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INTERPOLATION BETWEEN SOBOLEV SPACES 
IN LIPSCHITZ DOMAINS WITH AN APPLICATION 

TO MULTIGRID THEORY 

JAMES H. BRAMBLE 

ABSTRACT. In this paper we describe an interpolation result for the Sobolev 
spaces Ho(Q) where Q is a bounded domain with a Lipschitz boundary. This 
result is applied to derive discrete norm estimates related to multilevel precon- 
ditioners and multigrid methods in the finite element method. The estimates 
are valid for operators of order 2m with Dirichlet boundary conditions. 

1. INTRODUCTION 

Let Q be a bounded domain with a Lipschitz boundary. In this note we 
show that the Sobolev space Hor(2), for n an integer and r = 1, ..., n - 1, is 
the same space as that obtained by interpolation between the spaces Hon (Q) and 
L2 (a). The interpolation spaces are defined by means of the real method of 
interpolation of Lions and Peetre [9]. This is proved in [8] when the boundary 
of Q is smooth. For plane domains with piecewise smooth boundaries it was 
proved by Zolesio in [11]. The resulting space [Hon (), L2 (K2)]rln has a different 
Hilbert space structure from the usual space Hor(Q). For n = 2m and r = m 
the regularity properties associated with the elliptic pseudodifferential operator 
defined by the corresponding inner product are generally better than those of the 
standard m th power of the Laplacian with Dirichlet boundary conditions. This 
will be used to prove some estimates connected with multilevel finite element 
methods. 

In order to motivate the discussion, we shall consider the following. Employ- 
ing the notation in [1], let M be a finite-dimensional space equipped with an 
inner product (., *) with corresponding norm I I - . Let A(., *) be a symmetric 
bilinear form on M. Now set M = MJ and suppose that we have subspaces 
Mk with 
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The linear operator Ak: Mk Mk is defined by 

(Akw, 0) =A(w, 0) for all , 0 e Mk. 

Furthermore, the projectors Pk MJ -4 Mk and Qk: MJ -4 Mk are defined by 

A(Pku, v) =A(u, v) 

and 
(QkU, V) = (U, V), 

for all u e MJ and all v e Mk . In the problem considered in ?4 of this paper, 
Qk is the L2-projection and Pk is the so-called elliptic projection. Let Ak be 
the largest eigenvalue of Ak. The condition 

J 

(1.1) ZAkll(Qk - Qk- )112 < CA(v, v) for all v E MJ, 
k=1 

with the constant C independent of J, plays a central role in both the ad- 
ditive and muliplicative multilevel theory, cf. [1]. This was first pointed out 
in [3], where the additive multilevel preconditioner was introduced. It was 
proved there only in the case of "full elliptic regularity". This regularity prop- 
erty does not hold in the case of second-order elliptic operators on nonconvex 
polygonal plane domains or for higher-order operators even on convex nons- 
mooth domains. Inequality (1.1) was shown to hold much more generally in 
the second-order case by Oswald [10] using Besov space arguments. A different 
proof based on the knowledge of a modest amount of elliptic regularity was 
later provided in [2]. Here we show that for any Lipschitz domain we can de- 
fine an operator in the equivalence class for which full elliptic regularity holds, 
thus proving (1.1) in general in the second-order case. This is done by using 
the above interpolation result. 

Remark 1. In the above discussion and in what follows, the spaces H8 (Q) may 
be replaced by HS(Q), thus allowing us to consider also the cases in which 
the boundary conditions are natural. In this case the development is either 
completely analogous or simpler. Thus, we will consider only the case of the 
Dirichlet problem. 

2. INTERPOLATION BETWEEN THE SPACES Hon(Q) AND L2(Q) 

We recall here the real method of interpolation. Let Bo and B1 be two Ba- 
nach spaces with B1 continuously embedded and dense in Bo. An intermediate 
space B is any subspace of Bo satisfying 

B1 c B c Bo. 

Real Method of Interpolation. We shall define for 0 < s < 1 a scale of spaces 
[B1, Bo], with 

B1 c [B1 , Bo]s c Bo. 

Define for each t > 0 and u e B1 

(2.1) K(t, u) = inf (IIUOII1 +t2IIUII12)1/2, 

where u0 e Bo, ul e B1 and a standard notation is used to denote the norms. 



INTERPOLATION BETWEEN SOBOLEV SPACES IN LIPSCHITZ DOMAINS 1361 

For 0 < s < 1 define the quantity 

IIUII[BiBoJs = (j ; t 2sK2(t, U)dt) ' 

which is a norm and hence defines a Banach space [B1, Bo], which is inter- 
mediate to B1 and Bo. It is elementary to see that if B1 and Bo are Hilbert 
spaces then this norm satisfies the parallelogram law and therefore induces a 
Hilbert space structure. 

We now prove a result for Sobolev spaces on domains with Lipschitz bound- 
aries. As previously noted, such a result may be found in [8] in the case of 
smooth boundaries and for plane domains with piecewise smooth boundaries 
in [1 1]. As usual, c and C will be used to denote generic constants, not nec- 
essarily the same in any two places. 

Theorem 2.1. Let Q be a bounded domain with a Lipschitz boundary. Then, for 
n an integer and r = 1, ...,n- , 

[HO (Q2) L2(2Q)Ir/n =Ho 

with equivalent norms. 
Proof. For u defined in Q, let E denote extension by zero to Rd. 

Define 
ftr() := {U E Hr(Q) Eu E Hr(Rd)} 

and set 
IIUIIHr(Q) = IIEUIIHr(Rd). 

Recall that Hor(Q) is the completion of (i(Q) under the norm 11 *IHn) . By 
Theorem 1.4.2.2 in [7], 

Hr(Q) = HorQ). 

We will first show that 

[Hon()2), L2(Q)Ir1n C HA(W2) 

To do this, let u E Hoi(Q), for j = 0 or j = 2m. Since Hi(Q) = HoJ(), we 
have that 

|IEu IIHj(Rd) = 11u llHi(n) < CliullHOj(n). 
Hence by interpolation of operators, since 

[Hn(Rd ), L2(Rd)]rin = Hr(Rd), 

we have that 

CIIuIIHor(Q) < jjullfjr(Q) = IIEulIHr(Rd) < CIIuII[HOn(),L2(Q)]r1n 

This shows that [Hon(Q2) , L2(Q)]rmn C Hor(Q). 
For the opposite inclusion, we construct an operator R: Hi(Rd) HJQ 

as follows. Let q7 be an open ball such that Q c W and let E be a continuous 
extension operator from Hi(a7 \ Q) to HJ(Rd) for 0 < j < n. We can do 
this by virtue of the fact that Q has a Lipschitz boundary. Now define R by 

Ru = u-Eu 



1362 J. H. BRAMBLE 

restricted to Q. Let Y/ e COOO (s') be a cutoff function which is equal to one 
on U. Then the function yi(u - Eu), defined on all of Rd, is in Hj(Rd) and 

yg(u - Eu) = ERu. 

Hence, Ru e HJ(n)-= Ho(). Now 

IIRujjHi(Q) ? C(IIujjHJ(Q) + IIEuIIHi(Q)) 

? CIIuIIHj(Rd) 
for j = 0 or j = n. Hence, 

|lRujj[Hn(!Q)L2(Q)1,1n 
< C11U11H1(Rd)- 

But if u e Hor(2), then Eu e Hr(Rd) and REu = u. Hence, 

IIuII[Ho(Q)L2(Q)n = IIREtuII[Hn(Q)L2(Q)]rin ? CIIEUIIHr(Rd) < CIIUIr(Q. 

Hence it follows that Hor(Q) c [Ho(Q), L2(Q)Irln. This proves the theorem. 
Note that Hor(Q) and [Hon(Q), L2(Q)]rmn may be different Hilbert spaces. 

3. BILINEAR FORMS 

It is well known that for k < 1 the space H'(O) is compactly imbedded in 
Hok&(Q) (cf. [7]). Denoting the usual inner product on H2m(Q) by (, )2m the 
operator T: L2(Q) -+ HJ2m(Q) defined by 

(Tu m q)2m = (u, q) for all q E H2m((2) 

is positive definite and compact, with positive eigenvalues {A7 1 } . The corre- 
sponding eigenvectors {fi} are complete in L2(A) and satisfy AiTq$i = qi$. It 
is easy to see that for u = J:=, ciqi, the norm on H2m(Q) is given by 

00 

IIUIIH2m() =(Aic?)lI2. 
i-l 

The space Homf(Q) - [H2m(2), L2(Q)h1/2 has the norm 
00a 

IIUIHIm(n) = i 
i=l 

which induces the inner product, say v (, *), with 

vW (u, u) = E Ail/c. 
i=1 

This norm is equivalent to the standard norm by Theorem 2.1. The spaces 

Ho +s(2) = [Ho2m(2), L2()i)]12+s/2m and ftoms(Q))= [Ho2m(Q), L2(n)I1/2-s/2m, 
for 0 < s < m, have the norms 

00 

||UtIfm+s(a) = ( A1l/2+s/2mC)l1/2 
i=1 

and 

IUI,ftom-s(Q) = (ZA/2-s/2mC?)l/2. 
i-l 

The following is now obvious. 
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Theorem 3.1. Let Q be a bounded domain with a Lipschitz boundary. Then for 
u E Hom-S(Q) and X E Hom+S(Q), 

- ~~~~~~~~00 
.'(u, q$) - ZA112(u q$)(q, Xi) 

i=1 

is well defined and 

llUllf0t-5(n) sup 

4. REGULARITY FOR THE FORM v 

We shall consider the solution u E Hom(Q) of the problem 

(4.1) (u,q0)=(f,q0) forallEHom(K), 

where f e L2(Q). The following theorem is easy. 

Theorem 4.1. Let u be a solution of(4.1) with f E L2(Q2). Then u E H02m(Q) 
and 

11U11H02m(Q) < 1fIIAL2(n). 

Proof. Choose k = E' Al(u, q$)q$ in (4.1) and, after applying the Cauchy- 
Schwarz inequality, let n tend to infinity. 

Let {Sh}, h > 0, be a family of subspaces of Hom(2) with the following 
approximation property. There exists a constant C > 0 such that for any 
v e Ho+s(Q) 

(4.2) inf liv - XllHm(n) < Chs llVIIHm+s(n)m 
XESh 

for some s with 0 < s < m. For many examples of such spaces see [5] or [6]. 
Now the discrete solution of (4.1) in Sh is the unique solution U e Sh such 

that 

(4.3) V(U, ) = (f, q) for all 0 E Sh. 

Define the orthogonal projection operator Ph: Hom(Q) Sh by means of 

d(Phu,qO)=d(u,q) forallqXESh. 

Since 9(.,*) defines a norm on Ho (Q), we have, using (4.2), 

|ju - PhuIIH0m(Q) < C inf IvI -XIIHOm(Q) 

<ChsIIuIIHmn+s(i) for all u E H0m+s((Q)- 

For this projector we now have the following "regularity pickup". 

Theorem 4.2. Let u E Hom+S(Q). If (4.2) is satisfied, then 

IIu - 
PhullHm-s(n) < ChsIIuIIHH(Q). 

Proof. This follows from Theorem 3.1 and (4.4). 
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5. APPLICATION TO ESTIMATES FOR MULTILEVEL METHODS 

We will follow the notation in [1] and give a proof that (1.1) is satisfied in 
the case that Q2 is a polygonal domain whose boundary is Lipschitz (i.e., all 
angles are less than 27r ), the spaces Mk are nested and defined by conforming 
piecewise polynomials. That is, Mk-l c Mk and Mj c Hom(i). We assume 
that the initial triangulation is fixed independently of J and gives rise to the 
others by means of a halving strategy. The form A(., *) is the standard gen- 
eralized Dirichlet form of order m. Finally, we suppose that (4.2) is satisfied 
with Shk = Mk and hk = h02-k, the mesh size associated with Mk and, for 
simplicity of notation, write Pk for Phk. 

We will prove the following theorem. 

Theorem 5.1. There exists C > 0 such that 

J 

Z"Akll(Qk - Qk-I)v IL2(a) ? C (aVIIr(Q) for all v e MJ, 
k=i 

where Qk is the L2(Q2) orthogonal projection onto Mk and Qo = 0. 

Proof. The proof of this theorem is similar to that given in [2]. We note 
that hk <-C,k3 . Using standard properties of Qk and the fact that Qk - 

Qk-lQk = QkQk-I , we see that 

J J 
ZI"klI(Qk - Qk-I )VII2 

2(Q) < CZhk 21I(Qk- Qk_l)VIl2-I(Q)m 
k=1 k=1 

By techniques similar to those of [4] it follows that II Qk UIIHIH-1m - < C UIIHm(-1a((). 
Hence, using this and the fact that (Qk - Qk_l)v = 0 for v e MI with 1 < k, 

J J J 

h-2II(Qk - Qk-l)VIIH2l(Q) - h2 1K(Qk -Qk-1) E (PkPkl)VIIl() 
k=1 k=1 I=k 

J J 

< C Z (Z(hl/hk)h I(P' - 
PI_Pll)vIHrm_nl(!))2 

k=1 I=k 
J J 

= C E ((hl/hk)h711J(I - Pi-)(Pi - Pl_l)VIHrm-l(f)) 
k=1 1=k 

J J 

<C E: (J (h11hk)It (P1-l-) 0to 
k=1 1=k 

In the last inequality we used the regularity pickup error estimate of Theorem 
4.2. Defining E to be the symmetric J x J matrix with entries Ek/ = hl/hk = 
2k-1 for 1 > k, and a to be the vector with components II(Pl - Pl-l)vIIHom( ), 
we see that 

J J 
E (Z(hl/h/c)II(P -Pl-)vIIHrn(Q)) < IEaI2 

k=S a=k 

Since the row sums are uniformly bounded in J, the eigenvalues of E are- 
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bounded and hence 
J 

IEaI2 Clal2 ? CZEv((P -P-1j)v, (P1-P-1j)v) 
k=l 

J 

= CZ 1((Pi - P11)V, V) = Ca9(v, V) < CIIVIH1(2 ) 
k=1 

This proves the theorem. 
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