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A SECOND-ORDER ACCURATE LINEARIZED DIFFERENCE SCHEME 
FOR THE TWO-DIMENSIONAL CAHN-HILLIARD EQUATION 

ZHI-ZHONG SUN 

ABSTRACT. The Cahn-Hilliard equation is a nonlinear evolutionary equation 
that is of fourth order in space. In this paper a linearized finite difference 
scheme is derived by the method of reduction of order. It is proved that the 
scheme is uniquely solvable and convergent with the convergence rate of order 
two in a discrete L2-norm. The coefficient matrix of the difference system is 
symmetric and positive definite, so many well-known iterative methods (e.g. 
Gauss-Seidel, SOR) can be used to solve the system. 

1. Introduction 

We consider the Cahn-Hilliard equation 

(1.1) Ut + A2U = A (U), (X, y, t) E Q x (0, T] 

for u(x, y, t), subject to the boundary conditions 

au a 
(1.2) - =0, -(0(u)-Au)=0 on aQx(O,T] 

and the initial condition 

(1.3) - u(x, y, 0) = u0(x, y), (x, y) E Q, 

where q(.) = y'(.), q(u) = y(u2 _,32)2/4, y > 0, Q is the interior of the 
rectangle [0, L1] x [0, L2], and v is the outward pointing normal to aQ. This 
initial-boundary value problem arises in the study of phase separation in binary 
mixtures [1 - 2]. In [3] a continuous in time Morley finite element Galerkin 
approximation for (1) is presented and an optimal-order error bound in L2 
derived. However, a nonlinear system of ordinary differential equations remains 
to be solved. The authors of [4] developed a completely discrete difference 
scheme for (1), which was also nonlinear. In this paper, a linearized finite 
difference scheme is derived for (1) by the method of reduction of order [5 - 7] 
(see ?4 below). The coefficient matrix of the difference system is symmetric 
and positive definite, so many well-known iterative methods (e.g. Gauss-Seidel, 
SOR) can be used to solve the system. We prove that the difference scheme is 
uniquely solvable and second-order convergent in a discrete L2-norm. 
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Let M1, M2, K be integers and hI = LI/MI, h2 = L2/M2, T = T/K 
such that hi = alh, h2 = a2h, T = a3h"+l/2, where a1, a2, a3 and E are 
positive constants. The optimal choice for E is 1/2. We use the notations 

Qh= {(xi, yj)lxi = ih1, yj = jh2, 0 < i < M1, 0 < i < M2}, 

QT = {tkltk = kT, z < k < K}. 

Suppose u = {uij1O < i < M1, 0 < j < M2} and v = {vij0o < i < M1, 0 < i < 
M2} are two mesh functions on Qh. Denote 

D+xuij= (ui+,j-uij)lhl, D-xuij = D+xui-,j, j 5x2uij= D+xD-xuiJ; 

D+yuij(u,j= ( ,-uij)lh2, Dyuij = D+yui,j,, 35uij = D+yuij; 

Ui+1/2 j = (Ui+l,j + uij)/2, Ui,}j+12 = (Ui,j+l + uij)/2 

and define the inner product 

MI -I M2-1 

(u, v) = hih2 ji A ijuiv 

Li=l j=l 

1 M1-1 1 M2-1 

+ (UioVio + Ui,M2Vi,M2) + 2 E (UojvoJ + UM,JVM, j) 
i=l ~~~~~~~j=1 

+ -(uOOvoo + UMI ,OVM1 ,O + UO,M2VO,M2 + UM1 ,M2VM1,M2) 

and the discrete L2-norm 

IuI I= (uU. 

In addition, if w = {wkIO < k < K} is a mesh function on QT, we use the 
notation 

wk = (wk+l + wk-1)/2, Atwk = (wk+l -wk )/(2T). 

It is obvious that 

MI M2 

(u, v)=h1h2 E (UijVij + ui-l,jvi-l,j + uivj-lvi j-l + Ui-,1j-Vi-, j-1)/4 
i=1 j=1 

and 

A wk = (wk - wk-I)/T. 

Let 

v = q(u) - Au; 
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then (1) is equivalent to 

(2.1) ut=Av, (x,y,t)EQx(0, T], 

(2.2) v = (u)-Au, (x, y, t) E Q x (0, T], 
au a u a u a u 

(2.3) - 0, 
aX X=O ax x=L1 ay Y=O ay y=L2 

0 < x < L1, 0 < y < L2, 0 < t < T, 

Ov _ v _ v _ v 
(2.4) - 

- 0, aX X=O ax x=LI ay Y=O ay Y=L2 
0 < x < L1 , 0 < y < L2 , 0 < t < T, 

(2.5) u(x, y, 0) = uo(x, y), (x, y) E Q. 

Our difference scheme for (2) is as follows: 
(3.1) 
U9- = uo(xi, yj), U. =Uo(xi,yj)+TUI(Xi,yj), 0?<i?<M1,0?<j<M2; 

for 1 < k < K - 1 

(3.2) Atuij = 3Xvij + y2vij, 1? i < MI -1, 1 <j < M2- 1, 

(3.3) Atuk0 = SX2Vko + 2D,y Vk 1h2, 1 < i< MI-1 

(3.4) Atu4M2 =' 6xvVM2- 2D_Yvr M2/h2, 1 < i < M-1, 
(3.5) M 1 M 1 M 1?jM21 

(3.5) Atuokj = 2D+XVokjIhl + oyvokj 1 <_ i < M2-1 

(3.6) AtuM,1j -22D-xvM ,j/hI + 32vk M,,j, 1 < j< M2 1 

(3.7) Atu0 = 2D+xvk0/Ih + 2D+yVko/h2, 

(3.8) Atuk1,0 =-2D-xvk ol/h1 + 2D+yvk1 0/h2, 

(3.9) Atu ,M2=2D+x v, M2/hl -2D_y, M2/h2, 

(3.10) Atu I M2 =-2D-xv ,M2/hI - 2D_yVM,M2/h2, 

(3.11) vk = 0(uk) -(x2u + Ukj), 1 < i < M1- 1 < i< M2-1, 

(3.12) Vfkr = O(Uk) (3(x2Uk + 2D+yUkulh2), 1 < i < Ml -1, 

(3.13) V M2 = q$(Ui 2) - ((5XUM2 -U2D-YUi4M2lh2), 1 < i < Ml - 1, 

(3.14) vj = 2D-Y)-(2D+Xuj/h1 +3buo), 1 ?1? M2-1, 

(3.15) vjM1,j = (uM1,j)-(-2JLXuM1,1/h1 +3byuk 1,1), 1 <1 j<M2- 1, 

(3.16) vok0 = q(uO0)-(2D+Uuo,/h1 +M2 

(3.17) v1 
,V = q(Uk1 ) - (-2D, Uk 1 0/h1 + 2D+YUMI ,0/h2), 

(3.18) Vo,M2 = q(z4 M2 )-(2D+Xu0,hM2 /h 1-2Iy u<, M2 h2), 

(3.19) Vk 
'M2 

= q(uk1 k2 -(-2D_XUM1,M2/h1 -2 k uM1,M2/h2), 

where u1 =A(+(uo) -Auo). 

The relations (3.2)-(3. 19) can be rewritten in vector-matrix form as 

(4. 1 V) (Uk U uk k)/T =-Avk 
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(4.2) vk = q(uk) + Auk 

where 

(AW)ij -=-(32w +~ Wj), 1 < i <Mi -1, 1 <j<M2- 1, 

(Aw)jo =-(52W,o + 2D+Ywio/h2), 1 < i < Ml - 1, 

(Aw)1,M2 =-(6x2w,M2-2D_ywI,M2/h2), 1< i<Ml -1, 

(Aw)oj = -(2D+xwoj/hl + 62woj), 1 < j ? M2-1, 

(5) (Aw)M,,j = -(-2D_XwM.,,j/hl + J2WM , <), 1 < j < M2- 1, 
(Aw)oo = -(2D+xwoo/hj + 2D+ywoo/h2), 
(Aw)M1 ,o = -(-2D_wXwM ,o/hj + 2D+YWM ,o/h2), 

(Aw)o,M2 = -(2D+X wo, M2/hl - 2D-Ywo, M2 /h2), 

(Aw)M , M2 = -(-2D_XwM ,M2/hl -- 2D_YWM ,M2/h2); 

((u k))ij = q(Uij), O<i?Mi,O<j<M2. 

Substituting (4.2) into (4.1), we obtain 

(6) (I + TA2)Uk = Uk-I _ TAq(uk), 1 < k < K- 1, 

where I is an (Mi + 1) x (M2 + 1) unit matrix. If uk is determined, then 
uk+i = 2uk uk-i. We construct the difference scheme (3.1) and (6) for (1.1- 
3). 

The main result of this paper is the following theorem, which is proved in 
?3. 

Theorem 1.1. (I) The difference scheme (3.1) and (6) is uniquely solvable. 
(II) If (1.1-3) has solution u(x, y, t) E C6(Q x [0, T]), then the solution 

of the difference scheme (3.1) and (6) converges to the solution of (1.1-3) in the. 
discrete L2-norm, and the rate of convergence is O(hi + h2 + z2). 

2. Some anxiliary lemmas 

Lemma 2.1. Let A be defined in (5); then A is symmetric and positive semidef- 
inite. 
Proof. Through simple and trivial calculations, we may obtain (Au, v) - 
(u, Av) = 0 and (Au, u) > 0 for any mesh functions u, v on Qh. So A 
is symmetric and positive semidefinite. 

Lemma 2.2. If f E C4[a, b] and 

(7) ~~df (a) = (a) =dft (b) =d3(b) O, 

then 

(8.1) ~~~d 2f 2 (8.1) ddX2 (a) = h2 [f(a + h) - f(a)] + O(h2), 

(8.2) dx2 (b) = - h2 [f(b) - f(b - h)] + O(h2) 

for small h. 
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Proof. Using Taylor expansion, we have 

df __2f 2 ld3f 3 4. f(a + h) = f(a) + (a)h + 2{ d h (a)h2 + + (h dx (a)h3 +0(h4). 
Noticing (7), we obtain 

f(a + h) = f(a) + 2 dx2 (a)h2 + 0(h4). 

It follows that 

x2 (a) = h2[f(a + h) - f(a)] + 0(h2). 

This is (8.1). The other relation (8.2) can be obtained similarly. 0 

Lemma 2.3. Let C1, C2 and ak, k = 1, 2, 3, ..., be positive and satisfy 

ak+I < (1 +cIT)ak + C2T, k = 1, 2, 3,... 

then 
ak+l < exp(clkT)(al + C2/cl), k = 1, 2, 3,. 

Proof. We have 

ak+1 < (1 + CIT)ak + C2T 

< (1 + CIT)[(l + ClT)ak-I + C2z] + C2T 

= (1 + CIT)2ak-1 + [(1 + CIT) + 1]C2T 

< *... 

< (1 + CIT)ka, + [(1 + ClT)k-1 + (1 + CIT)k-2 + ... + (1 + CIT) + 1]C2T 

= (1 + CI1T)ka, + {[(1 + cIT)k _ 1]/[(1 + CIT) - 1]C2}-T 

<exp(cIkT)(aI +C2/CI), k= 1,2,3,.... E 

3. The analysis of the difference scheme 

We now come to the proof of Theorem 1.1. From Lemma 2.1 we see that the 
coefficient matrix of the system of linear algebraic equations (6) is symmetric 
and positive definite. So the difference scheme (3. 1) and (6) is uniquely solvable. 
This completes the proof of the first part of the theorem. 

Since q(u) = I d [y(u2 - f2)2] we have 

aO(u) = 2 (32- f2)aU ao(u) U2 - 2)au 
ax ax' ayv ay, 

Noticing (2.3), we have 

aO(u) _ aO(u) _ aO(u) _ Oq(u) - 

(9) OX X=0 ax x=Ll ay Y=0 ay y=L2 

O < x < LI, O < y < L2, 0 < t < T. 

Differentiating (2.1) with respect to x, we have 

a au a O2v O2v 
ax at aK x(x2 + y2) 
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or 
a au a3v a2 a av 
at ax ax3 ay2 (aX 

Noticing (2.3) and (2.4), we obtain 

a3v a3V _ 

(10.1) a= |o X3 -0, 0? <y<L2 O<t<T. 
X=O ~x=L1 

Differentiating (2.1) with respect to y, we obtain 

(10.2) a3V I 3 I L < X < La O < t < T. 
aYy=O = y= L2 

Similarly, differentiating (2.2) with respect to x and y, respectively, and using 
(2.3), (2.4) and (9), we get 

a3U _ a3U _ a3U a93U = 

( 11 ) ax IX=O ax x=L1 a Y=0 Y a Y=L2 
0 < x < L1, 0 < y < L2, 0 < t < T. 

Define the following mesh functions on Qh X fl 

uik = u(Xi R Yi , tk), Vijk = V (Xi, Yi tk), u,k = ugk - Ukj vg; Vjk-g. 

Using Lemma 2.2 and Taylor expansion, noticing (2.3), (2.4), (10) and (11), we 
obtain the error equations of the difference scheme (3.1) and (6) as follows: 

(12.1) i?=?0, W'=R, 

(12.2) AtiUk= -Aik+Fk I <k<K-l1 

(12.3) vk = O(Uk)_ (Uk) + Auk + Gk, 1 < k < K-1, 

where 

('Atk)j = (i%l _ Uik-1)/(2T), (b(Uk) -(Uk))ij = O(U1') (UI))- 

R(rij), Fk =(,j,Gk =(k) 

and there exists a constant cl such that 

(13.1) Irijl ?cIT2, 

(13.2) k<CI(h+h+T2) fgkl < ch (Th +h +hT2), 

because of the assumption that the solution u(x, y, t) belongs to 
C6(jjx'[0, T]). 

Denote 

C2= max Iu(x,y, t), C3= max jdq(z)/dzj. 
O<x<L ,O<y<L2,0<t<T C2- I<Z<c2+1 

We will prove that 

(14) jjk1 <1 ?c4(h2+ h2?T2)+ 

where 

c4 =exp ((1 + c32)T) c LIL2(1 + 2) 
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From (13) and (12.1), we have 

(15.1) ||u?| = 0 |U| < V+/ILCI T, 

(15.2) ||fk|f < LiL +2cj (h 2 + r+ 2), gk < LL2ci(h 
2 + h 2 + T2), 

1 < k <K- 1. 
It follows from (15.1) that (14) is valid for k = 0 and k = 1. Now suppose 
(14) is valid for 1 < k < 1. Then, for small h, 

I4iIj < 2c4(h +h22 + 2)/ 1h2< 1 < i < Ml, O < j < M2, I < k < l, 
and therefore 

$(U/j)-q$(U&Ij) < C3 iilj O < i < Ml, 0 < j < M2, I < k < 1. 

For 1 < k < 1, taking the inner product of (12.2) with 2juk, and (12.3) with 
2Dk, then adding the results and using Lemma 2.1, we obtain 

2(ik Atik) + 2 |vk 2 

= 2[-(iuk, AiJk) + (jjk, A ik)] + 2(ijk q$(Uk) -_ (uk)) 

+2(iUk, Fk) +(2Q)k Gk) 

= 2(jvk, q$(Uk) -_ (uk)) + 2(ik ,F k) + 2(jk, Gk) 
2 2 -2 2 2 2 

< jjk + q$(Uk)_(uk)Uk + i|k + |k + j,k + 6k 

-2 -2 2 2 2 
< 2b2 jk + ik + C3 2 i|k 

+ 
( Fk + Gk) 

or, 

||Uk+1 2 -ijUk-1 )/(2T) 

- 2 + 2~2+P k2) 
< f4 k|| + C3k2 +k( + 

(kc + kk 2 

?( jk+ 1 2 )/I2+c2 iak 2 k2 k2 < (|U +ll |U- )/2 +C32|Ul +(|F| +|kl 

Thus, 

(1 i jk+ 1 2?<(1+z ikl 2 +22 iik 2+2( k 2 k2) (1T) ||kl||<( + T) |u-||+ 2C3 T ||k|+ 2T(||Fk + |G|2 

When T < 1/3, 
2 k-2 2 2 2 

iik+1 ?< (1+ 3T) iuk-| + 3C3 2T 
iak + 3T( 

Ek + 
|k ) 

From the above inequality and (15.2), we have 

f4+12 f4k2 max( ak+1 ak ) 

?[1+3(1+c3~2)zmX( ak 2 ii-12 k 2 Gk 2 * [ 1 + 3( 1+ C3 )T] max||u|| | k1| ) + 3T( |Fk| + ||Gk| 

* [1 + 3(1+ c32)T]max( |k2 k-1 |2 

+ 6TLIL2cI2(h 2 + h22 + T2)2, 1 < k < 1. 
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Utilizing Lemma 2.3 and (15.1), we have 

max( ijl+l 2 l 2) 

( 2 \ ~~ ~~~~2 2 ? exp (3(1+ c32)1T) [max( ,l 

40 
2) + 6LIL2CI (h12+ 2+ h 2)2] 

< exp (3(1 + c32)lz) [LiL2ci2z4 + 2LL2CI2 (h +h2 +2)2I 

? exp (3(1 + c32)T) LiL2( + 2)c 2(h 2 + 2 + T2)2. 

or 

&il+i < exp ((1 + c32)T) c LL2(1 + +2 (h2 + h 2 + T2) 

By the induction principle, (14) is true. This completes the proof of Theorem 
1.1. 0 

4. COMMENTS 

In this paper we use the method of reduction of order to derive the linearized 
difference scheme (3.1) and (6) for (1.1-3). First, a new variable v is intro- 
duced to reduce the original problem into an equivalent system of second-order 
differential equations (2.1-5), and a difference scheme (3.1-19) is constructed 
for the latter. Then, the discrete variables are separated to obtain the difference 
scheme (3.1) and (6) containing only the original variable u. The aim of intro- 
ducing the intermediate variable v is to prove the solvability and convergence 
of the difference scheme (3.1) and (6). 

A difference scheme similar to (3.1) and (6) may be constructed [6] on 
nonuniform meshes, and similar results hold if we rewrite (1.1-3) as the fol- 
lowing equivalent system of first-order differential equations: 

drt +v aV2 VI = 0v, V2 = y (x, y, t) E Q x (O, T], 
0v1 

+v 
Ov Ov- 

0U1) ( + aU2) ul= x' U2 = ay (x, y, t) E Q x (O, T], 

U1I1x=O = U1IX=Li = U21y=O= U21y=L2 =O, < x < L1,O < y < L2, O < t < T, 

VI1x=0 = VIlx=L1 = V2y0V2ly=L2 0 0 < x < LI, 0 < y < L2, 0 < t < T, 
u(x, y, O) = uo(x, y), (x, y) EQ. 
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