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DOMAIN DECOMPOSITION WITH NONMATCHING GRIDS: 
AUGMENTED LAGRANGIAN APPROACH 

PATRICK LE TALLEC AND TAOUFIK SASSI 

ABSTRACT. We propose and study a domain decomposition method which treats 
the constraint of displacement continuity at the interfaces by augmented La- 
grangian techniques and solves the resulting problem by a parallel version of 
the Peaceman-Rachford algorithm. We prove that this algorithm is equivalent 
to the fictitious overlapping method introduced by P.L. Lions. We also prove 
its linear convergence independently of the discretization step h, even if the 
finite element grids do not match at the interfaces. A new preconditioner using 
fictitious overlapping and well adapted to three-dimensional elasticity problems 
is also introduced and is validated on several numerical examples. 

1. INTRODUCTION 

In this paper, we are interested in the numerical solution of a second-order 
linear elliptic problem by a nonoverlapping domain decomposition technique. 
The model problem under consideration takes the standard form: 

Find u E Vo such that 

(1) E{ai(u, v) - Lj(v)} = 0, V v E Vo 

where Vo is the usual Sobolev space 

Vo = {v E H1(Q), v = O on 9QD} 

defined over a given domain Q = Ui Qi of Rdim. When dealing with a basic 
Poisson equation, the local forms ai(u, v) (bilinear) and Li(v) are given on 
each subdomain Qj by 

ai(u,v)=J Vu.Vvdx 

Li(v)=j fvdx+j g.vda. 
Qi AQNnaQi 

For more complex linear elasticity problems, we would have instead 

ai(u, v) = (x, Vu): Vv dx 
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a(x, Vu) = A(x)(Vu + Vtu)/2, 

with A(x) a symmetric positive fourth-order elasticity tensor. 
In any case, even if Q is partitioned into nonoverlapping subdomains Qi 

(Figure 1), problem (1) does not reduce to independent subproblems posed on 
each subdomain Qi because elements of the space Vo are constrained to be 
continuous across the different interfaces &9i2i n &Qj. Most nonoverlapping 
domain decomposition techniques handle this constraint by iterative substruc- 
turing methods, which reduce the original problem to an interface problem 
whose unknown is the trace of u on the interface, and which is solved iter- 
atively by a preconditioned conjugate gradient method (see Bramble, Pasciak 
and Schatz [4, 5], Dryja, Smith and Widlund [9] and Le Tallec [17] for more 
details). 

The purpose of this paper is to propose and study another numerical strategy 
which treats the constraint of displacement continuity at the interfaces by a 
Lagrange multiplier method. Based on augmented Lagrangian techniques, it 
first rewrites the original global minimization problem as a saddle-point problem 
and then solves it by a standard saddle-point algorithm which only involves the 
solution of local subproblems. This turns out to be equivalent to the fictitious 
overlapping method introduced in [20] and can be proved to converge linearly 
independently of the discretization step h, even if the finite element grids do 
not match at the interfaces. 

A key point in this algorithm is the choice of the scalar product to be used 
on the interface. 

Three different choices will be investigated, both from a mathematical and 
numerical point of view: 

- the L2 scalar product, which is the simplest but which leads to an h- 
dependent algorithm, 

- a A-1/2 scalar product, easy to implement in 2D problems with straight 
interfaces, 

- a new preconditioner using fictitious overlapping and well adapted to three- 
dimensional elasticity problems. 

The paper is organized as follows. The continuous problem, the basic La- 
grangian formulation and algorithm are introduced in ?2. Convergence results 
are derived in ?3 for the continuous problem and in ?4 for its Finite Element 
approximation. A new preconditioner is defined in ?5, and the paper concludes 
by several three-dimensional numerical calculations, which illustrate the per- 
formance of the proposed method and compare them with those obtained by 
iterative substructuring techniques. 

2. LAGRANGIAN APPROACH OF THE CONTINUOUS PROBLEM 

2.1. Notation. For simplicity, the domain Q is decomposed into two nonover- 
lapping subdomains ni with interface S. We now introduce the boundaries 
(see Figure 1) 

On = 9QD U OQNa external Dirichlet and Neumann boundaries, 
OnDi = 0MD n agi, local Dirichlet boundary, 
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aQD~~~~~~~O 

FIGURE 1. The physical problem 

together with the spaces 

Vi= {v EH1(Qi), v =0onfl2D,} 

V = VI X V2 with norm 11 * Il v - 11 112v) 

Vo = {(VI, V2) E V, TrvlIs = Trv2Is} 

W=TrVIIS = TrV2IS. 

2.2. Lagrangian formulation. Without the linear constraint appearing in the def- 
inition of VO, we would be faced with two independent problems posed on Q2 
and Q2, respectively. To preserve this splitting property, a natural idea is then 
to treat the constraints vI Is = V2 Is by augmented Lagrangian techniques (Fortin 
and Glowinski [12]), that is, by penalization (one adds a term LIlvi - q112 

to the energy) and by dualization (one introduces Lagrange multipliers Ai of 
the linear constraints VI IS = V2IS = q). 

For this purpose, we introduce: 

* an arbitrary scalar product on the interface space W (tentatively equiva- 
lent to the Ha (S) scalar product) given by 

(2) (q, q) = (95q, q), Vqe W, 

with 9? a given positive selfadjoint operator defined from W into W', and 
(.,.) the corresponding duality pairing between H2 (S) and its dual, 

* the augmented Lagrangian 

(3) Yr(v q A) = E{ ai(ui, vi) - Li(vi)+ 2 -vqII2 + (Ai,,v - q)} 

with r a given arbitrary strictly positive number. 
With the notation (2)-(3), we also introduce the transformed problem: 
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Find (u, q,A) E V x WxH suchthat 

(i) %~(u, q, A) i w = 0 , VW E = VI X V2, 
(4) (ii) (% (u, q, A), dq) = 0 , V dq E W =Tr V, 

{(iii) (%(u,q, A),dA) = 0 , V dAeH-W2, 

or in more details: 
- equation in u 

2 

(5) Z{ai(ui, wi)- Li(wi) + r(59(ui - q), wi) + (5?Ai, wi)} = O, 
i=l 

Vw E V = V1 X V2, 

- equation in q 
2 

(6) j =-r( 0(uj-q) dq) - (JA0, dq)} = , Vdq E W=TrJVi 
i=1 

- equation in A 
2 

(7) ,(5?(ujq), dAi) = 0 , VdA E H= W2. 
i=l1 

Remark 2.1. All the techniques introduced in this paper can be extended to a 
multidomain partition of Q into D = Ui i with interfaces S = Ui<1j &i n 
9Qj = U1<j Sij . In this case, the global space VO and trace space W would be 

Vo ={(vi)i E Vi, Trvi =Trvj on Sij, Vi < j} 

W =fJwj1, Wij =Tr VilSij = Tr VjlSij 
i<j 

In such a treatment of interfaces, edges and corners are neglected. This is 
legitimate, both at the continuous and the finite element level, if there are no 
edges or corners (partition in strips) or if the interfaces are discretized by mortar 
elements (?4.2) which define discrete traces Trih on faces and not on corners. 
This treatment can also be extended to general conforming partitions simply by 
considering any given edge separating, say, four subdomains i , ij, 2k , Q 
as three distinct faces Sij, Sik and Sk, D 

Remark 2.2. In what follows, unless explicitly stated, the space W is endowed 
with the norm 

|| w llw = || Ext(w) IIH1/2(SU8QD) 
with Ext(w) the function which is equal to w on S and which is equal to zero 
on 0MD . With this choice of norm, the trace is a continuous surjection from Vi 
onto W. We will refer to this norm 11 * 11 w and to the associated scalar product 
as the H1/2(S) norm and scalar product. Strictly speaking, this terminology is 
correct only if the distance between 0 D and S is strictly positive. 
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Remark 2.3. The simplest choice for 5" consists in choosing 

(8) (q qf) = (5?9q , qc) = j q4'dx. 

Unfortunately, this L2 scalar product is not equivalent to the H1!2 scalar 
product and this has some negative effects on the convergence of the algorithms. 
Another choice is to use 5" = (-AS)1/2, where -AS stands for the Laplace - 
Beltrami operator on the interface S. For this choice, the scalar product 

(q, ) = ((qA )l 2 q, 

is equivalent to the HI/2 scalar product. We recall that for a straight face S 
perpendicular to OX3, we have 

As (q) = +xq 
(9 q 

(-A5)1/2 (q) = - i (jq (x) ej(x) dx) ej(x) . 

Here, (ej)j is an orthonormal basis of L2 (5) composed of eigenvectors of A5 
in W and Aj is the eigenvalue associated with ej . Unfortunately, this operator 
is nonlocal and is therefore difficult to handle numerically. A third choice will 
be presented later. 

Remark 2.4. In the simplest case where 5" is given by (8) and where ai is 
associated with a Poisson equation, the transformed problem (5)-(7) is simply 

-Aui = f on Qi, 
a9ui 

r(ui - q) +Ai i= OonS, 

q =~~~~~( 
q = 2 (Ul + U2) + 2r(Al + A2) 

ui = q . 

Observe in all cases that both subdomains play the same role. 

2.3. Equivalency result. We have 

Theorem 2.1. The variational formulation (1) of the original problem is equiva- 
lent to the Lagrangian formulation (4). 
Proof. First, let u E V0 be a solution of the original problem (1). We introduce 
the inverse trace Tr- 1 : W - (ker Tri) I n Vi . By construction, Tr- l is uniquely 
defined. We now define Ai E W by solving the well-posed problem 

(9) (Ai = (5) i , q) = aj(u, Tr- q) - Lj(Tr- q) , VqEW. 

By construction, and since u is a solution of (1), we then have 

2 

(10) (Al + 2q ai(ui, Tr' Li l = 0, Vq E W. 
i= 1 
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On the other hand, setting q = Tr u on 5, we have by definition of 2, and 
Ai and from (1) 

O 
' (u, q, w) i = ai(ui, wi) + (50'Ai, Trwi) - Li(wi) avi 

= ai(ui, wi) + aj(uj, Tr-1 Trwi) - Lj(Tr 1 Trwi) - Li(wi) 
= 0, Vwi E Vi E 

By addition, this implies (4) (i). Then, by construction of 2r, of q, and from 
(1O), we have 

( a' (u , q, S, dq) = - 1(r(5o(ui - q), dq) + (5"Ai, dq)) O q ~~~~~~~~i= 1 

=(5'Ai+59'2,dq)=0Vdqe W, 

which is (4) (ii). Finally, by construction of q, we have 

(O (u,q,A), d) = -1(59di,,ui-q)=0 , dA E H 
i= 1 

which is (4) (iii). 
Conversely, let (u, q, A) E V x W x H be a solution of (4). From (4) (iii), 

we first have 

(5di, ui - q) = 0 ,V di 

from which we deduce Tr u I Tru2 = q on the interface S. Plugging this 
back in (4) (ii) then yields 

(J!"(Aj+ A dq) = 0 , Vdq E W. 

This relation used with dq = Trw combined with (4) (i), and written for 
w E VO finally gives 

0 & v (u,q, A).w 

= , ai(ui, wi) + r(5?'(q - ui), wi) + ( i, wi) - Li(wi) 

=ZE ai(ui, wi) - Li(wi), V w E Vo 

which is (1). a 

2.4. Solution algorithm. Formulation (4) is particularly interesting because it 
can be solved by an augmented Lagrangian algorithm with good parallel prop- 
erties. For example, we can use the following algorithm (called ALG3 in [12] 
and [16]). 
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Algorithm (11)-(14). With A4 and q-1 given, then for n > 0, with )L7 and 
qn-i being given, solve successively 

(11) ai(u, wi) - Li(wi) + r(Y?(u7 - qfnl), w) + (5 ,w) 

VwiEVi,u EVi, i=1,2, 

(12) + = 7+r(u7_qW 1) ; i=l, 2 

(13) -r(5(un + un -2qn), p) - '()(An+ +0n+' 

(14) )il+1 = + r(u-q) ; i = 1, 2. 

For the choice Pn = r, this algorithm has good convergence properties as will 
be proved later. Its only practical drawback concerns the choice of the operator 
59 and of the coefficient r. 

2.5. Equivalence with the fictitious overlapping techniques. By construction, we 
can rewrite Step 4 to 2 of algorithm (11 )-(14) as follows: 

r>n _,tn = rqn->R gA+ 2_r7 r5'2q, 2 9,l+1 

=rj!,(Uj + Uin) +e(An I +i 2)An2 +N 

=rj!,Uin +,g!,,n+ 12 

= r5'u + + r5(uM - qn-1) 
= 2r5'u1 + 5,A:: - r9qn-1I 

On the other hand, integrating the first step of algorithm (11 )-(14) by parts, we 
have 

vi * ni = -0-`Y + r9qn1 l-YA on S. 

After elimination of Ai and q, there remains 

, tn+l . ni + rY7u+' = r5q -5?ni 

= rY5'u + (r52 +u YA - r5/qn-1) 

= r5uj - jn - nj. 

Therefore, Step 1 takes the final form (once integrated by parts) 

divo(Vu7n+1)+f = 0 on Q 

Un+l = 0 on a KDj 

ai+' * ni = g on 9QNn S 

,,n+l . ni + r1un+l = r Y0 - n * n1+r5/2u7j =5u-c7nj on S. 

This is precisely the nonoverlapping Schwarz alternating method proposed by 
P.L. Lions [20] (with Aij = r5). Therefore, as observed in [16], algorithm 
(11 )-(14) and the nonoverlapping Schwarz alternating method correspond to 
the same algorithm. 
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Remark 2.5. An alternative algorithm for solving (4) consists in eliminating 
ui. The resulting dual problem in A can then be solved by the FETI method 
of Farhat and Roux [ ]. 

3. CONVERGENCE RESULTS 

The solution of the original problem (1) by Algorithm (1 I)-( 14) can now be 
interpreted either as the numerical integration of the associated dual problem 
by alternating direction methods or as the nonoverlapping Schwarz alternating 
method proposed by P.L. Lions [20] and studied in [1 5]. The first analogy ap- 
pears to be very useful both from theoretical and practical points of view, since 
it leads to stronger convergence results in the case where &QD, is nonempty. 

3. 1. Equivalence between augmented Lagrangian and alternating direction meth- 
ods for the dual problem. As seen in Glowinski and Le Tallec [16], alternating 
direction methods are difficult to write in a general augmented Lagrangian set- 
ting if (B : Id). Following Gabay [13], we shall overcome this difficulty by 
considering a dual formulation. For that purpose, let us formalize our notation 
and assumption. 

Notation. We introduce the space E, the function sY and the operators B, 
AI and A2 as follows: 

E = {q = (qI2, q2I) E H, qI2 = q211 

F= IndE = Indicator function of E in H, with subgradient 9Y =A 

B: V =V1 x V2- H = W2, 

W = (WI, W2) -* (Trwl, Trw2) 

A2 : H- H , 
A -Bu(A)) 

with u(A) a solution of the domain decomposed elliptic problem 

(ai(u(A), wi)-Li(wi))+(A, Bw) = , Vw E V, u(Q) E V. 
i 

We will assume (Assumption 3. 1) that the bilinear form > ai (v, w) is coercive 
and continuous on the product space V = VI x V2. For most operators, and 
in particular for elasticity problems, this brings some restriction on the choice 
of the splitting Q2 = QI U Q2. Mainly, each domain ni must be fixed on part 
of its boundary. Now, we are ready to use the general results of Gabay or of 
Glowinski and Le Tallec, which take here the form of 

Theorem 3.1. The Lagrangian formulation (4) is equivalent to the dual problem 

(15) 0EA1(A)+A2(1)in H. 

Proof. We have observed in Theorem 2.1 that the solution of (4) is independent 
of r, hence we can take r = 0 in (4). Then from (4) (iii), we have Tru1 = 



DOMAIN DECOMPOSITION WITH NONMATCHING GRIDS 1375 

Tru2 = q and hence 
Bu = (Trul, Tru2) E. 

Now writing (4)(i) with r = 0, we get by definition of 26 

Z(ai(u, wi) - Li(wi)) + (A, Bw) = 0 , V w E V 

or equivalently 
-Bu =A2() 

On the other hand, writing (4) (ii) with r = 0 yields 

Al+A2 = 0, 

and thus A belongs to El . Since Bu E E, this implies by definition of F 
and of its subgradient that 

A E & &(Bu), 
or equivalently 

Bu E A1 (A). 
After elimination of u between the two inclusions, there results 

-A2(A) E A (i), 

in which we recognize (1 5). 
Conversely, let A be solution of (1 5). We first get (4) (i) by setting u = (A). 

If we then plug the definition of u in (1 5), we get 

Bu E &F -'() 

which implies A E e9S7(Bu), that is, 

A E El (4) (ii)), 
Bu EE (Q(4) (iii) ) 

Thus, (u, Tru, A) is solution of (4). a 

3.2. Linear convergence of algorithm (11)-(14). 

Theorem 3.2. Algorithm (11 )-(14) of ?2.4 is equivalent to the multiplicative al- 
gorithm 

(16) -n+I = (I + rAl)-'(I - rA2)(I + rA2)-1(I - rAl)nL . 
Proof. We follow the steps of the general theory. By construction, algorithm 
(1 1)-(14) has the form 

(17) E(ai(un, wi)-L(wi)) + (r(Bun - qn-l) +)n, Bw) = o V eV EV, 

(18) i 2 - i + r(Bun -qn ) 

(19) &F(qn) 3 r(Bun - qnf) + in+ 2 

(20) 2 + r(Bun - qn) 
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For (19), we recall that the identity A E aO(q) is equivalent to the identities 

q E E and Al + A2 = 0. 

Replacing now r(Bun -qn- l) by An+!I - An in (17), and r(Bun qn) by An+1 I 
+2 in (I19), we get 

(21) u =u2(YA) 

(22) An+1 E (9,s(qn) Xqn E A, (An+l ), 

respectively. In view of (21)-(22), the relations (18) and (20) now become 

in+ _ 
jnn+ r ) AX2(A 2) +A, (An) -3 ? 

Q(l+l .l+i2) +A2(n+i)+Ai(An+l) 
3 0. 

r 

Eliminating )f+ then leads to (16). a 

This is the form introduced in [21], and on which our convergence analysis 
will be based. 

Now, we are ready to prove the main result of this section, that is the linear 
convergence of algorithm (11 )-(14), when written in the form (16). 

Theorem 3.3. Under Assumption 3.1 and if (.,*) is equivalent to the H'12(S) 
scalar product, A2 is coercive and Lipschitz continuous on H, with constants 
a and C. Moreover, the sequence (in) defined by (16) converges strongly to a 
solution A of the dual problem (15), and we have 

(23) |Rn - IH < CO (I- (A - )I 1S -1 

There also exists an optimal parameter r* for which we have 

(24) |in - AH < CO I(1 - T C) o 12-AH. 

Proof. Step 1. By definition of A2, we first get 

(25) IA2(A) - A2(A)IH = IBu - BiIH < IIBIIIIu - llv . 

On the other hand, from Assumption 3.1, we have 

(A2(i)- A2(i), 1A) =-(B (U - Ui), i-A 

=-Bt( - A) * (U -Uf) 

(26) =Zai(u - , u - a) 

> aollu -aIv 
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Using now (26) combined with (25) yields 

a(o11 - 11Ir < (A2 () - A2(A), A- 

? IA2()- A2()IIA A- 

< IIBII Ilu - iivlA -l 

from which we deduce 

iiU-uiiv? jBII ll u - u|| v < Iao JA12- Al 

jA2A-A2AJ <B11 1 2- A 
ao 

This is the desired Lipschitz continuity with constant C - lB12/ao. 
To check the coercivity, we introduce 

v-V = B-I(A-A) 

By construction of u, we then have 

I1 _ 12 = (BB-'(A -A A -A 
= (V -V Bt(A -A)) 

= - Z ai(u - u, v - v) 

< ?IV - fvIIVMIIU - aiIv, 

< JIB-' JIMI- li- i - ullv. 

Here, M denotes the constant of continuity of E ai(.,.). From this, we get 

(27) I1s-'IH < MIIB-1uIIIU-iuIIv, 

which, plugged back in (26), yields 

(A2 (i-A2i,iA > ao t{B- 1II1-2M-2iA_A2-2 

Hence the coercivity of A2 with constant a = aoIIB-1J-12M-2. The above 
proof uses the continuity of B and B-1, which is a direct consequence of 
the trace theorem as soon as H is endowed with a H (S) equivalent scalar 
product. 

Step 2: Convergence. Following [21], we introduce 

a2 = A2 (A) 2 = A2Q(in 
al = -a2 , 
A = A + ra2, An = ran +in, 
a = A+ral, an = 2An - in 

ajz =(a n_fn+1)/2r. 

Since (1) has a solution, we know by equivalence that (15) has a solution A, 
and hence the above quantities are well defined. 
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Using Proposition 1 of [21], we have 

0 < (a2n-a2, ;~n _A) = n(I1_n f12_I2In _i2) 2 ~~~~4r 

0< (a-a1,l n+1 + 
n 

- = _(Iae - a12 I lfin+1 - 112) 

By addition, and from the coercivity of A2, we deduce 

(28) alVn _ )12 < (an - a2, ARn _1) ) 
I 

(Il n _ fl/2 - fln+ - 162) 

On, the other hand, from the Lipschitz continuity of A2, we obtain 
n _ -1I = I(An -A) + r(a2n-a2)1 < (1 + rC)lIn-)_Al 

Plugging this in (28) yields finally 

4(I16n 112 -lfn+1 _1612) > (1 + rC)-2alfln _ 
fl2 

that is, 

(29) |lfln+1 _ ,812 < I1 4r2 )lAn _ fl2 . 

For any value of r, we thus have that 16n is a converging sequence, which 
converges at least linearly with constant 

( 1- 4roa) 

V (I1 + rC)2J 

This constant attains the minimum value (1 - a/C) for the choice r* = 1 /C. 
To deduce linear convergence of An, one simply writes 

l,tn _A12(l + roe) < l,Rn-,&12 + r(a2n - a2, An _ i) 

< (fl-16, )/' 

which yields 
lAn _ A < (I + ro,) 1|,Bn _ f 

and hence (23) (from (29)). 0 

Remark 3.1. The above constants depend on the subdomain diameters and as- 
pect ratios through the norms IIB I and IIB -II. Hence, they do not scale well 
when the number of subdomains increases. The present version of algorithm 
(11 )-(14) it therefore not adaptable to the many-subdomains case. a 

4. LAGRANGIAN APPROACH OF THE DISCRETE PROBLEM 

4.1. The standard conforming case. To approximate the variational problem 
(1) by finite element methods, the standard procedure introduces a global finite 
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FIGURE 2. Matching and nonmatching grids 

element approximation VOh of Vo. If the subdomain interfaces coincide with 
grid lines (Figure 2: matching grids), it is then easy to define restriction spaces 

Vih = {Vih = Vohl;i , VOh E Voh} 

the product space 
Vh = Vlh X V2h, 

and the trace space 
Wh = Tr Vlh IS = Tr V2h IS 

We then have as in the continuous case 

Voh = {(V1h, V2h) E Vlh X V2h, Trvlhls = Trv2h1s} 

and problem (1) is approximated by 

Z{ai(uh, vh)-Li(vh)}=O , Vvh E VOh, Uh E Voh 

4.2. The discrete problem for nonmatching grids. To approximate (1), we can 
also replace VJ by independent (nonmatching) Conforming Element Spaces 
Vih, introduce a discrete auxiliary space Wh defined on the interface S (close 
to the so-called mortar elements [1]) and replace in the continuous problem (1) 
the space VO by its approximation VOh given by 

VOh = {(Vlh, V2h) E Vlh X V2h, j(Trvlh-Trv2)Wh 0 ?,hVWh E Wh} 

The discrete problem is then 

(30) Zai(Uh, Vh)-Li(Vh)} =O VVh E VOh, Uh E Voh 

We still obtain the classical equilibrium equation in Voh, but this space is not 
classical and is not included in VO . In other words, the continuity of the discrete 
solution and of the test functions at the interfaces is imposed in a weak sense 
only. Such an approximation may or may not be included in Vo, depending 
on the choice of the interface space Wh (for more details see [1] or [18]). The 
approximate problem (30) has already been introduced and studied in ?2 of [18] 
or in [19], where it was proved that (30) defines a consistent nonconforming 
approximation of (1) 
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For the following, in order to get a common notation for matching and non- 
matching grids, it will be convenient to introduce the discrete trace operator 
Trih defined from Vih into Wh and which to a given Vih E Vih associates its 
L2 projection Trih Vih onto Wh . With this new notation, the space VOh is then 
defined in both cases as 

VOh = {(Vlh, V2h) e Vlh X V2h , Trlh Vlh = Tr2h V2h} 

4.3. Lagrangian formulation. The augmented Lagrangian approach of ?2 is able 
to treat matching and nonmatching grids in the same framework. For this 
purpose, it replaces V, W and H by the above finite-dimensional subspaces 
Vh = Vlh X V2h, Wh and Hh = W^2 * Then, the discrete Lagrangian formulation 
of (30) is: 

Find (Uh, qh, )h) E Vh X Wh x Hh such that 

( (i) a,(Uh, qh, oh)Wh = ? , VWh e Vh 

(3 1) 4(ii) (ay- (Uh,qh,h), dqh) = 0 , Vdqhe Wh, 

(iii) (-A(Uh, qh, Ah), dAh) = 0 , V dAh e Hh 

and can again be solved by Algorithm (11 )-(14). Here, the augmented La- 
grangian yih is defined by 

r2h (Vih, qih, )Lih) = 2 ai(Vih, Vih) - Li(Vih) + 21 Trih Vih -qh 

+ (Aih , Trih Vih qh)h} 

The space Wh is endowed with the scalar product 

(qh,ch h = (9h qh, h) 

with 9h a positive selfadjoint operator defined from Wh into Wh' and to be 
specified later. 

Remark 4.1. The choices of r and 9h play no role from the theoretical point 
of view, but will be critical to ensure good convergence of Algorithm (1 l)-(14). 

For the time being we make the assumptions: 

Assumption 4.1. The scalar product (', )h is equivalent to the H1/2(S) scalar 
product, uniformly in h, that is, there exist constants C1 and C2 independent 
of h such that 

Cl IIqh IIW <_ P(hqh qh ) < 21lW , Vqh EWh- 

Assumption 4.2. The functions of Wh take zero values on OQD, and there exist 
strictly positive constants 83i independent of h such that 

inf sup f iqh Vih da > _ I3 
qhEWh VihEVih ll qh IIL2(S)IIvlVh II L2(S)J 
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The first assumption requires us again to choose a discrete scalar product 
which behaves like the H112(S) product. The second has already been encoun- 
tered in the numerical analysis of (30) and requires that the interface space Wh 
not be too large with respect to the spaces Tr Vih . More precisely, this assump- 
tion means that the discrete trace Trih is still a continuous surjection from Vih 
onto Wh . It is automatically satisfied in the conforming case. 

Assumption 4.3. The finite element space Wh appearing in Assumption 4.2 
is constructed on a uniformly regular triangulation. In other words, in two- 
dimensional geometries, there exists a constant C > 0 such that, for any trian- 
gle K in Sh for which K n S is a whole edge of K, we have 

l(KnS) > Ch. 

Here, l(K n S) denotes the length of the segment K nS. 
With these assumptions, and assuming that Vih is a regular finite element 

space in the sense of [2], we have the following preliminary lemmas, proved in 
the Appendix: 

Lemma 4.1. With the above assumptions, we have 

Trih Vh IIw ? C3 || Vh IIVi , VVh E Vih 

with C3 independent of h. 

Lemma 4.2. Under Assumptions 4.1, 4.2 and 4.3, the trace operator Trih has an 
inverse Tr-h' which satisfies 

Tr-ih Wh |IVi < C 11 Wh IIw , VWh E Wh 

with C independent of h. 

4.4. Uniform linear convergence of the discrete algorithm. 

Theorem 4.1. Under Assumptions 3.1, 4.1, 4.2 and 4.3, Algorithm (1 1)-(14) ap- 
plied to (31) converges linearly uniformly in h, that is, 

( 4rZ 1/2 
IAn+ - Alh < (1- a ) lAn-Alh 

Here the constants al and C do not depend on h. 
Proof. The proof is the same as in the continuous case when Vi is replaced 
by Vih and Tri by Trih. Hence, we first obtain the linear convergence of the 
algorithm with constants 

y a M2 IIBT'112 
IIBh Ih h 

2' h= y 

under the notation 

IlBhllh = sup IIBhvhllh 
VhEVh IIvhII1l, 
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IIBi1II = hE ~, IB-ih71whI,n 
h 

WhEWh lIWhIlh 

But here, we have 

Bh Vh = (Trlh Vlh , Tr2h V2h) 

Hence, we indeed have IIBhllh bounded independently of h as a consequence 
of Lemma 4.1 and Assumption 4.1 . Similarly, the boundedness of 11 B71 Wh lIh 
independently of h is a direct consequence of Lemma 4.2 . Therefore, the 
constant ah (resp. Ch) is bounded below (resp. above) by cZ (resp. C) 
independently of h, and our theorem is proved. o 

4.5. A simplified choice of 5h . The operator 5h acts numerically in Algorithm 
(11 )-(14) through the combination TrT 5h Trj . Therefore, our first idea is to 
ignore the equivalence condition stated in Assumption 4.1 and to choose 5h 
in order to get the simplest possible operator TrT 5h Trj . 

To this end, using the nodal basis (fiP)p and (01), of Vih and Wh, we first 
define the matrices 

Bilq = ' A l iq dx, 
s 

MWV = j l b'm dx. 

These "mass" matrices define the L2 scalar product on Tr Vih x Wh and Wh x 
Wh , respectively. With these matrices, the L2 projection Trih Vih = Tri Vi of 
an element Vih of Vih is characterized by 

Mw Tri Vi = Bi Vi 

which means that we have 

Tri = MWv Bi . 

Now a very simple explicit choice of TrT 5h Trj is certainly to take 

TrT5h Trj = T Bj 

corresponding to the matrix 

5h = MW2 

This construction depends on the choice of the nodal basis, has no equivalence 
in terms of operators, and therefore cannot satisfy Assumption 4.1. But it is 
very simple, and this is the reason why we have tested it in our numerical tests. 

To study the convergence of Algorithm (11 )-(14) in this case, we have to 
estimate I/ Bh IIh and I/ B,71 Ih. By construction, we first have for all Wh in 
Wh 

||Wh||h - (M2 W, W), 

I| wh2 IIV2(S) = (MWW , W) 

with W the vector of nodal values of Wh. Since the mass matrix Mw al- 
ways has its eigenvalues in the segment [chdim-1 , Chdim-1] with c and C 
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independent of h, we deduce 

C hdi- 11 W 11'2 < || Wh | < C hdim-1 11 W 112 ~~ ~ II W~ I2(S) ? hIW ~ IWIL2(S) 

Then, we first have 

||~~~~1 Bh V| Up1 112, "B"12 =- U II hvI IIhII sup 112 
VEVh 11 V "H 

< Ch dim1 SUp I L(S) 1 
V EVh Hi 

C im -I jjTyL2(S) di_1 
VEEVh V Hi (dml 

On the other hand, from Assumption 4.2 and the inverse Sobolev inequality on 
Wh, we have 

II Bw1l = sup 
V 

112 

VEImB-7 h/ V 
2 

h 

C 1h Trv II1/2 
c hdim Vh I 11 Bhv IIL2(S) 

-chdim 11P||Br2 
=d(dm 

Hence, the linear convergence of Algorithm (1 )-(14) is obtained with con- 
stants 

r 
=Ch (hdim -) 

and 

C= Ch h 

t1hdim CA 

hdim - I 

> (1-h). 

Remark 4.2. The choice 5?h = Id will lead to a matrix TrT 9h Tr1 = 

BT Mwl By and is not practical. We could replace Mw by a diagonal lumped 
mass matrix but then we recover our previous choice within the factor (h )dim - 

5. INTRODUCTION OF A FICTITIOUS SCHUR PROBLEM 

5.1. The fictitious Steklov-Poincare operator. It is worth discussing the effective 
choice of the operator 5'h: let us first indicate that this is by and large an open 
problem. In our case, some examples may be eliminated: 

- the choice 95%, = (-&h)I/2, where -Ah stands for the discrete Laplace- 
Beltrami operator on S, is theoretically correct but is very impractical in 3D 
situations; 
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s 

FIGURE 3 

- the choice 27h = 2=I Sih, where Sih is the discrete Steklov-Poincare op- 
erator introduced in [3], is not local and is defined implicitly. This makes the 
problem in displacement difficult (we must invert the elasticity operator for any 
degree of freedom located on the interface S). 

The above Steklov-Poincare operator is not practical if the domains Qi are 
too large, but it has interesting features. Mainly, it can be defined for any 
geometry and for any elliptic operator, including three-dimensional anisotropic 
heterogeneous elasticity, and it is a coercive positive selfadjoint operator defined 
on the interface space Wh . 

But then, for each face S, we can create in the spirit of Nepomnyaschikh [22] 
an artificial "dream" domain Qf on which to define this Steklov-Poincare op- 
erator. Therefore, with each face S, we associate a fictitious three-dimensional 
domain Qf having S as one of its faces. This domain is to be endowed with 
a finite element space Hh' (Qf ) and with an elasticity tensor Af 

Notation. The domain Q is decomposed as indicated in Figure 3, the fictitious 
domain being denoted by Qf . 

We now define the discrete Steklov-Poincare operator 9h : Wh -* W' by 

(32) (5'hqh, Ah) J| f(VUf) *V Trh' h dx VAh E Wh 
Qf 

where Uf is the solution of the following Dirichlet problem: 

(af(uf, vf) := fnf af(Vuf) * Vvf dx = 0, 
(33) VVf E Hoh(Qf) I H(Qf ) n Ker(Trh) 

LTrh Uf = qh on S. 

Here, Tr- I Ah is any function in H1l (Qf ) whose weak trace is equal to Ah. We 
also introduce the following space: 

(34) VihXt = {(Vh, Vf) E Vih x Hh(Qf) , Trih Vh = Trh Vf on S} 

With the above notation, we make the following assumptions. 

Assumption 5.1. The bilinear form af (uf, Vf) satisfies the standard continuity 
and ellipticity conditions 

17fla (u l C'llufllj,. lrl.vflll Vr Uf Vf EH(f 
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af (uf, uf) > C2IIufII 1 U f V Uf E Hh(Qf). 

Assumption 5.2. There holds 

inf sup f qhvhda > f > 0. 
qh EWh VhEH,(2f) 1. I qh IIL2(S)II1VhI1IL2(S)J 

We then have 

Theorem 5.1. Assumption 4.1 is satisfied if Assumptions 5.1 and 5.2 are. 

Proof. First, because of Assumption 5.2, Lemma 4.2 is applicable. Therefore, 
Trh is a continuous surjection from Hh' (Qf) onto Wh, with a continuous in- 
verse. Then, problem (33) can be written as 

af(uf - Tr 1 qh, Vf) = -af(Trh 1 qh Vf) 

V Vf E Hoh(Qf), (Uf - TrK qh) E HOh(Qf)f 

From Assumption 5.1, the above problem has a unique solution uf(qh) satis- 
fying 

11 UfII14Q < (C + 1 11 Tr- qh II14Qf < C4 'I + 1) 11 qh IIW 

By construction, we then have 

I (5'hqh ~Ah)I = Iaf(uf , Tr1' Ah)I 
< C 11 Uf III,nf 11 Tr) Ah 1I1,f 

< C' | qh IIW 1I Ih IIW 

In other words, 59h is a well-defined continuous operator from H1/2(S) in its 
dual. Moreover, since Trh uf(qh) = qh by construction, we may also write 

(9'hqh qh) = af(uf(qh), Uf,qh 

In this form, it is now clear that 59h is selfadjoint. To prove its coercivity, we 
rewrite this equality with qh = qh,. which implies 

(5h'qh qh) = af(uf(qh) , Uf(qh)) 

> C2 uff(qh) II, f 

~~ uf(qh) ~112 >C2 1|T 12 | rUflw 
IITrh Uf W r u 

1 ,2 || qh II2W . 

This is the last estimate needed to verify Assumption 4.1 . a 

We now turn to the practical solution of problem (1 1) in displacement when 
5h is defined by (32). This turns out to be very simple, since we have 
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Theorem 5.2. Under the above notation, the problem in displacement (11) takes 
the standard form 

(35) fai(ui, wi)+raf(uf , wf)=Li(wi) +(Sh(rqn-flI-A), TrihWi), 
| (Ui, Uf) E Viext 

This is a coupled problem posed on the union of Qi and of the fictitious domain. 
Proof. First, let ui E Vih . Then, with Trih ui E Wh we associate uf (extension 
of Trih ui on Qf), solution of (33), 

{af(uf,vf) = 0, VvfeHH(Qf) 
Trh Uf = Trh ui on S. 

From the definition of the discrete Steklov-Poincare operator (32), we have 

(5'h Trih Ui4, h) = af(uf, Tr-' )h) VAh E Wh- 

Moreover, by construction (ui, Uf) E ih 

We now rewrite (11). Replacing the expression (59 Trih ui, wi) by 
af (uf, Tr-1 Trih Wi), we get 

ai(ui wi) + raf(uf , Tr-' Trih Wi) 

= Li(wi) + (Sh(rqn- 1 - )7) , Trih Wi) , V Wi E Vih 

raf(uf, Wf) = 0, VWf EHh(Qf) 

(ui , Uf) E ihXt 

If we add the two equalities and if we set w = (wi, Tr-' Trih Wi + Wf), we 
precisely get (35). 

Conversely, from (35), we get the first line of the above system by setting 
w = (wi, Tr-' Trih wi) and we get the second line by setting w = (0, wf) 
with Wf E Hoh (Qi)f Altogether, this proves the desired equivalence result 
between (11) and (35). a 

But now, problem (35) is easy to solve. Indeed, if we use Lagrange multipliers 
to enforce the weak continuity Trih ui = Trh uf on the interface S between 
Qi and if, (35) takes the following form: 

(36) ai(ui , wi) + (Pih , Trih Wi) 

=L(wi) + (Sh(rqn- - An), Trih Wi) , V Wi E Vih 

(37) raf(uf, Wf) - (Pih, Trhwf) = 0 , VwfEH/l(Qf) 

(38) (/ih, TrihUi - Trh Uf) = 0, Vlih E Wh 

Moreover, a straightforward manipulation yields Pih = rIh TrEh u7. 
Problem (36)-(38) has the same structure as the global problem proposed in 

?3 of [18] and can therefore be solved by the dual conjugate gradient algorithm 
in ?3 of [18]. 
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6. NUMERICAL RESULTS 

6.1. Generalities. In this section we describe some numerical results obtained 
with Algorithm (1 1)-(14). Our preconditioner is the discrete Steklov-Poincare 
operator of a fictitious domain Qf, and the associated algorithm is compared 
with the unpreconditioned version (S9h = M2). This comparison is done for 
various mesh sizes and various numbers of subdomains in the case of matching 
and nonmatching grids. The numerical implementation has been done within 
the MODULEF Finite Element library in a multi-element and multi-problem 
framework. For all experiments to be described below, the stopping criterion 
of Algorithm (1 1)-(14) was 

|| U - U 112 < 10-4 
11Un 112 

In addition, the corresponding physical problem is the linear elasticity problem 
described in the introduction, with constitutive law 

a(+l)(l2) TreId +(+lE 8 e=1(VU +VUt) . 
(v + 1)(1 - 2v) (v + 1) ' e=2 (u+V' 

Here, E and v are respectively the Young modulus and the Poisson coefficient. 
The domain Q is a beam of section 0.5m x 0.2m and length lm (see Figure 

4). The beam is made of a quasi-incompressible material with E = 1011MPa 
and v = 0.49 and is partitioned into second-order tetrahedral finite elements. 

F1~ ~ ~ ~~~~~~~~~~~~~~~r 

FIGURE 4. The physical configuration 

Remark 6.1. The value ropt (optimal value of r) in the following tables was 
obtained by testing by hand different possible values. The lack of an automatic 
strategy for the choice of ropt is a limitation of the algorithm. 

6.2. Test over the discretization step h. 

Example 6.1. First, we have tested the dependency on h in the unprecondi- 
tioned version of Algorithm (11 )-(14) (?4.5) in the case where the beam has 
been sliced along its leading dimension into two domains of equal size. 
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TABLE 1. Test over h with the unpreconditioned version 
(matching grids) 

d.o.f: degrees of freedom 

h-I r/E iter. d.o.f in Q, d.o.f in Q2 d.o.f in S 
0.15 104 144 

23 0.18 104 (ropt) 98 810 810 270 
0.2 104 134 
0.1 104 260 

46 0.5 04(ropt) 182 5049 5049 891 
104 186 

__ _ 1.5 104 1 272 __ _ _ _ _ _ _ _ _ _ _ _ _ _ 

TABLE 2. Test over h with the unpreconditioned version 
(nonmatching grids) 

h-I 7 r/E iter. d.o.f in Q, d.o.f in Q2 d.o.f in S 
0.13 104 142 

14 0.15 104(ropt) 120 810 525 225 
0.2 104 148 
0.5 104 504 

28 1.5 104(ropt) 400 5049 3159 729 
____ 2 104 402 _ _ 

Tables 1 and 2 show how the number of iterations and the optimal value of 
r depend on the parameter h, roughly showing an h-I behavior. Moreover, 
the speed of convergence is very sensitive to the operator Tr-' ; this explains 
the strong increase in the number of iterations for a finer mesh in the case of 
nonmatching grids. 

Example 6.2. Now, we consider the same examples as above, but solved with 
the fictitious Schur preconditioner of ?5. The fictitious domain Qf ( 0. 1m x 
0.5m x 0.2m) is applied on the interface S and is fixed on Ff . It has the same 
constitutive material as the beam (Figure 5). 

Tables 3 and 4 show that the preconditioned Algorithm (11 )-(14) converges at 
a rate which is independent of r and of the mesh size. Only a slight dependence 
on h appears in the case of nonmatching grids. 
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I I Ql | Qf Q2 rf 

I D 

------------ - - - - - - -~ 

X- L~- - 

FIGURE 5. Decomposition in two subdomains 

TABLE 3. Test over h in the case of matching grids 
(fictitious domain) 

step r iter. d.o.f in Q1 U QOf d.o.f in Qf U Q22 d.o.f in S 
0.6 64 

h 0.5(r0cpt) 60 990 990 270 
0.4 7 4 
0.6 5 8 

h/2 O.5 (r0pt) 56 5643 5643 891 
_ _ _ _ 0 .4 1 6 6 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

TABLE 4. Test over h in the case of nonmatching grids 
(fictitious domain) 

step r iter. d.o.f in Q1 U Q d.o.f in Of U Q2 d.o.f in S 
0.6 68 

h 0.5(r0pt) 64 960 675 225 
0.4 7 2 
0.6 86 

h/2 0.5 (r0 t) 7 6 5535 3645 729 
_ _ _ 0 .4 1 9 6 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

Example 6.3. Here, we consider the same beam as in Example 6.2, but decom- 
posed into four geometrically identical subdomains (Figure 6). 
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I -li | 'Q2i 21 i3 1KI 4 1 . , ,, ,o -1-- 1-' - - -J 

S12 S23 S34 

FIGURE 6. Decomposition in four subdomains 

TABLE 5. Test over h in the case of matching grids 
(fictitious domain) 

d.o.f in d.o.f in d.o.f in d.o.f in d.o.f in 
step r it9e2r |, QuO. Qf|2 U i=1 Qf1 | 3 U3=2 '2' 92 Q U S 

h 0.4 ( r'pt) 7 90 630 810 810 |630 |810| 

0.3 9 4 

|h/2 |0.40 r5pt) |88 |3267 3861 3861 |3267 |2673 

TABLE 6. Test over h in the case of nonmatching grids 
(fictitious domain) 

d.o.f in d.o.f in d.o.f in d.o.f in d.o.f in 

I ~~~~~~?I i I I3Uj 

step r iter. Q lu Qcr f 02 U2=l Qf Q23 Ui3=2 Qf fu Q4 S 
0.25 1 18 

h . 
(rt) 780 600 600 750 450 67 

h1 . rt) 104 3159 2673 3645 2187 218 

Tables 5 and 6 show that there is a slight increase in the number of iterations 
when we refine the mesh in the case of matching and nonmatching grids . The 
explanation may be the fact that we choose the same coefficient r on each 
subdomain (it might be better to choose different r on different subdomains). 
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Compared to the unpreconditioned version, CPU times and residual histo- 
ries (Figures 7 and 8) show that our preconditioner turns out to be preferable 
when dealing with fine grids. The CPU times obtained for the Schur version 
also include the time required for memory swapping, which is very large for a 
problem of this size run on a Sun Sparc 2 workstation . 

resid. 1 I - 

tunprecond.' 
precond.' - 

io-i 

10-3 10-2 

0 100 200 300 400 500 

iterations 

FIGURE 7. Residual against the iterations for a finer grid in the 
case of matching grids 

resid. 1 I 

'unprecond.' 
'precond.' - 

0 100 200 300 400 S00 600 700 

iterations 

FIGURE 8. Residual against the iterations for a finer grid in the 
case of nonmatching grids 
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TABLE 7. Comparison with the unpreconditioned version for a finer grid 
in the case of matching grids 

h I iter. residual total approximate time 
Mw2 514 0.993 10-4 2146 sec. 
fictitious Schur 88 0.995 10-4 1785 sec. I 

TABLE 8. Comparison with the unpreconditioned version for a finer grid 
in the case of nonmatching grids 

5?h iter. residual total approximate time 
MW2 730 0.993 10- 2310 sec. 
fictitious Schur 104 0.963 10- 2250 sec. 

6.3. Comparison with Neumann-Neumann preconditioner. 

Example 6.4. Here, our domain is a beam ( Im x 0.5m x 0.2m) consisting of 
parallel pencils. Two of them are made of a compressible material with Em = 
1 MPa and v = 0.31, the third is made of a quasi-incompressible material with 
Er = 103MPa and v = 0.49 (see Figure 9). 

In Tables 9 and 10, the CPU time on a sequential machine for Algorithm (11)- 
(14) with fictitious Schur preconditioner is compared to the CPU time for the 
Neumann-Neumann algorithm of [18] in the case of matching and nonmatching 
grids. The advantage of the second approach lies in the fact that it is less 
sensitive to the operator Tr-' in the case of nonmatching grids. A second 
advantage of the second approach is that it does not require the a priori choice 
of a parameter rpt. 

Ql S 912 f 
g 

FIGURE 9 
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TABLE 9. Comparison with the Neumann-Neumann preconditioner 
in the case of matching grids 

Neumann-Neumann fictitious Schur 
d.o.f in Q 6102 7074 
assembly and factorization time 760 sec. 651 sec. 
iterations 66 74 
iterations time 807 sec. 765 sec. 

[total time 1567 sec. 1416 sec. 

TABLE 10. Comparison with the Neumann-Neumann preconditioner 
in the case of nonmatching grids 

Neumann-Neumann fictitious Schur 
d.o.f in Q 8100 9072 
assembly and factorization time 910 sec. 691 sec. 
iterations 72 131 
iterations time 960 sec. 1444 sec. 

[total time 1870 sec. ' 2135 sec. 

7. CONCLUSION 

A Lagrangian formulation of a domain decomposed elasticity problem has 
been introduced and studied. For a small number of subdomains and very fine 
grids, this approach leads to efficient numerical algorithms, even in the case of 
nonmatching grids. Indeed, with the choice of adequate preconditioners such 
as the one introduced in ?5, the method is proved to converge independently of 
the discretization step, which is confirmed by our numerical tests. Nevertheless, 
its practical implementation still faces the problem of the optimal choice of the 
regularization parameter r. Moreover, its convergence speed is only linear, 
and it does not involve any coarse grid solver. For these reasons, more classical 
algorithms based on preconditioned Schur complement methods might still be 
more competitive. 

APPENDIX 

Appendix 1. Proof of Lemma 4.1. By definition of Trih (the L2 projection oper- 
ator from Vih into Wh), we have for any v in H1(W) - {v E H1(S) , v = 0 
on aOQDnS} 

11 Trihv IIo,s < 11 I lo,sX 

We now denote by rh the Clement operator introduced in P. Clement [7] 
and described in F. Brezzi and M. Fortin ([6, p 105]). By construction, this 
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operator satisfies 

11 rhv II,s < C 11 V IIi,s 

11 rhv - v Ilo,s < Ch 11 v IjI,s 

By setting Trihv = rhv + Trih V - rhv ,we then have for any v in H1(W) 

Trih v IIi,s ? | rhv 111,s + 11 Trihv - rhv I1,s 
< || rhv IIi,s + Ch 1 11 Trih V - rhv IIo,s 
< || rhv IIi,s + Ch1 (|| Trih v - V IIo,s + 11 V rhV Ilo, s) 
< 11 rhv III,s + 2Ch-1 11 V - rhv IIo,s 
< Cjjv jII,s' 

By interpolation between L2(S) and H1 (W), we have finally 

11 Trihv IIW < CIIvII lw W 

A key point in the above proof is the inverse inequality 11 Wh III,S < 
Ch- 1 11 Wh Ilo, s used on Wh, which requires that the triangulation on Wh must 
be uniformly regular. 

If Tr Vih is also built on a uniformly regular triangulation, then the same 
lemma holds also for the L2 projection nih onto Tr Vih. 

Appendix 2. Proof of Lemma 4.2. From Assumption 4.2, there exists a mapping 
B1-7 from Wh into Tr Vih such that 

J B7iWhuh da = J Wh1h da, Vuh 
E Wh 

|| B-lWh |lo,s < 11 Wh llo,s- 

By extension, we will also denote by B1-lw the action of B71 on the L2 
projection of w on Wh for any w E L2(S). We now define 

Wih = lIihWih + B1 (Wih - flhiWih) E Tr Vih Vwi E Wh, 

with nih the L2 projection operator onto TrVih. By construction, we have 
Trih Wih = Wih and 

11 Wih IIi,s < 11 rlihWih IIi,s + 11 Bi (Wih - IlihWih)III,S 

But, since the triangulation is uniform on Vih, we have 

1| B' (Wih - lIihWih)ll,S < C - rIihWih)110,S 
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Hence, it follows from Appendix 1 that I Iih I , s satisfies 

W1 jih,s < 11 IihWih IIi,S + h 11 B- (Wih - IlihWih) IIo,s 

< Cjj Wh IIi,S + -h || Wih - rIihWih IIo,s 

< Cjj Wh IIi,S + Th || Wih - rhWih IIo,s 

< (C + ;?h ) || Wih IIi,s fJh 

< C(1+ C%) IIwih IIl,s 

By interpolation between H1 (W) and L2 (S), we then obtain 

|| Wih IIW < C 11 WihIIW 5 

We now simply define Trl.1i Wh as the solution of the Dirichlet problem 

I V 
Trih 

wh * V vh dx = 0, V Vh E Vi? , TrThIwh E JKh, 

Trh wh = ih on S 

posed on the space 

Vi? = {Vih E Vih , VihjS = 0 } 
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