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A DUAL FINITE ELEMENT APPROACH FOR STRESSES 
OF ELASTO-PERFECTLY PLASTIC BODIES 

P. NEITTAANMAKI, V. RIVKIND, AND G. SEREGIN 

ABSTRACT. Primal and dual approaches are introduced for the elasto-perfectly 
plastic problems. We prove theorems for approximating the stresses of elastic- 
perfectly plastic bodies. 

1. INTRODUCTION 

The stress state of a perfect elastic-plastic body is determined by solving a 
problem which is known as the Haar-Karman variational principle (see, for 
instance, [3]). According to the modern theory of duality the corresponding 
problem may be interpreted as the dual problem to the variational problem for 
displacement fields (the direct problem) (see [3]). Unfortunately, its functional 
has linear growth at infinity relative to the deviator of strain tensor. For this 
reason solutions with jumps of discontinuities can appear (see [9]). Possible 
nonregularity of solutions in the direct problem makes it difficult to obtain a 
priori error estimates for numerical schemes (finite element method, for ex- 
ample). However, the solution of the dual variational problem is known to 
be smoother. In particular, the solution belongs to the Sobolev space WI 2. 
From the mechanical point of view, solving a dual variational problem is more 
preferable since elastic and plastic zones are determined by the yield condition 
expressed in terms of the stress tensor. 

In this work we consider primal and dual approaches for elasto-perfectly plas- 
tic problems. We prove that the approximate solution of this problem converges 
to the exact solution, and we give an error estimate. 

Finally, it should be noted that ideas used in the present paper may be applied 
also to other variational problems whose functionals have linear growth (such 
as the minimal surface problem, the Plateau problem, etc.). 

2. PRIMAL AND DUAL FORMULATIONS 

Consider an elastic-plastic body being in equilibrium under action of the 
given forces and occupying a domain Q in Rn ( n = 2 or n = 3 ). We suppose 
that the boundary of Q2 is Lipschitz continuous. The direct variational problem 
reads as follows. 
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Problem (s5): Find a displacement field u E Vo + uo such that 

(2.1) I(u) = inf{I(v) v E Vo + uo}. 

Here, 

I(v) j g(e(v)) dx - M(v) 

and the integrand of the problem has the form 

g(e) : Kotr2e +go(eD(V)|) ye eM"'n 

with 

go(t) = 2 {if ltl < to = Xk* go (t)={2t 
,u (21 t Ito. - to2) if Itl > to. 

Above, Ko, u,u k* are positive constants, D :=e_ tr e I denotes the deviator 
of the matrix e e MnXn (the space of all symmetric (n x n) matrices), tre 
means the trace of e and II is the identity matrix in Mn Xn . Moreover, 

M(v):= f v dx+J F v dl, vE We ,2(Q;Rn) 

where f, F are the given volume and surface loads, respectively, uo is a given 
function, 

Vo := {v E W1'2(Q; Rn) : v = O in aOQ}, 
and a1 Q, 02Q are parts of the boundary OQ so that 

aIKn0aQ =0, 01Qnn2Q =Q. 

We assume that 

(2.2) uo E WI2(Q; Rn) f E Ln(Q; Rn), F E L??(Q; 02Q), 

where Wp, q and Lq are usual Sobolev and Lebesgue spaces, respectively. 
Together with the Problem ( 5D ) we shall consider the variational problem for 

determining displacement fields in plasticity theory with small linear hardening 
3E (O,5u]. 

Problem (6P,5): Find u3 E uo + Vo such that 

(2.3) I(u3) = inf{I3(v): v E Vo + uo}. 
Here, 

13(v) gj g3(e(v)) dx - M(v) 

and 

I3t 24u -c5 gj(e6) :2KO tr 2 e + gO5(jgD (V)1), go'5(t) := 2jt2 + 2. go (t) 2 ~~ 
~~~~2 + 24ug(t 

for e E MnxXn, t E R. It is well known that under conditions (2.2) Problem 
(6p3 ) possesses a unique solution u3 (see, for example, [3, 13]). 

Now we can formulate problems which are dual for problems ( 6P ) and ( es), 
respectively. 
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Problem (39 *) Find a stress tensor a E Qf n K such that 

(2.4) R(a):= sup{R(T) T E Qf n K}. 

Here, 

R(T) (e(uo) T - 2a(T, T)) dx - M(uo), 

where 

a(,T a) : 2K trz tr +-2 TD: CD n + 24u 
with T and a from Mnxn. Moreover, 

K :={T E L2(Q; MsnXf) :Y((x)) < for a.a. x E Q} 

denotes the set of admissible stress tensors satisfying the Mises yield condition 
and 

Qf: {T E L2(Q; MfXf) JT: e(v)dx = M(v) Vv E Vo} 

denotes the set of all stress tensors satisfying equilibrium equations in stresses. 

Remark. In this case, 7: Mnxn -+ R is defined as follows: 

,~7(T) I= -T x2k. for T E Mnxn. 

If we suppose that the condition 

(2.5) a I EQf and 3>0 :St(al(x))< -A fora.a.xE 2 

holds, then the Problem (39* ) has a unique solution, and the following equality 
is valid (see, for instance, [3]): 

(2.6) inf('9) = R(a) = sup(,9*). 

Unfortunately, the Problem (Y ) in general is not solvable and, therefore, it 
must be relaxed. The corresponding variational relaxation was made in [1, 
7 and 12]. Its weak solution belongs to the space BD(Q) of vector-valued 
functions of bounded deformation (see, for instance, [13]). 

The problem which is dual to Problem ( 9 ) may be posed in the following 
way. 

Problem (g*): Find a3E Qf such that 

(2.7) Rj(a3) = sup{R3(T) T E Qf} 

where 

R3(r) := R(T) - _ - +) j(JaDI - V/2k*)2 dx 

and (z)+ is the nonnegative part of z. 
Problem (Y%,* ) is uniquely solvable as well, and 

(2.8) J3(u3) = Rj (aj). 

Concerning the relation between Problem (39,5) and Problem ( Y* ) we have 
the following result: 
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Theorem 1. Suppose that the conditions (2.2), (2.5) hold. Then 

(2.9) R3(a3) -* R(a) as c -* 0, 

(2.10) 2ja(a - a, a - a) dx < R3(a) - R(or). 

Proof. In view of the inequalities 

go(t) < go3(t) < gou(t) for all t E R and J E (O, u], 
we have 

inf I(v) < inf I(v) = I3(u3) < I3(uo) < Ig(uo). 
vE Vo+uo vE Vo+uo 

Thus, the equality (1.6) gives us the following estimates: 

(2.11) | JCD(u3)I2 dx < Cl, div2u3 dx < C2, jIe(u)l dx < C3 

with positive constants C1 which do not depend on 3. 
Next, it is clear that the necessary and sufficient condition for the minimum 

of the problem may be written in the form 

(2.12) ja1: e(v) dx = M(v) for all v e V?, 

where 

aa = Oag (0(u\) =5CDD(UJ) 
' + Ko divIu 1[ 2 - go3 D ( UeD(3I I CD (u3) 

=6D(u3)+ 2 Ko divu5 1V + 2 a (u) 

Setting 

a 2u ( s,D(aa - 2Ko div ua ag, 2g- J 
we can assert that 
(2.13) age K. 
The theory of duality gives the extremality relation 

(2.14) aO : e(u) - g (e(u5)) - 2a (a, a3) = 0 a.e. in Q. 

Taking into account the equilibrium equations (2.12) and the estimates (2.11), 
we arrive at 
(2.15) 

j(u)= j{aiIeD(u3)I2?ag: e(u )-2a(a a ) }ao dx- M(u3) 

= j o, : e(u_ uo) dx - M(u3 - uo) + 2.jIeD(u3)I2 dx + R(a) 

2u j (a3 _ 6eD(uJ) - 
(5 

Ko div uI ): e(u3 - uo) dx 

-M(u _ -uo) + |CD(u3)12 dx + R(aO) 

= /1(3) + R(aco) - j D D(uJ)j2 dx 

< f(3) + R(ao), 
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where fi(3) -* 0 as 3 -* 0. Presupposing that the statement (2.9) is false, we 
have 

(2.16) A lim supR3(a) > R(a). 

Then there are sequences such that 

(2.17) R3k(a3-k) -* A, 

(76 ao E K weakly in L2(Q;Mxn) 

It is very easy to see that Co E Qf . By the upper semicontinuity of the functional 
R on L2(Q; MnXfn) we get from (2.15), (2.16) and (2.17) 

(2.18) R(a) < A < R(co), Co E Qf n K => R(o) < R(a). 

So, we obtain a contradiction. We now prove the statement (2.10). A necessary 
and sufficient condition for the extremum of the Problem ( 7* ) has the form 

2 19) In a(a 1, T - a6) + (,a 2 (JaDl vr2-ka)+ UJD _a 

-(uo): (T - a)} dx = 0 

for all T E Qf . Thus, we can write 

R(a) - R(a)=j{ -a(a a) + e(uo): a + a(a Ua) - ,)e(uO) :a 

+ (- - -(IaDI - _/<k*)2} dx 

= j { - 2a (a - a3 - a) - a(a , a - a3) + e(uo) (a - a3) 

+1 (1 - 1 D) (IaDI - k*)2} dx 

= --| ja(a - a3, a - a") dx 
2 

+ (qf +8) j (1a3D I -x/k* )+ a3: Da3D ) dx 
1 1 _1 ) JfD aJ _ (kD )+ dx 

+ - - () a - j2a k - + 2 D dd 
?-J~~a(a-a (la 2k) d +~ (dx -JI3D /k4d 

= -- j a(a - a3, a3 - a) dx. 
2 

The assertion (2.10) is proved. 0 

3. DUAL FINITE ELEMENT APPROXIMATION AND ERROR ESTIMATE 

To avoid some technical difficulties, we consider the case when f = 0, 02Q - 
0 and Q is a polygon or a polyhedron. Then Q Qf is transformed into the 
subspace 

Q {r E L2(Q; Mxn,n) div T = 0}. 
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Let Qh be some finite-dimensional subspace in Q. We consider the following 
finite-dimensional problem. 

Problem (3q*h): Find Ua, h E Qh such that 

(3.1) Rj(a ,h) = sup{R3(Th) Trh E Qh} 

Theorem 2. The following error estimate is valid: 
(3.2) 

1,a -<h - a?2 h- L2(Q;MnXn) + R3 (a") - R(a)) 

Here, the positive constant C does not depend on h, 3 and a. 
Proof. A necessary and sufficient condition for the maximum of the Problem 
(3;*h ) looks formally like (2.19): 

(3.3) 
j {a(a^ , hTh - a36h) - e(uO) : (Th - a h) 

+1 l( 9 
2,hD:laDI a (ThD - a ,hD) d 

+ V/l~"l- x/k*)?+~ jaDi dx =0 

for all Th E Qh . Setting Th = 0 in (3.3), we obtain the energy estimate 

(3.4) | a(a(f6^ a9 + (- )(la6>D-q +2 dx < C4 

where the positive constant C4 depends only on lle(uo) lL2(0;Mnxn). By the 

equations (2.19) and (3.3), we have 

j{a(aha - a6, h6 - a) 

+ l a) ((aDtI - _k*)+ 

~(ah - 
|-X k*)avh ): (ahD _a(hD)} dx 

= j {a(aor', Th - a5) - e(uO) : (T h - a5) 

+ ((la 
( 

DI - a(_ k*) 
,hD: ( h 

_a) } dx. 

It follows from the previous equality that 

ja(a3 h -a3, a h - a) dx 

? c5 
(lla, hIIL2(Q;;Mnxn) 

+ 
lle(UO)llL2(Q;Mfnxn) 

+ 1 1l(la3 DI - x/-k*)+llL2(Q)) ||Th -aT|lL2(0;MSnxn). 

Thus, the required estimate (3.2) follows from (2.10) and (3.4). a 

Remark. For n = 2 one can find in [6] some useful examples of the subspace 
Qh. Corresponding finite element approximations are affine at each element. 
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The simplest way of constructing such elements is based on introducing Airy's 
stress function and applying the composite piecewise cubic plate bending ele- 
ments of Hsieh-Clough-Tocher (see, for instance, [2]). 

Suppose that 

(3.5) IV v9' IIL2? Cl 

with a constant Cl which does not depend on 3. Then for the finite element 
approximation in question we can state 

(3.6) inf ITIh - a IIL2(Q ;Mlxn) < C2h (does not depend on 3). 
Th EQh 

We choose 3 = h in (3.6) and (3.2). For this case the following estimate holds: 

(3.7) IIcyhI h I IIL2(Q; Mnxn) < C3V7h+Rh() -R(a) 

Sometimes it is possible to find estimates for Rh (qh) - R(a) from the mechan- 
ical point of view or as a posteriori estimates. 

Unfortunately, the authors have failed to prove the estimate (3.5), but its 
local variant has been proved in [10] and [1 1], i.e., 

1 Iva'l IIL2(Qf,)< C4 V QO C Q 
with a constant C4 which depends on dist(Lo, AO) but not on 3. 

The proposed dual finite element method gives directly approximations for 
stresses and corresponding plastic and elastic zones. In the primal finite element 
method it is necessary to calculate first derivatives of displacements to get the 
corresponding information. 

For other approaches of finite element approximations to the solution of the 
Problem (.9*) we refer, for instance, to [4, 8] and, in optimal shape design 
context, to [5]. 
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