))#2 

= (2p - 4)(0, 1, 2) 
= (0, 4, 8), 

so that 

4= -((0, 1, 3)L(1) -(8, 7, 4) -(0, 4, 8)) 

= 4(2p - 8, 4p- 12, 4p - 12) 

= (0, 4, 4) = (0, 1, 1). 

3. COMPUTATION OF Nm 

3.1. We set, for an integer m > 1 and a E F, 

(32) m,= {j C F2 I J= m, x = 
XEJ 

(33) Nm,a = 0Qm,a, Nm = Nm, 0, 

(34) Nm = (Nm,0 , Nm, I , Nm,r) (i r = O). 

When IF = IFp, the number Nm is the number of solutions of the congruence 

(35) xi + +xm = 0 (mod p) < xI < < xm < 2 

Agoh [1] proved that, if p =1 (mod 4), then 

(36) -h = + a@, 
where h, c (> 1) stand for the class number and the fundamental unit of 
Q(VTp), respectively, and 

(37) a =- I( + E(-l)mNm) 

In [4, 5] Sun gave a formula for Nm when m = 2, 3 and 4. Maohua showed 
in [3] that 

Nm = (.1 + 2 m m p ((m ) 2 m 
where Am is determined recursively by means of the following formulas: 

am = (Am + BmA) A (-1)Yp, 

= S1a maM = SIam-I - S2am-2 + + (-l)m1 sm. 

We have the following 
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Theorem 2. Given 1 < m < 1-1 and a E F, set 
-2 

Nm,a = {J c lF21J = m, 1 x = o}. 
XEJ 

Choosing r z F* such that Vr = 0, set 

Nm = (Nm,o , Nm, I , Nm,r). 

Let fik (0 < k < p) be the vector given by (18) and let p be as in (2) (we set 
#o = (1,, 0)). We then have: 

(i) If V_1 = O, then Nm = m; 

(ii) if v- = 1, then Nm = N2p-m (we set N0 =#0). 

If v1 = I and I < m < p, we have 

(iii) Nm = (Pk )fNlM- 2k)lk- 

Proof. If v-' = 0, it is obvious that Nm = 1Um. 

Suppose v- I = 1. Then 

ZX=0, FF2= 2p, 
xEF2 

and therefore Nm = N2p-m holds. Suppose, further, that 1 < m < p. Denote 
the canonical projection from F2 onto 1F2/{+1} by 7r. Suppose J E Nm,a. 

We have 

J = Jo U -Jo U Ji, r(Jo) n r(JI) =0, 

where 
Jl E Mm-2k,a (k = o, Jl = if m = 2k). 

Conversely, suppose we are given 0 < k < [m] and J1 e Mm-2k,a (if m = 2k 
we set J1 = 0) . Since m < p+k, we have k < p-m+2k and therefore we may 
choose Jo c F2 such that #JO = k, ir(JO) n r(JI) = 0; the set J = JoU-JoUJJ 
then belongs to Nm,,. Combining the above, we obtain Theorem 2. El 

3.2. We now use Theorem 2 to compute Nm (m = 2, 3) (N1 = (0, 1, 0)): 

(82 if v-1 =0, 

N2= #0 if q =5, 

82 + AU0 if 5 < q and v-I = 1. 

Therefore, when 1 < p (5 < q), we have 

(38) N2 = 42 + l'IPflO. 

We also have 

( 83 if v1- = 0, 

N3 = # if q =9, 

{3 + (p - i)l if 9 < q and v1- = 1. 
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Hence, when 11 < q, we have 

(39) N3 =/13 + lI'(P - )/1i. 

Now using the formulas (23) and (29) describing /12 and 93, we obtain: 
When 5 < q, 

N2 V- p, P - V-1/-2 _P_V-1 +_2_ 

when 11 < q, 

N3- (p2 + ( -/2)P+lI (5 2 V-2) 

-3 ( + ) + - ___ 

We have, therefore, the following formulas, which contain expressions for 8N2 
and 48N3 agreeing with Sun's results [4, 5]: 

+ 2( - -V1 ) V q-29,q-1)i q- md8 

3(0q-l,q-5) ifq_5 (mod 8), 

((q- 1)(q- 17), (q- )(q-7) +32+ 16V3, 

((q- 1)(q- 11), (q- 3)(q- 7) + 163, 

48N3 = (q-3)(q-5)+16v) ifq-3 (mod 8), 
((q-1l)(q -5), (q -3)(q -5) +16lv3, 

2q V q- 9)+ Iv ) fq_5(o ) 

((q- 1)(q+ 1), (q-3)(q-7)+ 16P3 , 

(q2+q )(q - 9)9+ 16qvi ) if q7 (mod8). 
3.3. We now show how Theorem 2 can be used by looking at an example: 
q =p = 17. We have p =4, Iv_ = 1 . We also have go = (1, O, O),/,c = 
(0, 1, 0). As shown in 2.7, we have 

J2=(O, 1,2), q3=(O, 1,3), q4=(O, 1, 1). 

Hence, by Theorem 2, we have 

N1= - 1=(O, 1,0), 2 =- 2q + p- 7= (4, 1, 2), 
N3 = /13 + (p - 1)q - v= (0,4, 3), 

N4 =/'4 + (p - 2)'2q+ -(q - = (6, 3, 5), 

5=3N3, N63=2, 7=N1, 8=No= l0 
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We can now compute a given in (37): 

a=p1 (+z ) 
= 1(1-0+4-0+6-0+4-0+1) 16 

= 1. 

Whence, by virtue of Agoh's result (cf. (36)), we have 

ch 7 1+v7 = 4+ v'7. 

It is well known that the class number h of Q(VTm) is 1, and that c = 4 + vei 
is a fundamental unit of the latter real quadratic number field. 
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