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MULTIQUADRIC PREWAVELETS 
ON NONEQUALLY SPACED KNOTS IN ONE DIMENSION 

M. D. BUHMANN 

ABSTRACT. In this paper, we identify univariate prewavelets on spaces spanned 
by translates of multiquadric functions and other radial basis functions with 
nonequally spaced centers (or "knots"). Although the multiquadric function 
and its relations are our prime examples, the theory is sufficiently broad to 
admit prewavelets from other radial basis function spaces as well. 

1. INTRODUCTION 

The theme of this work is the construction of univariate prewavelets that 
are generated by translates of a radial basis function, where the translates are 
defined by a sequence of nonequally spaced centers. We first explain why radial 
basis functions are useful for the construction of prewavelets. 

The purpose of wavelet and prewavelet decompositions of univariate square- 
integrable functions is to decompose those functions both into their different 
frequency components, much like Fourier analysis does, as well as with respect 
to time, which is not possible with standard Fourier analysis. Every such de- 
composition of a given square-integrable function f, say, into a time/frequency 
series starts with establishing an initial approximation fk to f from a linear 
space Vk that is an element of a nested sequence of spaces 

(1.1) Vo c Vi c V2c ...C L2(R) 

from which the (pre)wavelets are taken. One requires that 

00 

(1.2) U Vj = 2(R), 
j=0 

so that every f e L2(R) can be approximated arbitrarily closely in the L2(IR) 
norm by an fk e Vk if k is sufficiently large. Then, orthogonal complements 
Wj C Vj+1 of Vj, j E Z+, are studied. In other words, one seeks spaces 
Wj c Vj+1 such that Wj I Vj and Vj ( Wj = Vj+1I. In fact, the sequence of 
spaces (1.1) is usually bi-infinite [2, 6, 7, 9], but for the results of this paper it 
is more appropriate to restrict it to an infinite sequence. 

By constructing the Wj in the outlined fashion, we get an orthogonal decom- 
position of fk into an fo E Vo plus a series of ge e WtJ, e = o, 1, ..., k- 1. 
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Therefore, a decomposition of any square-integrable f into mutually orthogo- 
nal components, corresponding to the different frequency components in Fourier 
analysis is found. This can be viewed as a spatial orthogonal decomposition 

(1.3) L2(I) = Vo + Wo + W1 + W2 +. . 

The prewavelets are functions that generate such Wj . It is preferable that those 
prewavelets have local support or that they decay, so that the expansion of f 's 
components in each W- is a localized decomposition (with respect to time). The 
prewavelets are called wavelets if they are orthonormal bases of the Wj 's, but we 
are only dealing with prewavelets here. It is always the function fk e Vk, which 
may for instance have been obtained by quasi-interpolation (e.g., Buhmann 
[5]), that is actually decomposed computationally by the so-called fast wavelet 
transform. Therefore, it is important to the effectiveness of the decomposition 
that the spaces Vk allow fk to be a sufficiently accurate approximation to f, 
even if k is moderate. This is the point where the efficacy of radial basis 
functions can be exploited. 

We want to explain this point further. Radial basis function methods are 
generally known to be useful and accurate for the approximation of functions; 
cf., e.g., the review paper by the author [3], which also includes an extensive 
list of references to other people's work. The key idea is to approximate from 
a space spanned by translates of a single function e, usually of global support, 
where the translates take the form o (I -xj1I) and the xj are given "centers". 
The methods were first introduced as interpolatory schemes but, because they 
were found to provide high-quality approximants, they are now used for many 
different approximation tools. In this paper, we submit another one in the shape 
of prewavelets. Radial function methods are easy to implement, and so is the 
approach proposed here, as we shall see, although special considerations are 
needed for the matrix computations involved and evaluation of approximants 
if the amount of data is large (Powell [14]). Among all radial functions cur- 
rently in use, the multiquadric radial function o (r) = r2 + y2 is probably best 
understood, both theoretically and from a practical point of view, and also it 
is the one most frequently used, partly by virtue of the variable real parameter 
y. Therefore, we shall focus on it in this article. 

Up to now, the most frequent choice for the aforementioned Vj are spline 
spaces with equally spaced knots (Chui and Wang [9] for example), i.e., spaces 
of piecewise polynomials with knotspacing 2- for the V1. These spaces are 
spanned by B-splines which have compact support. This works well except that 
the resulting approximations are always of limited smoothness. However, if one 
takes spaces Vj spanned by the multiquadric functions centered at 2-ik, i.e., 

f(. - 2-jk)2 + y2, k e Z, then the known theory of radial functions (Buhmann 
[5] for example) provides essentially the same approximation order as splines 
and infinite differentiability as well. Sometimes better (spectral) approximation 
orders are obtained too (Buhmann and Dyn [8]), but this depends strongly on 
f's smoothness. The price of these advantages is giving up compact support 
of the basis functions, but there are generating functions for the Vj from ra- 
dial basis function spaces that decay very fast toward infinity. Such generating 
functions in the univariate multiquadric setting with scattered center points are 
found in Powell [13], so that a theory of prewavelets on nonequally spaced 
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data may be established for radial basis functions. Therein lies the purpose 
of this work. We therefore study prewavelets that stem from nested spaces Vj 
spanned by a radial basis function, using in particular the multiquadric function 
and allowing the centers to be scattered. A very general account of generating 
prewavelets from shift-invariant spaces (including radial function spaces with 
gridded centers) is given by de Boor, DeVore and Ron [2], but their technique 
cannot be applied to scattered data. The main focus of that paper lies in com- 
pactly supported prewavelets (mainly from box-spline spaces), which do not 
exist in spaces spanned by radial functions other than 0(r) = r2k+l, k E Z+, 
in one dimension. 

We will show how to find prewavelets yj e VI that are orthogonal to Vo and 
generate 

(010 

(1.4) 0o{Z C= JI=C={ci}- t2(Z)J 
j=-ac 

with W0 I V0, where V0 and VI are spaces generated by nonequally spaced 
translates of a radial basis function such as the multiquadric function e (r) = 

r2 + y2. Here, V0 c V1 is obtained by demanding that these two spaces be 
produced by way of two sets of scattered centers, one a subset of the other. The 
"finer" set generates VI , of course. Our principal example is the multiquadric 
radial function, but the setup in this work is sufficiently general to admit other 
choices of radial functions. 

Once it is demonstrated how Vo, VI and the prewavelets that generate Wo 
are found, the same principles can be followed to establish a whole sequence 
of nested subspaces Vj of L2(R) and to decompose the space as in (1.3). 
Incidentally, wavelets can be obtained from those prewavelets by a standard 
orthonormalization procedure. 

Prior work to this paper are the papers about radial basis function prewavelets 
due to Buhmann [4], Chui, Ward and Stockler [10] and Micchelli, Rabut and 
Utreras [12], which treat the case of equally spaced centers only (some of the 
preliminary results in the first paper mentioned also apply to scattered centers, 
and, on the other hand, the results in the third paper apply to the multidimen- 
sional setting too). 

There now follows a section with preliminaries where the spaces Vo and VI 
are defined. Thereafter, there is a section containing the principal results of 
this paper, where the prewavelets are explicitly constructed and some of their 
fundamental properties established. Several examples to which our analysis 
applies are stated at the end of that section as well. 

2. PRELIMINARIES: THE SPACES V0 AND V1 

Let two sequences of real numbers 

X= {..<X-1 <XO <X1 <X2 < ...} 

and 
T = z2*1< T-1 < TO < TW < T2 < pit s 

with T2i- I = Xi, i E Z, be given. We assume that these points satisfy the 
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boundedness conditions 

K := SUP(Ti+l - Ti) < x, 5 := inf(Ti+l - Ti) > 0. 
iEZ iEZ 

We let {Bj}j?,0 and {Bf} I'O be the sequences of B-splines of degree n 
on the knot sequences x and T with supports [xj, xj+n+f] and [Tj j Tj+n+ 
respectively, normalized to form a partition of unity. Let q E C(R) with 
+(x) > , 0 x e R, 

(2.1) q(x) = O(IXKnl1), x o-+ 00, for some positive e, 

a real Fourier transform +(t) > 0, t e R , and ffo. q = 1 be given. For 
instance, we may take +5(t) = I Q"(t) , where p (t) is the multiquadric function 

t2+ y2, n = 1 and e = 1 . We consider the functions 

(2.2) Cj:=Bjc>*, jeZ, 

Fj:=B5f*q, jEZ. 

In (2.2), * denotes convolution. We immediately record the two important 
identities 

00 00 

E I Fj(x)l E Fj (x)-=1, 
(2. 3) j=-00 j=-00 

(2.3) ~~~00 00 

E Cj(x)1 =Ecj(x) -1. 
J=-?? j=-ac 

They are a result of the fact that the B-splines form a partition of unity and 
that the integral of 0 is one. With the example of b as suggested above and 
n = 1, Cj and Fj are second divided differences of the multiquadric function 
with respect to the sequences x and , respectively (Powell [13]). We define 

VO := { CjCj c 1 Cj})=_-, e f2p 
j=-00 

VI: = { cjFj C c= {c} 00 ee2(z)}. 
j=-00 

We note that if q is the 6-distribution, then we get the spline spaces especially 
considered in Buhmann and Micchelli [7]. We shall now prove two elementary 
facts about these spaces. In the next section, we shall proceed to construct the 
prewavelets that generate the orthogonal complement Wo as in (1.4) of Vo in 
VI . We begin with 

Proposition 1. The space Vo is contained in the space V1 . 
Proof. This has already been discussed in Buhmann [4], but we prove it here for 
the convenience of the reader. Let c = {cj}j 00O e e2(z). Hence the function 
f e Vo defined pointwise by 

00 

(2.4) f (x) = , cj | Bjc(y)o(x - y) dy, x e X, 
j=-oo 

0 
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is defined by an absolutely convergent series and bounded in modulus by Ic 100, 
because q(x - y) ) 0 and the B-splines form a partition of unity. Now recall 
that there exists a positive constant A that depends only on n (de Boor [1, p. 
37]), so that 

(2.5) AIIclIp <1 E Cj cXj+n+l- Xj} 
<B IIcp I <P 1 <p P 00, 

where 11 * IlP denotes the ?P(Z) or the LP(R) norm as is appropriate. If only 
p = is admitted into (2.5), A is bounded below by 2 v-2frnH/(2n + 1) (this 
is a recent result due to Scherer; de Boor, private communication). It follows 
from (2.5) with p = 2 and from the Cauchy-Schwarz inequality that we may 
exchange summation and integration in (2.4). It is the same as 

00) 00 

f(x) = jj cBjc(y)q$ (x - y) dy, 
-oo j=_00 

which can be rewritten by the Curry-Schoenberg theorem (de Boor [1, p. 36]) 
as 

f(x)= j E ejBf(y)q0(x - y) dy 
?? j=_00 

with c e E2(Z). Hence, reverting back to the form of f with the sum outside 
the integral, f E VI , as required. O 

It will be convenient in the sequel to write the spaces Vo and VI as Rx,n,X 
and 9 , n, 0 , respectively, so that 5?x, n,, , for example, is the space of splines 
of degree n on the knot sequence x that are in L2(R) (by (2.5) with p = 2). 

Of course it is relevant to our discussion that (1.2) can be satisfied in the 
present setup. Indeed, we have 

Theorem 2. Let {zk}Ioo0 be a sequence of nested knot sequences in R, i.e., 
T C T C **, where the nesting is in the same sense as in x c T, that satisfy 

Kk := sup(T+k - T) -40, k -- oo , 
iEZ 

and become dense in R for k -+ oo. Here zk = {TJ} . Let Vk=5'2k,n, . 
Then 

00 

(2.6) U Vk = L2(R). 
k=O 

Proof. As the Fourier transform is an isometric isomorphism L2(IR) L2(IR), 
we may prove (2.6) in the Fourier domain. Let h e Cc(R), where Cc(R) de- 
notes the space of compactly supported continuous functions on the reals. This 
is dense in L2(IR). We need to show that h can be approximated arbitrar- 

ily closely in L2(IR) by a function of the form Ej?=_0 cjBj' (k]i if k is large 

enough, where c = {cj}jO e 2(Z) and where the {Bjk]-Loo are the 

B-splines in 5?k, n,J_- Since 0(t) > 0, we have h/I e L2(R) and it can be 



1616 M. D. BUHMANN 

approximated arbitrarily closely by cjBf, [k] if k is large enough. This 
shows that the theorem is true. 0 

3. A PREWAVELET ON NONEQUALLY SPACED CENTERS 

In this section we shall construct prewavelets on nonequally spaced centers 
with the aid of certain "fundamental functions" of splines of degree 2n + 1. 
Precisely, suppose that there exist dt = {d }o e e(z) \ {O}, e Z , such 
that 

(3.1) TPe(x) k=-de J Bf, 2n+1(x -y)q!(y)dy, x e 1 
k=-oo -? 

where Bf 2n+l e 5IE ,2n+1' , are the B-splines with support [Tk, Tk+2n+2] , gives 
the identity 
(3.2) 

I ife =j andn odd, 

| 0(Y - Tj+n+I)T(y) dy I 1if =j + and n even, j, E Z. 
?? 0 O otherwise, 

We call these Te "fundamental functions" because their construction is re- 
lated to the use of fundamental functions of interpolation for constructing pre- 
wavelets in Chui and Wang [9] and in Buhmann and Micchelli [7]. We define 
'1e := (n+l) . This is in VI because (n + 1) st derivatives of B-splines of degree 
2n + 1 are expressible as finite linear combinations of B-splines of degree n 
(see Schumaker [15, p. 121], for instance, but recall that the B-splines we use 
are normalized). In order for the differentiation to result in an absolutely con- 
vergent series here, we need that Ti+j - Ti is bounded away from zero by 5 > 0 
uniformly in i, because the formula for the derivative of a B-spline involves 
division by differences of Ti'S. We have already required that this be true. 

We assert that the desired orthogonality conditions te I VO hold, i.e., that 

JYIe(x)Ck(x)dx=O, k,eez. 
-00 

Together with (1.4), they imply Wo I Vo. This orthogonality is settled by a 
simple argument using integration by parts: Suppose (3.2) holds for a suitable 
de e e I (Z) . Let Se, for any integer e, be defined by 

dn+1 ? 
(3.3) Se(x) :dl+1 E dkBf 2n+ (x), x e R. 

k=-oo 

We get, using the fact that Cj and 2e and all their derivatives up to degree 
n + 1 are absolutely integrable and vanish at infinity, owing to (2.1) and the 
B-splines' compact support, 

jy j Bj(x - y)q!(y) dy S2 (X - y) (y) dy dx 
-00 -00 -00 

(3-4) c)o c) 
((-1)n+lj E 40(X-Xk)T2t(X)dX=O, jeZ, 

?? k=-oo 
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because the (n + 1) st derivative of Bis a finite collection of delta functions 
3( - Xk), k e Z, with real coefficients pi4. Before we state our principal 
theorem, we introduce some notation, namely 

(D) :=Jq (y)(y - 0) dy, 0 e R, 

that is, D = * /(-.). This is a continuous function because of (2.1). 

Theorem 3. The functions (3.1) exist as desired and they are such that Y1e e VI 
and V1 = Vo e Wo, if the three sufficient conditions 

00 
Tj+2n+2 -Tj sup , 0(t-TO 

(3.5) *EZ 2n + 2 tE(-oo? ??) k=-oo 

<2 inf Tk+2n+2 -Tk inf ((0) 
kEZ 2n + 2 CE(Tk-Tk+n+l ,Tk+2n+2-Tk+n+l) 

sup T2k+2n+1 - T2k-1 

(3.6) kEZ n + 1 

(3.6) (T<2min1 inf(2k+2n+1 - T2k-1) inf 1(2 
kEZ (n + 1)2 OE[O, T2k+2n+l-T2k- 1) 

and 

(3.7) inf Tk+2n+2 - inf (D(0) > I 
kEZ 2n + 2 CE(Tk-Tk+n+l Tk+2n+2-Tk+n+l) 

hold. In other words, the Y1e are prewavelets, since they generate WO I Vo with 
V1 = Vo E Wo. These prewavelets satisfy the summability properties 

00 

(3.8) : Je(x - Tj)l <, const < oo uniformly in x e R and ? e Z 
j=-ac 

and 
00 

(3.9) E Iqie(x)I const < oo uniformly in x e R. 
?=-oo 

It follows from our proof of the theorem that (3.5), (3.6) and (3.7) may be 
replaced by three weaker but harder-to-verify conditions. (That is the reason 
why we have opted to mention them now rather than in the statement of the 
theorem.) In order to state them, it is convenient to adopt yet another notation, 
viz. 

(3. 10) D1k Jjq$ (y - Tk+n+ )B' y-z)q(z)dzdy, j,k e Z. 
-00 -00- 

This is well defined because of (2.1). The new conditions are 
00 

(3.11) sup E D1k < 2infDkk, 
2EZ k=-oo kEZ 

(3.12) sup <2+n1 2~ <2minf 1 , inf if 1y(y)I2Bcy)dy} 
kEZ n+0 kZ2 
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and 

(3.13) infDkk > 12 

respectively. Note that there are sets T that satisfy these conditions, because, for 
instance, any small enough pertubation of T = Z does so for the multiquadric 
function = 2 r /(r)= r2+/y2, n = 1, if y is small enough. For that 
choice, the difference between the right- and the left-hand sides of (3.11) is 

1 for small y, and so is the difference between the right- and the left-hand 
sides of (3.12). The left-hand side of (3.13) is 23 when y is small. 

Proof of Theorem 3. Condition (3.2) means that the de are the ?th row of the 
inverse of the bi-infinite matrix D = {Djk}.k__O when n is odd, otherwise 
it is the inverse of D shifted by one. This matrix D is a continuous linear 
operator D: VP(Z) ? VP(Z) for p e {1, oo} (thus for all p E [1, oo] by the 
Riesz convexity theorem), as we shall see now. Indeed, the matrix D has e 

I (Z) 
norm one because the B-splines form a partition of unity and because it was a 
condition on q that its integral be one. Further, the matrix D has bounded 
f?0(Z) norm. This is a consequence of Schumaker's formula [15, p. 128] for 
the zero moment of a (normalized) B-spline, namely 

00 

(3.14) IIDI|oo < sup j2n+2 sup E q(t-Zk). 
iEZ 2n + 2 tE(-oo, oc)k- 

The expression on the right-hand side of (3.14) is finite because of K < oo and 
(2.1), together with the boundedness condition Tk+1 - Tk 5 , k e Z. Thus, 
under the conditions stated in the theorem, lD II D < oo . If (3.1 1) instead of 
(3.5) is demanded, the ???(Z) boundedness of the operator D becomes, in fact, 
explicit. 

The operator D may be inverted in tOo(Z) by a Neumann series approach, 
because IID - II Io < 1, as we shall now derive from (3.5) (or (3.1 1)). (Here, I 
is the identity matrix on Z x Z.) To explain this point in detail, observe that 
there is a 0 e (Tk - Tk+n+l, Tk+2n+2 - Tk+n+l) such that 

Dkk = j 4I>(z)B' 2n+1 (Tk+n+l + z) dz 
-00 

/Tk+2n+2-Tk+n+l 

j:l=2n+2Tk+n+ dI(z)Bf 2n+1 (Tk+n+ 1 + z) dy 
k -Tk+n+l 

= D()| Bf2n+l (z) dz k 

Tk+2n+2 - k(0) 
-2n + 2 

Nonnegativity of D 's entries and lID Ii = 1 imply Dkk < 1, and so 

(3.15) ||D-Illoo <I |ID| + 1 - 2 infDkk- 
kEZ 

The penultimate display, (3.14), (3.15) and (3.5) give the desired estimate 
lID - I11oo < 1. Therefore, D is a homeomorphism on f0O(Z), whence the 
coefficients dt exist with supeZ lIdt I < o0. That the weaker requirement 
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(3.11) may replace (3.5), with D's invertibility by Neumann series remaining 
intact, can be seen from (3.15). 

It is a direct consequence of de E e 1 (Z) and our conditions in the statement 
of the theorem that 

00 )00 

(3.1 6) E ITq (x$-Tj) I sup E 0$(t-rj) sup Id'Iiisup |k+2n+2 
- 

Tk 

j=-00 tE(-oo,oo) j=_oo EZ kEZ 2n + 2 

The right-hand side is finite because the right-hand side of (3.14) is. In order 
to deduce (3.8) from (3.16), one uses the fact that (n + 1) st derivatives of 
B-splines of degree 2n + 1 are finite linear combinations of those of degree 
n (Schumaker [1 5, p. 121]). Precisely, the left-hand side of (3.8) is bounded 
above by 

00Zk( \-fi 

(3.17) sup Z) sp u kEZ n + 1 ( ) 
tE(-oo, o) 1=00 E kZ 

according to Schumaker's differentiation formula. If 0 is sufficiently differen- 
tiable and (2.1) holds also for derivatives of 0 of order at most n + 1, then 
the bound (3.17) may be replaced by 

00 

sup E10?(n+ ')(t - Tj) suP |ldt III suP 2n 2 
tE(-oo, ?) j=-oo eEZ kEZ n+ 

which is a bound that does not contain the increasing factor 6-n- as the 
spacing of the Tk 's decreases. 

We have to show (3.9). By the same arguments as in the penultimate para- 
graph, 

ID -1111 IDII I + 1 - 2 inf Dkk. 

Hence, under our assumption (3.7) or, in its weaker form, (3.13), there holds 
IID- 11 < 1. So the coefficients dk are also absolutely summable over ? e Z. 
Using the fact that the B-splines {I4f 2n+l}loo form a partition of unity, we 
may conclude from dk = {dk}too 00 E P1(Z), k E Z, and (2.1) that 

00 

(3.18) E I'e(x)I <,sup lIdkll 
t=-00 keZ 

This inequality implies (3.9) because Schumaker's differentiation formula for 
B-splines supplies once more the explicit bound 

(3.19) E / lf(x)l I 2SUp Ilkl I d 
_____ k2e 

kil 
t=-oo 

A remark as the one after (3.17) applies here as well: in this case, (3.19) may 
be replaced by 

E: l0'e()l < sup|dkIII 
I 
0?(n+ )1 

e=-00 kEZ _0 

The claim V1 = Vo @ WO is established as follows. Recall that every g e V1 
is expressible as an infinite linear combination of Fj's with square-summable 
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coefficients. We require a decomposition of each Fj E V1 first. To this end, we 
seek coefficients Bjk, jI, k E Z, such that the orthogonality conditions 

00 

(3.20) Ij := Fj- E BjkCk I Ce, E Z 
k=-oo 

hold for all integers j. In other words, we require that 

00 

(3.21) E Bjk(Ck, Ce) (Fj, Ct), e EZ, 
k=-oo 

where (., *) is the standard L2(IR) inner product. Once such B1k are found, 
we shall expand qj in terms of the Yk 's to reach the desired conclusion Fj e 
Vo 0W0o 

As the entries of the symmetric matrix X = {(CQ5 Ce)}k,eez are nonneg- 
ative and the B-splines form a partition of unity, the matrix has ? l(Z) and 
P (Z) norm SUPkEZ(T2k+2n+1 - T2k-1)/(n + 1). This is finite because K is. 
More importantly, it is true that, under condition (3.12) or (3.6), III - XlII = 

III - x 10oo < 1 . The specific argument is as follows: First, we note that 

I -_XIIp sup T2k+2n+l - T2k-1 

(3.22) kEZ 

+ max{- 1, I - 2 inf (Ck, Ck)} C p= 1 Xo 
kEZ 

and then 
1. 00 

(Ck, Ck) =]J BB(z) 1 D(x)B'(x + z) dx dz 
-00 -00 

f Z2k+2n+1 00 

=1J BB(z) /D(x)Bk(x + z) dx dz 
t2k-I 0 

(T2k+2n+1 - T2k-1 )() 

(n + 1)2 
-DO 

for a suitable 0 E [0, T2k+2n+1 - T2k- 1). Thus, according to the conditions in 
the statement of our theorem, the right-hand side of (3.22) is less than one. 
Hence X is a homeomorphism with inverse x-' in fI (Z) and in t00(Z). That 
the weaker requirement (3.12) is appropriate follows from the display (3.22) 
and from 

(Ck, Ck) = f 1k(y)I2lBk'(yI2 dy 

by the Parseval-Plancherel identity. (The latter may be applied by (2.5) [for 
p = 2 ] and the integrability of 0q.) 

The desired coefficients are BIk := ZeEZ(F1 5 Ce)Xk-7I ; we denote the matrix 
{Bik}?k00 by B. The matrix B is well defined and IIBiIi, 1IBiloo are fi- 
nite because of (2.3) and x's invertibility. Hence, in particular, ?1j E V1 by 
Proposition 1 and Theorem 275 on p. 198 of Hardy, Littlewood and P61ya [11]. 

To advance the proof, we require 
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Lemma 4. Let r7j, j e Z, be defined by (3.20). For each j there exists an 
n + 1 times differentiable Hj such that H('+') = i7. Moreover, 

00 

(3.23) sup E 1(0( - T2k), Hj)l < 00 
JEZ k=-oo 

and 
00 

(3.24) sup E 1(0( -T2k), HA) <00. 
kEZ j=-00 

Proof. We note first that there is such an Hj for each integer j. We can 
provide it explicitly: 

I 00 

(3.25) Hj(x) = A j (x - t)lj(t) dt, x ER, 
* 00 

where (-) n is a truncated power. It follows from r1 's definition, lB 1100 < oo 
and the upper bound (2.1) that Hj is well defined. We observe 

(3.26) (Hj, 4(. - T2e)) = 0, i E Z. 

In order to prove (3.26), we note that, by integration by parts and (3.20), 

0= (?7j Ce ) 

= ( Hjl)+ (H / 1) - y) dy) 
00 

=(Hj, Z U4(-$-T2k-1)), 
k=-oo 

where the {ju }110 are fixed multiples of the coefficients of the (n + 1) st-order 
divided difference operator based on the knots associated with Be 's support. 
The last display implies (3.26) as (Hj, g(.-rk)) is of polynomial growth but not 
a polynomial, whereas there are no nontrivial polynomially growing sequences 
(except polynomials of degree n ) in the kernel of the aforementioned difference 
operator. 

Therefore, by taking an (n + 1) st divided difference of ((. - y), Hj) with 
respect to y at the n+2 points T2k-1 I T2k TZ2k+1 T T2k+3 , T2k+5 T 2k+2n- 
and by the Peano kernel theorem, 

(3.27) I(0( - T2k) Hi)l C-(qC(- -2k) [T2k+2n-I - T2k-l]n itiji) 

for a suitable positive constant C. Here, t2k E (T2k-I1 T2k+2n-1) If we sum 
(3.27) over j E Z, the result is bounded independently of k, since Ez??- . I qj 
is uniformly bounded because of (2.1), the compact support of the B-splines 
and jIBii, < 00. By the same token, if (3.27) is summed over k, the result is 
again bounded, independently of j, since ?7j E L1 (R) and K < 00 . O 

We continue with the proof of Theorem 3 and recall that it is still our aim 
to expand each qj in terms of the y/k which proves Fj E Vo e W0. Equipped 
with Lemma 4, our goal is precisely to show the following lemma: - 
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Lemma 5. Let Ij, ie Z, be defined by (3.20). Then 
00 

(3.28) bj = E Ajkk, j E Z, 
k=-oo 

for coefficients A1k which are absolutely summable over j E Z as well as over 
k e Z. 
Proof. We observe immediately that it suffices to prove instead of (3.28) that 

00 

(3.29) fti= E Ajk,2k jE Z 
k=-oo 

for suitable coefficients Ajk and for an ft1 with ft(n+l) = lj, because we may 
differentiate on both sides of this identity (n + 1) times. We claim that, owing 
to the form of the "k and the properties of Hj, the following choice is suitable: 

(3.30) Hi T= oo(k( 2k+n+i), Hj))2k, n odd ( , 

H1i : k=_oo0(P(- T2k+n), IHj)'2k , n even j 

the series being absolutely convergent because the P2k are uniformly bounded 
by supeZ lid' Iii and because of Lemma 4. Theorem 275 on p. 198 of Hardy, 
Littlewood and P6lya [11], Lemma 4 and IIdt I I < 0 imply that the right-hand 
sides of (3.30) are in J/2n+l,where we let V =2n+ = T,2n+1,< . 

By taking inner products (-, *) with q( - Tz) on both sides of (3.30), we 
observe that (3.2) implies for odd n 

('k(t - T21+n+i) H) = ( T( - Z2e+n+i) , Hj), E Z, 

while (3.26) implies 

-T2t+n), H = (X( -T2t+n) Hi) = O, ? E Z. 

There are analogous identities for even n. 
Nonsingularity of D as an operator j2(Z) * j2(Z) means that the implica- 

tion 

f EVj FE In+1 F(n+ f)= (?0(- - Tl) F) = 08 V'E f =? 

holds. Hence, f(n+l) = H(n+l) _ ?j as required. 
We have thus found the coefficients Ajk, j, k e Z. They are not only 

absolutely summable over k, but also over j because of Lemma 4. Therefore, 
Lemma 5 is settled. f1 

Now let g E V1, g = Zj00 cjFj, for C = {cI} -O E ?2(Z). Then, 
according to Lemma 5, 

00 00 00 00 

Z = E E cjAjk/k + E E cjBjkCk 
k=-oo j=-oo k=-oo j=-oo 

with 
00 (.12 000 00Z2 

(3.31) E (-E cjAjk= < -, E (- E 0 Bjk < X0 
k=-oo j=-oo k=-oo j=-oo 
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The second inequality in (3.31) follows from the fact that EZ o lBjkl I 
const < o0 and E'=_ IBgjk < const < 0, uniformly in j and k, respec- 
tively, and from Theorem 275 on p. 198 of Hardy, Littlewood and P6lya [11]. 
The first inequality in (3.31) is true by Lemma 5. a 

We remark that the assertions of Theorem 3 remain true if q is no longer 
positive, so long as it is explicitly demanded that lID - IlIIK < 1, ID - IllI < 1 
and 11x - Illo < 1, in order that the Neumann series argument can be applied. 

Theorem 6. Given the setup of Theorems 2 and 3, there are prewavelets 
{ =ek}e-oo, k E Z+, in Vk+l and spaces Wk spanned by sums of those pre- 
wavelets with square-summable coefficients such that Vk+l = Vk D Wk, k E Z+, 
and 

00 

(3.32) L2(R) = Vo Ee Wk 
k=O 

if the assumptions of Theorem 3 hold for all Tk. 

Proof. Let f E L2(R) and let a positive e be given. In view of Theorem 2, 
there are k E Z+ and fk E Vk such that 

Ilf_fk112 <- 

Further, 
fe+j = fe +ge, feE Ve, ge E We, V O <t <k. 

Therefore, the arbitrariness of e > 0 and the orthogonality between different 
WI's imply (3.32). a 

We point out that, according to the requirements of Theorem 3, it may not 
always be possible to construct prewavelets that span Wk for arbitrarily large 
k depending on Tk, the prescribed radial function and its parameters. If this 
happens in practice and when using multiquadrics for instance, y must be 
chosen suitably to allow that the sufficient conditions for the existence of pre- 
wavelets with small stepsizes in Theorem 3 are met, where the stepsize should 
be according to the resolution we wish to obtain. 

Further examples to our theory can be obtained by applying it, for example, 
to (r2 + y2)7 (where / E Z \ 2Z+ ). Quickly decaying radial functions with 
positive Fourier transforms 0(r) = exp(-y2r2), y > 0, q(r) = exp(-ylrl), etc., 
can be used too, in this case directly as 0 without any differentiation. The 
essential feature that admits derivation of suitable decaying functions from the 
radial functions by differentiation is that ' be positive and integrable outside a 
neighborhood of the origin, with perhaps an integer-order singularity at zero. It 
is the purpose of the differentiation to resolve this singularity. More specifically, 

8 (r) = 3r +2 with Lo 
- (4) or ?>(r) - are both suitable choices for 

n = 3 and n = 0, respectively, except they have to be normalized to integrate 
to one. 

It is highly relevant to the computation of the prewavelets that, if = - (n+l) 
as in our initial multiquadric example for n = 1, the entries of the matrix D 
are a constant multiple of 

(3.33) j e(y - Tj)0k(y) dy 
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FIGURE 1. Multiquadric prewavelet for n = 1, y = 0.1 and 
scattered centers 

where q$k is a (2n + 2) nd-order divided difference of the function 0 based on 
the centers that are associated with Bf 2n+l 's support. The formula (3.33) is 
derived from (3.10) by integration by parts. By the same token, the prewavelets 
themselves can be expressed as constant multiples of 

0.0 

Z d2t o 
(y) Y E R, 

k=-oo 

instead of (3.1). This observation has been used to create Figure 1 of the 
multiquadric prewavelet for n = 1. It uses integer data randomly perturbed 
(by at most 0.4) and y = 0.1. The positions of the centers are indicated 
by crosses. So we see there a multiquadric prewavelet for scattered centers, 
probably for the first time in the literature. It remains to add, however, that 
the theory presented here is far from complete, which reflects the fact that the 
approach to scattered data prewavelets is substantially different from that of 
prewavelets on gridded data. For instance, no Riesz basis properties are shown 
of the prewavelets presented here nor are there concrete estimates for their 
asymptotic behavior at infinity. 

In order not to end on a downbeat note, we point out that it was shown in 
Buhmann [3] how to derive explicit decay estimates for prewavelets and decom- 
position coefficients Ajk, Bjk, if q is a derivative of a radial basis function 
from the class discussed in that paper and the centers are equally spaced. In this 
context it is also important to note that, when the centers are equally spaced, 
Riesz stability for the ?2(Z) norm can be shown, so that the prewavelets here 
form a Riesz basis for Wo. We do not elaborate on this point, however, because 



MULTIQUADRIC PREWAVELETS ON NONEQUALLY SPACED KNOTS 1625 

the subject of this paper are prewavelets on nonequally spaced centers. (This 
claim is actually easily established using (2.5) and the fact that D is a home- 
omorphism on ?2(Z)-the latter follows from D being a homeomorphism on 
?P(Z7/), p E { 1, oo}, and from the Riesz convexity theorem.) The subject of 
Riesz stability will be one of the main topics in the forthcoming paper (Buh- 
mann [6]). 
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