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A POLYHEDRAL METHOD FOR SOLVING 
SPARSE POLYNOMIAL SYSTEMS 

BIRKETT HUBER AND BERND STURMFELS 

ABSTRACT. A continuation method is presented for computing all isolated roots 
of a semimixed sparse system of polynomial equations. We introduce mixed 
subdivisions of Newton potytopes, and we apply them to give a new proof and 
algorithm for Bernstein's theorem on the expected number of roots. This results 
in a numerical homotopy with the optimal number of paths to be followed. In 
this homotopy there is one starting system for each cell of the mixed subdivision, 
and the roots of these starting systems are obtained by an easy combinatorial 
construction. 

1. INTRODUCTION 

This article deals with a seminumerical algorithm for solving sparse systems 
of multivariate polynomial equations. Here "sparse" means that we are fixing 
the sets of monomials which appear in each equation. We allow monomials 
xa = XallX2 ... Xn to have negative exponents, and we identify them with lat- 1 2 n ~t aengtv xoet,adw dniyte ihlt 
tice points a = (al, a2, ..., an) E Zn. More precisely, a sparse system is a 
collection of Laurent polynomials 

(11) fi(x) = Z Ci,aXa =1, 2, ...,n, 
aEs'i 

where I , 2, ... , n are fixed finite subsets of Zn . We call X the support 
of the polynomial fi. Its convex hull Qi = conv(W) in Rn is called the 
Newton polytope of fi. We distinguish three cases: The input system (1.1) is 
unmixed when all the sets -i are equal; fully mixed when they are all distinct; 
and semimixed when they are equal in r distinct blocks. We will concentrate 
on semimixed systems, of which mixed and unmixed systems are special cases. 
Our point of departure is Bernstein's Theorem, which gives a precise estimate 
for the expected number of complex roots. 

Theorem 1.1 (Bernstein's Theorem [2]). For almost all choices of coefficients 
Ci, a E C*, the number of common zeros of (1.1) in the torus (C*)fn equals the 
mixed volume Jt(Q1l ... , Qn) of the Newton polytopes. 
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The notation and terminology used in this theorem need explanation. We 
write C* for the nonzero complex numbers. The multiplicative group (C*)n is 
the (n-dimensional algebraic) torus. Consider the function 

(1.2) R(A,..., An) := VOI(Al Ql + 2Q2 + + nQn) 
where AI, ... , An are nonnegative variables. Here "vol" denotes the usual 
Euclidean volume in Rn, and 

n 
(1.3) Q1+Q2+ +Qn := {xi E Rn: xiEQi foralli} 

i=1 

denotes the Minkowski sum of polytopes. It is well known in convexity that 
R(AI ~... , in) is a homogeneous polynomial of degree n. The mixed volume 
JX is defined to be the coefficient of Al * A An in this polynomial. See [3] and 
[12] for basic properties of mixed volumes, and [7] for their computational 
complexity. 

The hypothesis "for almost all choices" in Bernstein's Theorem can be made 
more precise. Given any nonzero linear functional w E (Rnf)V, we write 
initk,(fi) for the initial form of fi with respect to cl). This is the sum over 
all terms ci,axa for which the inner product (co, a) is minimized. Note 
that the Newton polytope of initc,,(fif2 ... fn) is a face of the Minkowski sum 
Qi + . + Qn . In [2] Bernstein also proves the following result. 

Proposition 1.2. Suppose that, for all linear functionals w E (Rn)V, the system 
(1.4) init>,(fi)(x) = = initc,(fn)(x) = 0 

has no zero in (C*)n. Then (1.1) has (Q, ... ,Qn) zeros in (C*)n, counting 
multiplicities. 

Both the classical Bezout theorem for dense systems and the more refined 
B&out theorem for multi-homogeneous systems (see e.g. [15, ?IV.2. 1]) can be 
regarded as special instances of Theorem 1.1. For systems which are not dense, 
however, the mixed volume is usually much smaller than the Bezout bound. 
Here are two easy families of examples for which the ratio is asymptotically 
zero. 

Example 1.3. Let f(x, y) = aO + alx + a2xnyn, g(x, y) = bo + bly + b2xny. n 
Then .f(f, g) = 2n, whereas the Bezout bound equals (2n)2, and the ratio 
tends to zero. 

Example 1.4. Consider the eigenvalue problem Ax = Ax, where A E Cn,n is a 
generic matrix. View this as a set of n+ 1 quadratic equations in n+ 1 variables: 
Ejaijxj - xix = 0; EiZx7 = 1, with Newton polytopes Q, ..., Q, Q'. 
There are 2n distinct solutions to this system, so by Theorem 1.1, the mixed vol- 
ume .#(Q, ... , Q, Q') equals 2n (each eigenspace intersects the unit sphere 
in two points), whereas the Bezout bound equals 2n+I . 

Our aim is to give a numerical continuation method for computing all iso- 
lated roots in (C*)fn of the system (1.1). Continuation methods or "homotopy 
methods" for solving systems of equations are a standard technique in numerical 
analysis, see e.g. [1, 6]. Our contribution lies in developing combinatorial tools 
for optimally exploiting any given sparsity pattern in the input. Here "optimal" 
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means that, for almost all choices of coefficients, no divergent paths need to be 
traced. In the case of multi-homogeneous systems, homotopies of the desired 
form were given by Morgan and Sommese [ 13]. Homotopies for general sparse 
systems were studied independently by Verschelde, Verlinden and Cools [17]. 

An apparent limitation of the method to be discussed here is that it finds 
only the roots in (C*)fn, but not necessarily all roots in affine space Cn or in 
projective space Pn . This issue is best understood and resolved in the general 
context of toric varieties [8]. An extension of our homotopy algorithm to toric 
varieties will be presented in the forthcoming Ph.D. dissertation of the first 
author. 

This paper is organized as follows. In ?2 we introduce mixed subdivisions for 
a collection of r polytopes in an n-dimensional space, and we give a formula 
for computing mixed volumes in terms of these subdivisions. This construction 
extends ideas in [3] and may be of independent interest for polytope theory. 
The resulting algorithm takes advantage of the semimixed structure and any 
information already available about the polytopes Qi. 

In ?3 we construct algebraic deformations from mixed subdivisions. This 
leads to an effective new proof of Bernstein's Theorem 1.1, and to a method for 
generating start systems for the desired homotopy. The resulting seminumer- 
ical algorithm for solving (1.1) is presented in ?4, where we also report some 
practical experience. A simple example in ?5 shows our algorithm in action. 

In an appendix to this paper we present an algebraic criterion which sharpens 
Proposition 1.2. This criterion is expressed in terms of sparse resultants as 
defined in [9, 14, 16]. 

2. MIXED SUBDIVISIONS 

Let a? = (v(1), ..., 5 (r)) be a sequence of r finite subsets of Rn whose 
union affinely spans Rn. By a cell of _v we mean a tuple C = (C(1) .. , r)) 
of nonempty subsets C(i) c XV(i). We define 

type(C) (dim(conv(C(1))), ... , dim(conv(C(r)))) E N 

conv(C) conv(C(l) +... + C(r)) c Rn, 

#(C) #C(1) + ... + #C(r) E N 

and vol(C) := vol(conv(C)). A face of C is a subcell F = (F(1), ..., F(r)) 
such that some linear functional a E (Rn)V attains its minimum over C(i) .at 
F(i), for i = 1, . . . , r . We call such an a an inner normal of F . If F is a face 
of C, then conv(F(i)) is a face of the polytope conv(C(0)) for i = 1, ..., r. 
We now define our main combinatorial tool: 

Definition 2.1. A subdivision of v is a collection S = {S1, ..., Sm } of cells 
such that 

(a) dim(conv(Sj)) = n for all Sj, 
(b) conv(Sj1) n conv(S12) is a face of both conv(Sj1) and conv(SJ2), for 

all Sjl, Sj2 E S, 
(c) UV= conv(Sj) = conv(.. ). 

We say that S is a mixed subdivision if we have the additional condition 

(d) I dim(conv(Sj'))) = n for all cells Sj E S, 
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""(-1,-i). 

(-1,-I) d+g c+g 

d c JP V~+ 
9 ~~~d+e a+g 

LIII>~~~~~~f bb+f 
a b a+f 

conv(A) e a+e b+e 

conv(B) conv((A,B)) 

FIGURE 1. An example in two dimensions 

and that S is a fine mixed subdivision if we have the stronger condition 

(e) Ei=_(#(S(')) - 1) = n for all cells Sj E S. 

Note that the singleton {-v} is a subdivision of X, but generally not a 
mixed subdivision. If r = 1, then our definitions coincide with the definitions 
in [1 1]: cells C are simply subsets of the support set. In this case, faces of C 
are simply intersections of C with a support hyperplane. If r = 1, then all 
subdivisions are mixed, and fine mixed subdivisions are called triangulations. 
In general, our terminology is consistent with [4, 9, 11, 16]. 

Example 2.2. Let v = (A, B) = ({a, b, c, d}, {e, f, g}) be the point sets 
in Figure 1. The following tuples are faces of X: 

-K-1,-1) = ({c}, {f, g}), -K1,O) = ({a, d}, {e}), -KO,1) = ({a, b}, {e}). 
The following set is a fine mixed subdivision: 

A - {C = ({a}, {e, f, g}), C2 = ({a, b}, {e, f}), 
C3 = ({a, c}, {f, g}), C4 = ({a, d}, {e, g}), 
C5 = ({a, b, c}, {f}), C6 = ({a, c, d}, {g})}. 

As an application of mixed subdivisions we get a formula for calculating 
Bernstein's bound for a semimixed system. For i = 1, ... , r let ki be the 
number of polynomials of F having support X(i), and let Q(i) -conv(V(')). 
In this situation we abbreviate the mixed volume as follows: 

JIt(Q(1), k, ; Q(2), k2 ; ... ; Q(r), kr) 

J((Q(), ) Q(1) Q(2). Q(2) Q(r)* Q(r)). 

ki k2 k, 

Lemma 2.3. The mixed volume ,#(Ql, k1; Q2,1k2; .k..; Qr, kr) equals 
kl! k2! kr! times the coefficient of 41k 4k2 ... 4kr in the polynomial R(Al, ... ,) 
:=vo1(Al Q + A2Q2 + + ArQr) 
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Proof. The mixed volume equals the coefficient of HJk1 ,J* ... * I Ar, j in the 
expansion of the polynomial 

k, ' k2 kr 

vol( EZAl,jQi +ZE A2,jQ2+ * +ZiAr,jQr) 
j=l j=l j=l 

k, k2 k, 

=Vol (E A1,j)Q1 + (Z)2,j)Q2 + ." + (Zhr,j)Qr) 
j=l j=l j=1 

If we make the substitution Ai := 1 Aj l in R(A), then 4ki contributes kc,! 
factors Hi A1 ,j . Altogether, the term 1 jtl ,j*** H..Lf Ar, j occurs kV! 1 r! 
times. O 

Theorem 2.4. Let S be a mixed subdivision of ,v. Then 

,J(Q(1) k1; Q...; Q(r)kr) = E kl! ..kr! *vol(Si). 
SiES 

type(S )=(k, kr) 

Proof. This is a corollary of Lemma 2.3. Consider the scaled configuration 
(A, (1), ... , )~ArSi (r)) and its mixed subdivision SA which is obtained from 
S by scaling each cell. The volume of each cell of type (ki, . .. , kr) in S will 
scale by a factor of * 4Ak . As long as the subdivision S is mixed, all other 
cells of S contribute to a different coefficient of the homogeneous polynomial 
vol(AlQl-+..+ArQr). El 

If S is a fine mixed subdivision, then each cell Sj of type (kr, ... , kr) is 

sequence of subsets . S(r)) where each S(l) , {qi,o, ..., qi, k} is 

a (ki + 1)-element subset of X(i) . Let V(Sj) be the n x n-matrix whose rows 
are qi,j - qi,0, where 1 < i < r and 1 <j<ki, and define V(S5')) to be the 
(possibly empty) ki x n-submatrix whose rows qi, j - qi, o come from points in 
Si) . The matrix V(Sj) is nonsingular since its rows span is an n-dimensional 
space, by part (a) of Definition 2.1. Its determinant has a natural interpretation 
as volume. 

Lemma 2.5. We have Idet(V(Sj)) = ki! ...kr! .vol(Sj). 

Proof. The rows of the submatrix V(Sj')) span a parallelepiped whose vol- 

ume equals k,! times the volume of the ki-simplex conv(S5')). These paral- 
lelepipeds and simplices lie in complementary subspaces for different i, so that 
volume is multiplicative (up to a global constant) under taking Minkowski sums. 
The n-dimensional parallelepiped spanned by the rows of V(Sj) has volume 
I det(V(Sj) j, and thus I det(V(Sj)) I is equal to kl! k 1Cr! times the volume of 
conv(Sj). El 

In view of Lemma 2.5, we may rephrase Theorem 2.4 as follows: 

(2.1) f(Q1 , ki; Q2, k2; ... ; Qr 1 kr) = E I det(V(Si)) 
SiES 

type(Si)=(k1 kr) 
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This formula gives an easy way to calculate the mixed volume, provided an 
explicit fine mixed subdivision of v is known. For our algorithm we will 
restrict to the class of subdivisions which are coherent in the sense of [4, 9, 16]. 

This class can be defined by the following process: Choose real-valued func- 
tions w(i) : V - R. We call the r-tuple co = (w(O), ..., W(r)) a lifting 
function on -V. We say that w lifts X(i) to its graph Xi) = {(q, w(i)(q)) 

q E J(i)} c Rn+ I This notation is extended in the obvious way: v = 

(.j!C1) ... ~r)) Q(Q) = conv(.i)), Q = I11 Q() , etc..... 
Let Sw be the set of cells C of v which satisfy 

(a) dim(conv(C)) = n, and 
(b) C is a face of v whose inner normals a E (Rn+l)V have positive last 

coordinate. 
In other words, conv(C) is an n-dimensional face of the lower hull of Q. 

The following easy lemma is a special case of the construction of coherent 
subdivisions in [4, 9, 1 1]. 

Lemma and Definition 2.6. For every lifting function co, the set Sw is a subdi- 
vision of X, called the subdivision induced by co. Subdivisions of the form 
Sw are called coherent. 

Example 2.7. The subdivision in Example 2.2 is coherent. It can be induced by 
the lifting w = ((O, 1, 1, 1), (0, 0, 0)), that is, 

"v = ({(a, 0), (b, 1), (c, 1), (d, 1)}, {(e, 0), (f, 0), (g, O)}) 

and SX, = A consists of the lower facets of conv(,V). 

We next analyze the conditions on co under which the coherent subdivision 
S,0, fails to be mixed. If C is a cell of -v, then we define the matrices V(C) 
and V(C(0)) in analogy to the definition in the paragraph before Lemma 2.5. (In 
particular, V(C(') ) is a #C(i) by (n+ 1) matrix and rank(V(C)) = dim(C)+ 1.) 
Suppose that S,,, is a subdivision of v which is not mixed. Then there exists 
an n-dimensional cell C of ,v such that each V(C(0)) has rank dim(C(')) + 1 
but V(C) has rank strictly less than Eirj (dim(C(0)) + 1) . This follows from 
Definition 2.1 (d) and the definition of Sa,. This degeneracy can be avoided 
even within the subspace of linear lifting functions. A lifting function w is 
said to be linear if there exists an r-tuple of linear forms y = (y(l), ..., y(r)), 

Y(') E (Rnf)V, such that co(i)(q) = (y(U), q) for all q E -(i). In this situation we 
set Sy := S,. For any cell C of Sy, the maximal minors of V(C) are linear 
forms in the coordinates of the y(i) . If C is not a mixed cell, then at least one 
of these linear forms vanishes. Therefore, S. can fail to be mixed only if y 
lies on one of finitely many hyperplanes in the vector space ((Rn)V)r. Thus, Sy 
will be mixed almost surely if the linear lifting function y is chosen at random 
in that vector space. (This parallels Betke's result in [3, p. 390].) 

We similarly analyze the conditions on w under which the coherent subdi- 
vision S,, is fine mixed. This is the case if V(C) has maximal possible rank, 
for each cell C of v . To see this geometrically, we note that the subdivision 
S,, is fine mixed if and only if each lower facet of V is a product of simplices 
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(whose factors are lower faces of i)). The maximal minors of the matri- 
ces V(C) form a finite number of linear conditions in the variables w(q) for 
q E v (') . We conclude that S,t, will be a fine mixed subdivision for co lying in 
the complement of finitely many hyperplanes in R#(O) . Our discussion shows 
that the following condition is sufficient for Sw to be fine mixed. 

Definition 2.8. A lifting function w is called sufficiently generic if V(C) has 
maximal rank, namely, min {n + 1, #(C) - r}, for each n-dimensional cell C 
of X. 

In the special case where #-v(i) = dim(-V(i)) + 1 for all i, there is no 
distinction between fine mixed and mixed subdivisions. In this case it suffices 
to chose co to be a random linear lifting function. The general problem of 
computing a coherent fine mixed subdivision by a deterministic combinatorial 
algorithm will be addressed elsewhere. For the time being, we select a sufficiently 
generic w by random choice, a method which has proved to be effective in 
practice. 

Algorithm 2.9 (Finding all cells of certain types in a fine mixed subdivision). 
I. Choose a sufficiently generic lifting function co. 

II. Determine the list of candidate cells. (To find all cells of type (k1, . . .. 
kr), one may take all cells Ci = (Ci(l), ...,C(r)) where C(i) ranges 
over all (kj + 1)-element subsets of V (i).) 

III. For each of the cells C from step II: 
(i) Let N be the orthogonal complement to the affine span of C. 

If N is not one-dimensional, or if N is orthogonal to the axis 
of lifting, then discard C from the list. Otherwise let a be the 
unique vector in N with last coordinate equal to one. 

(ii) If C equals the face of -W supported by a, then add C to the 
list of cells in S,,,. 

This procedure has several desirable qualities: The decision step III is con- 
cerned exclusively with ,v rather than with the much larger set Er Xi)W . In 
calculating the mixed volume using Theorem 2.4, we need to find only those cells 
of S1, which have the desired type, without calculating the entire subdivision. 
In particular, we do not need to calculate the convex hull of the Minkowski sum 
conv(_V), which we found to be computationally prohibitive when r is large 
relative to n . For instance, in the fully mixed case ( r = n), the number of 
facets of conv(sV) can grow as large as approximately (fl #(A(i))) Ln/21 while 
the search space in step II has cardinality Hj (#((i)) . 

The process of selecting candidate cells is extremely flexible, allowing us to 
use any available information about the individual X(i) to limit the search. 
For example, if we first compute the coherent triangulations Ai of the .V(i)'s 
defined by the wi 's individually, then we need only consider cells C of -V 
whose i th component C(i) is a cell of Ai. In practice we usually prune the 
search space by specifying the cells one component at a time, using a linear 
program at each step to determine whether there are faces of v which agree 
with the partially specified cell. 
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3. ALGEBRAIC DEFORMATIONS FROM MIXED SUBDIVISIONS 

We return to the problem of finding all isolated roots in (C*)n of the equa- 
tions (1.1), given that the coefficients Ci, a are sufficiently generic. (In the dis- 
cussion following Algorithm 4.1 we will explain how to run our algorithm with- 
out any genericity assumption whatsoever.) We assume that the system (1.1) 
is semimixed of type (k1, ... , kr): the ? are not all distinct, but they are 
equal within r blocks of sizes k1, ... , kr, i.e., there are r sets X(i) C zn 
such that X(i) = Vl = .. = Vik,. The total number of polynomials is still 
n= Z1= ki . We let F(i) be the subset of polynomials in (1.1) which have sup- 
port X(i) . Thus each element of F(i) can be written as f= Zj E(i) C X,],qXq 

for 1 < i < r and 1 < j < ki. We abbreviate v = ( ,v(r)) and 
F = {FM) ... , F(r)}. 

In contrast to ?2, from now on all points q E v ( are assumed to be integral. 
Fix a sufficiently generic (cf. Definition 2.8) integral lifting function, and let S0 
be the induced fine mixed subdivision of X. We retain the convention that 
putting a hat on an object means considering it after having been lifted by c. 
For instance, () - {(q, cow(q)) E Zn+l q E 5f(I, and (i)) - 

where 7r is the projection mapping (z, ... Z, Zn+l) (z1, *- , zn) 
We deform the input system (1.1) as follows. Let t denote a new complex 

variable, and for each i = 1, ... ,r and j = 1, ..., ki consider the (n + 1)- 
variate polynomial 

(3.1) fjj(x, t) ECi j,,qXqti(q) 
qEIs(i) 

Note that the support of fJ equals ) c . By the homotopy defined 
by co we mean the resulting system of n equations in n variables x which 
depend on the additional parameter t: 

(3.2) F(x, t) (f,j(x, t) 1 <i < r, 1 < j<ki). 

The roots of (3.2) are algebraic functions x = x(t) of the parameter t. We wish 
to give a self-contained proof of Bernstein's Theorem 1.1; so we pretend not 
to know the number of branches of x(t) . The Puiseux series for the branches 
have the form 

(3.3) x(t) (XlotYl, ... , XnotP) + higher-order terms, 

where the yi are rational numbers and the x,0 are complex numbers to be 
determined (cf [18]). We abbreviate the vector-valued function (3.3) by x(t) 
xoty + h.-o.t. Substituting the ansatz (3.3) into (3.1), we obtain terms like 

(3.4) Cjjq * t( y q )+w1(q) + higher-order terms. 

The exponent of the parameter t in (3.4) equals the linear functional (y, 1) E 
(Zn+1 )v evaluated at the lifted point q in ?). The terms (3.4) of lowest order 
correspond to the face of v= (il), . .. , er)) on which the linear functional 
(y, 1) is minimized. Call this face (y, 1). When (3.3) is substituted into (3.1) 
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the coefficient of the lowest-order term in t equals 

(3.5) fy inity+X,i (f) = E CijqXq. 

qE (X(y, 1) 

We call fy the degeneration of f to the face of .si) supported by (y, 1). 
We also abbreviate F(): {Ifylf E F(i)} and Fy := Ur= F(. The following 
lemma characterizes the possible choices of rational exponents in the Puiseux 
series (3.3). 

Lemma 3.1. The system F = 0 has branches of the form (3.3) only if the linear 
functional (y, 1) supports a lowerfacet C of _V with type (k1, ..., r). 
Proof. Since S,, is a fine mixed subdivision of X, the support face of (y, 1) 
on each .0i) consists of the vertices of a simplex of some dimension di be- 
tween 0 and n . The branches of F-I (0) may be found by iteratively solving 
for the coefficients in the Puiseux expansion (3.3), provided we can start this 
iteration by solving the initial system Fr = 0. Its solutions xo E (C*)n are the 
lowest-order coefficients in (3.3). Each F2($) is supported on A(() and hence y is su- - ~~(y,l)n hnc 

is an unmixed system of ki equations in di + 1 monomials. It is solvable for 
generic choices of coefficients ci, j q only if ki < di. Since Sk) is mixed, we 
know that 

r r r 
(3.6) n > dim(-VY, 1) i(9;l)=Edi > Eki = n. 

i=l i=l i=l 

This implies that di = ki for all 1 < i < r. D 

We conclude that the only directions (y, 1) which can contribute branches 
of the form (3.3) are the support directions to the type (ki, . . . , kr) cells of the 
fine mixed subdivision S0 . Let Cy y 

( , C(r)} be a type (k,- ...k, r) 

cell of S,,, whose lifting is supported by (y, 1) as above. Each C(i) consists 
of the vertices of a ki-simplex. In what follows we will use this fact to compute 
the solutions of Fy(xo) = 0 symbolically and explicitly. 

Since the number of roots of Fy does not change if we multiply each fij 
by a Laurent monomial, we may assume that one point q(i? 0) of each C(i) = 
{q(i 0), ... , q(i, ki) } equals the zero vector. Thus the coefficient associated with 
q(i 0) is the constant term of fi, j for all 1 < j < ki. By applying Gaussian 
elimination to the ki x (ki + 1)-coefficient matrix (ci, j,q), we can replace F(i) 
by an equivalent system 

(3.7) c1 l*x = ci,2*X = * = C1,k4.X = 1. 

By our genericity assumption on the original coefficients, the constants c' 
are also nonzero. If we repeat this process for each C(') and collect all the 
binomial equations, then we end up with the following simple system of n 
binomial equations in n variables: 

(3.8) c' Xq(ij=I forlKi<r,lIj< ki. 

We define the n x n-matrix 

A := (q(l, . q(lki) , q(2,l) q(r,kr))T. 
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For notational convenience we rename the rows of A as a ... a 

Lemma 3.2. The system (3.8) has precisely I det(A) I distinct roots in the torus 
(C*)n . 

Proof and algorithm. We compute the Smith normal form 

U*A*V = diag(mI, m2, ... .,mn). 

Here, U = (uij) and V = (vij) are invertible integer matrices in SLn(Z), 
and mI, ..., Mn are positive integers such that mi_1 divides mi for i = 
2, 3, ..., n. We next change coordinates on the torus (C*)n by the invertible 
transformation 

(3.9) xi F z UiizU2i . .. zUni i = 1 2,.., n. 

The equations (3.8) are equivalent to 
(3.1 0) , Ua(l) 

= 
Ua(2) 

= 
Ua(n) 1 

We now apply the invertible transformation V to (3.10). This gives the equiv- 
alent system 

n n 

(3.11) fJ (cJ .zUa('))vi = (f(c)Vi) .zm = 1, j = 1, 2,. .., n. 
i=l1= 

The system (3.11) has mm2 ... mn = det(A)I distinct roots in (C*)n, and 
hence so do (3.10) and (3.8). These roots are easily computed by inverting these 
transformations. O 

Our construction gives rise to the following effective proof of Bernstein's 
Theorem. 

Proof of Theorem 1.1. The mixed volume X,f(.v) equals kl! - k2!... kr! times 
the sum of the volumes of the type (kl, k2, ... , kr)-cells of Sa,. By Lemma 
3.1, the directions y supporting (kA, Ak2, ... , kr) cells of S, are the only ones 
for which (3.3) can provide branches of F- 1(0). But Lemma 3.2 shows that 
each of these cells C. accounts for klA! * k2! ... kr! * vol(Cy) branches of F - (0) 
near t = 0. Thus (by Theorem 2.4) F has X(.v) roots for generic choice of 
t. Theorem 1.1 then follows easily. 0 

4. AN ALGORITHM FOR SOLVING SPARSE SYSTEMS 

Let X C (C*) n+l be the complex algebraic curve implicitly defined by F(x, t) 
= 0, and let r: X -+ C* be the projection mapping (z1, ..., Zn , Zn+l) '-+ 

Zn+I The conclusion of Bernstein's theorem is that 7r- (t) is generically a 
finite set of cardinality equal to the mixed volume f((?). We now present 
our algorithm for calculating 7t-I( 1) 

Since F(x, t) is supported on v for each nonzero specialization of t, 
Proposition 1.2 (see also Theorem 6.1 below) gives a set of polynomials in 
t and the coefficients of F whose nonvanishing guarantees F(x, t) the full 
number of solutions. With the added requirement that the Jacobian of F(x, t) 
with respect to x does not vanish, we see that F(x, t) has X(v) distinct 
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roots in the torus for all choices of t except those lying in a finite set E. Thus 
the curve XI:= {(x, t) E X I t E C* \ X} is smooth and breaks up into X(v) 
distinct holomorphic (in t) branches. 

In the last section we calculated the first terms of the Puiseux expansions for 
each of the branches of XI, near 0. By passing to an appropriate closure of the 
algebraic torus for each branch, we can use these data to obtain a point from 
each component at t =0. If 1 0 X, then every point of -1(1) lies on exactly 
one holomorphic component. Otherwise, every isolated point of 7- 1(1) must 
lie in the closure of at least one component of XI. Thus, all isolated roots of 
(1.1) can be found by numerically tracing the branches of XI from t = 0 to 
t = 1. 

Since these branches need not have an analytic continuation at t = 0, care 
must be taken when starting the path tracking. A natural way to start is to use 
the Puiseux expansion as a predictor and Newton's method as a corrector for 
the first step. Once the first step has been taken, a generic choice of a smooth 
path from t = 0 to t = 1 in the complex plane C ensures that the resulting 
curves are smooth, and standard continuation codes can be used. See [1] for 
a detailed introduction to numerical path tracking. Our construction is then 
summarized as follows: 

Algorithm 4.1 (Homotopy methodfor semimixed systems of type (k, ... kr)) . 

A. Precomputation 
1. Choose a sufficiently generic lifting function a) (in the sense of 

Definition 2.8) and use Algorithm 2.9 to enumerate the cells of 
type (k1, ..., kr) in the mixed subdivision S,. 

2. For each cell C. (C(1), ..., C(r)) of S7 (where (y, 1) is an 
inner normal to C,), make the substitution xi = zitY' in F(x; t) 
for i from 1 to n. Divide out by the lowest power of t that 
appears. With respect to these new variables the roots of F at 
t = 0 are precisely those of F.. These can be calculated using the 
Smith Normal Form procedure given in the proof of Lemma 3.2. 

B. Homotopy 
1. For each of the roots from step 2, trace the homotopy (3.2) (with 

respect to the new variables z1, ... , Zn ) along some smooth path 
from t = 0 to t = 1 in the complex plane C which avoids E. 

This algorithm and its correctness arise naturally out of our proof of Bern- 
stein's theorem. We will make the following modifications to ensure generic- 
ity of the coefficients and to improve stability in practical computations. Let 
F be the input system (1.1) and let G be a system with the same support 
set but sufficiently randomly chosen complex coefficients. Now let H(x, t) := 
(1 - t) * G(x) + t * F(x), and apply the algorithm above to H (using the same 
variable t). This process will work since the constant term of H with respect 
to t is still supported precisely on v . This approach has the advantage that 
the coefficients of H are really "generic", so that the Smith Normal Form pro- 
cedure is guaranteed to work, and the homotopy path can be taken to be the 
real axis. In summary, we have given a numerical homotopy which computes 
the isolated roots of (1.1) in (C*)n for all choices of coefficients ci,. 
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We close with a few remarks about our computational experience. The meth- 
ods in this paper have been implemented in C, using a continuation algorithm 
described in [1] and an improved version of Algorithm 2.9. These programs 
have been used to solve systems of up to six variables and 150 roots, and to 
compute mixed subdivisions of the support sets of systems in up to 10 variables. 
We are currently working on a system incorporating these programs to be made 
publicly available under the name Pelican. 

5. AN EXAMPLE IN THREE DIMENSIONS 

We wish to compute the roots in (C*)3 of the trivariate equations 

1+ 1 lx - 3y + 30xy + 55xyz, 
F(x,y, z) 3 - 5x +7y +2xy+9xyz, 

{6+l3X2y-5y2Z. 

This is a semimixed system of type (2, 1) with support (vl (1), (2)), where: 

V(-1{(0,0,0), (1,0,0), (0, 1,0), (1, 1,0), (1, 1, 1)}, 

-(2) = {(0, 0,0 ), (2, 1, 0), (0, 2, 1)}. 

The lifting w = {[0, 1, 1, 1, 1], [0, 0, 0]} induces a fine mixed subdivision 
S,, and it determines the homotopy 

1+ lIxt - 3yt + 30xyt + 55xyzt, 
F(x, y, z, t) := 3-Sxt+ 7yt+ 2xyt+ 9xyzt, = 0. 

66+ 13x2y-55y2z 

The support of these equations is v . To find the branches of XI, Lemma 
3.1 tells us we need to compute only the cells of type (2, 1) in S,. There are 
three such cells, listed in Table 1. 

TABLE 1. Type (2,1) cells of S, and their volume 

CY y det(V(Cy)) 
({1, 2,5}, {1, 2}) (-1, 2,--2) 1 
({1, 3, 4}, {2, 3}) (0, -1, 1) 1 

({1, 4,5}, {2, 3}) (_3, 2, 0) 3 

By Theorem 2.4, the Bernstein number of expected roots of F equals 1 + 1 + 
3 = 5 (note that the Bezout number is 27 ). The leading terms of the Puiseux 
expansion for each of the branches of F(x(t), y(t), z(t) , t) = 0 associated with 
a given cell Cy can be obtained by taking the solutions of Fy as the coefficients 
and the coordinates of y as the exponents. For example, the branches associated 
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with C, for y = ( 2,-, 0) are 

x(t) = a3- + higher-order terms, 
y(t) = b- 3 + higher-order terms, 

z(t) = cto + higher-order terms, 

where (a, b, c) are the solutions of the initial equations 

1 + 30xy + 55xyz = 0, 
3 + 2xy + 9xyz = 0, 

13x2y - 5y2z = 0. 

To actually follow these roots numerically, one can make the change of variables 
I ___2__- 

x -xt, y t 3, z -*z 

with respect to which F becomes 

1 + I lUt - 3Ytl + 30xy + 55xyz, 
2 

3-5ktw + 7yt' ~+ 2x-y + 9xyz2, 

6ti + 13x29- 5-22. 

For t = 0 we get exactly the desired initial equations. Tracing the three 
branches of (x(t), y(t), z(t)) from t = 0 to t = 1 along a sufficiently generic 
path yields a solution to F = 0. Repeating this process of changing variables 
and path-tracking for each cell of Sc, , we arrive at all five roots in (C*)3 of the 
given system. 

APPENDIX: "WHEN DO ALL MIXED VOLUME MANY ROOTS LIE IN (C*)f ?" 

When applying the methods presented in this paper to a concrete system (1.1), 
it is very useful to have some a priori information whether the upper bound 
for the number of roots in (C*)n in Theorem 1.1 is attained or not. While 
a criterion for this is given by Proposition 1.2, we found that criterion often 
difficult to verify since it involves inspection of all faces of Q, + + Qn. In what 
follows we present an alternative algebraic criterion that involves only certain 
facets of QI + -..-+ Q,n. Here we assume familiarity with sparse elimination 
theory as developed in [9, 10, 14, 16]. In particular, we shall make use of the 
resultant operator 9 ( * ) in precisely the same sense as in [14, 16]. 

Theorem 6.1. The system (1.1) has #(Ql, ... , Qn) zeros in (C*)n, counting 
multiplicities, if and only if, for allfacet inner normals c of Qi + -..-+ Q,n the 
sparse resultant 9 (initt,,(f1), ... , init,(f,)) is a nonzero complex number. 

Sketch of proof. Let X denote the projective toric variety associated with the 
polytope QI + ..+ Q,n. For each facet normal w let XZ denote the corre- 
sponding torus invariant divisor on X. Then X<,, is the projective toric variety 
associated with the facet Qw + ..+ Qn. (Here Ql denotes the face of Qi 
which is supported by c.) Clearly, X is the union of (C*)n and U. X, 
where w runs over all facet normals. 
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The equations (1.1) extend naturally from (C*)fn to its compactification X. 
They have f#(QI, ... , Qn) common zeros in (C*)fn if and only if they have 
no zeros in U. X,,. This follows from the toric interpretation of Bernstein's 
Theorem; see e.g. [8, ? 5.5]. Therefore, it suffices to show the following 

Claim. The system (1.1) has no root in X, if and only if the 

(initc,,(fi) , . . ., initco(fn)) :A O. 

If the system (1.1) is unmixed, then the claim follows immediately from 
the identification in [10, ?5.4] of the given resultant with the Chow form of 
X.. The case of unmixed systems is then reduced to the mixed case using the 
factorization technique in [14, ?7]. a 

We recall from [14] that the sparse resultant above is identically equal to one 
if the linear functional w supports a vertex at Qi for at least one index i. 
Hence, in the criterion of Theorem 6.1 we need to consider only those facet 
normals co of Ql + + Qn for which dim(Qi ) > 1 for i = 1,... , n. This 
leads to a significant computational simplification when the polytopes Qi are 
distinct and "in sufficiently general position" with respect to each other. 
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