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ON THE l-ADIC IWASAWA A-INVARIANT IN A p-EXTENSION 

EDUARDO FRIEDMAN AND JONATHAN W. SANDS 
(WITH AN APPENDIX BY LAWRENCE C. WASHINGTON) 

ABSTRACT. For distinct primes 1 and p, the Iwasawa invariant Al stabilizes 
in the cyclotomic Zp-tower over a complex abelian base field. We calculate 
this stable invariant for p = 3 and various 1 and K. Our motivation was 
to search for a formula of Riemann-Hurwitz type for Al that might hold in a 
p-extension. From our numerical results, it is clear that no formula of such a 
simple kind can hold. In the course of our calculations, we develop a method 
of computing Al for an arbitrary complex abelian field and, for p = 3, we 
make effective Washington's theorem on the stabilization of the i-part of the 
class group in the cyclotomic Zp-extension. A new proof of this theorem is 
given in the appendix. 

INTRODUCTION 

Our purpose here is to investigate the connection between a certain type of 
cyclotomic Iwasawa Al-invariant attached to a base field and the corresponding 
invariant attached to an extension field of degree prime to 1 . To simplify this 
investigation, the base field K will be a finite complex abelian Galois extension 
of the rational field Q, and the prime number 1 will be odd. A ZI-extension of 
K is a field extension A/K such that Gal(A/K) is topologically isomorphic to 
the additive group Z1 of the l-adic integers. The cyclotomic ZI-extension K1. 
of K may be defined as the unique ZI-extension of K contained in the field 
obtained by adjoining all i-power roots of unity to K. Fix an embedding of 
K,. in the complex numbers C, and let T represent complex conjugation. Let 
K,. be the subfield of K,. having degree ln over K, and let AI(KI.) be the 
1-Sylow subgroup of the ideal class group of K,. . Complex conjugation acts on 
this group, and we let Al (K,.) denote the subgroup consisting of elements c 
such that CT = c-. The theorems of Iwasawa [12] and Ferrero and Washington 
[6] imply that there exist integers N(K), A- = A- (K) and v- = - 

(K) such 
that the order of Al (K,.) is given by the formula 

IAT(Kn )I = lnA-+v- 
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for each n > N(K). Iwasawa [13, p. 272] noted that A- (K) depends only on 
Kloo , and not on the particular base field K. Thus, one could also denote the 
invariant A- (K) by A4 (K,.). 

We now consider a finite normal extension L/K such that L is also a CM 
field. For simplicity, we even assume that L is abelian over Q, and that 
[L K] = p, a prime number. 

When p = 1, the invariants A_ (K) and A- (L) are related by a formula 
proved by Gras [10], which is an analog of the Riemann-Hurwitz formula re- 
lating the genus of a curve to the genus of a covering curve. Kida [15] and 
Kuz'min [16] independently proved the formula without assuming that K and 
L are absolutely abelian, so we will refer to it as the Gras-Kida-Kuz'min for- 
mula. The reader will find a thorough survey of this formula in Jaulent and 
Michel's article [14]. In our examples, L will not contain the primitive l-th 
roots of unity, so let us make that assumption now and describe the Gras-Kida- 
Kuz'min formula in that case. 

When w is a place of Ll. , denote the ramification index of w in Ll. /KI. 
by e(w). Then 

(* ) 21 (L) = [LI-o Kloc]AL (K) + 2 (e(w) - 1) 
w 

with w running over all places of LI. which do not lie above 1 and are 
not fixed by complex conjugation. This is the formula which motivates our 
investigation. 

For the rest of this paper, 1 and p will be distinct odd primes (exception: 
in the appendix, 1 or p may be even). Iwasawa has pointed out that one 
cannot expect to find a formula like (*) relating A- (L) and A- (K) in this 
case. Suppose, for instance, that 1 = 2p + 1, K = C(vC) c L = Q(4i). Then 
the class number of K is less than 1; in particular, it is not divisible by 1. The 
i-extension K1./K has only one ramified prime, so that the class number of 
K,. is also not divisible by l (see [11]). Thus, A1 (K) = 0. On the other hand, 
A- (L) is the index of irregularity of 1, at least for l less than 4 million (by 
[22, 4, 5], and [1]). This index of irregularity is a subtle invariant, for which no 
simple formula is anticipated. 

Rather than simply consider A1 (L) and A7 (K) , we will define similar invari- 
ants which also depend on p. Let Kpoo denote the cyclotomic Zp-extension of 
K, and Kpm denote the intermediate field of degree pm over K. Let Al (Kpoo) 
be the direct limit of the groups Al (Kpm ) under the natural maps. Washington 
[25] has proved that there exists an integer M(K) such that the inclusion maps 
induce isomorphisms Al (Kpm) Al (Kpr) for all r > m > M(K). Hence 
Al (Kpoo) may be identified with any one of the finite groups Al (Kp,m), for 
m > M(K). In ?2, we will make use of Washington's more effective proof of 
this result (see the appendix to this paper), which is obtained by modifying an 
alternative proof by Sinnott [21]. 

The stable A1 -invariant which we will define arises from consideration of the 
fields K1npm . In keeping with our previous definitions, K1npm denotes the field 
of relative degree lPpm over K in the cyclotomic ZI x Zp-extension of K, and 
KI.p. will denote the union of such fields for all m > 0. Washington's theorem 
applies to K,. , and so there exists an integer M(KI.) such that Al (K1.p,,) 
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Al (K1npm) for all m > M(KI.). A consequence of the main theorem of [7] is 
that in fact a single value M(KI.) = M' works for all n. In ?2, we will give a 
new, analytic proof of this fact. Thus, for each m > M' and n > N(KpM'), we 
have 

lA- (Kinpm)J = jA7 (K1nm M)| = Ii' (KPM)+v7 (KPM) 

This shows that A- (Kpm) = A7 (KPM') and y (Kpm) = v7 (KPM') for each 
m > M'. We define the invariant A- (Kpoo) = Ay (KP,M'), which may then 
be considered as the p-stable version of A- (K). Upon setting vT (Kpoo) = 
v7 (KPM' ), we see that the formula 

jAy (K1.,pO)j = InY, (Kpoo)+V7 (Kpoo) 

holds for each n > N(KpM'). 
The invariant A- (Kpoo) is our principal object of study. We will consider 

the relation between A- (Kpoo) and A- (Lpo) . In other words, we will consider 
the p-stable A1--invariant in a p-extension L/K. The main reason for passing 
from L/K to Lpoo /Kpo is that the behavior of the places in the p-extension 
Lpoo /Kpoo is particularly simple: all places other than those above p must either 
ramify or split completely. However, as our numerical calculations show, this 
does not suffice to make a formula of Riemann-Hurwitz type hold. 

We emphasize that the Gras-Kida-Kuz'min formula (*) assumes L/K to 
be a Galois i-extension. Gold and Madan [9], following Riick's work [18] on 
the Hasse-Witt invariant, dealt with certain non-Galois i-extensions L/K of 
CM fields. They proved a formula relating A- (L) and A- (K) which is not 
of Riemann-Hurwitz type. It seems then that the Hasse-Witt invariant, rather 
than the genus, is the closer geometric analogue in characteristic I of the Iwa- 
sawa A1--invariant. For one thing, neither the RI nor the Hasse-Witt invari- 
ant assigns a special role to wild ramification in the known analogues of the 
Riemann-Hurwitz formula. Even more germane to this paper, for neither in- 
variant is there yet any idea of how it changes in an extension of degree prime 
to 1. 

1. STABILIZATION OF THE RELATIVE i-CLASS NUMBER IN THE Zp-TOWER 

Let K be a totally imaginary abelian number field and let Kpm be the m-th 
layer of the cyclotomic Zp-extension of K as in the introduction. Let Kp+m be 
the maximal totally real subfield of Kpm . We denote the class numbers of these 
fields by h+ and hm, respectively. The relative class number of Kpm is the 
integer h- = hm/h . Let v, be the usual valuation at the prime 1, and for 
any rational number g, let (g)I = lv(g) . Then IA (Kpm)I = (hm)1, and this is 
what we wish to investigate further when I and p are distinct odd primes. For 
simplicity, assume from now on that p2 does not divide the conductor of K. 
(Lemma 1 of [24] shows that there is no loss of generality in doing so.) This 
implies that pm+l exactly divides the conductor of Kpm for m > 1. When X 
is a character of A = Gal(K/Q), with conductor fx, the associated primitive 
Dirichlet character modulo f, will also be denoted by X, and will be called a 
character corresponding to K. For a nontrivial Dirichlet character 0 modulo 
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f, the generalized Bernoulli number B1, a is defined as 

1f 
B1, IZ 0(b)b. 

b=l 

Fix a nonzero multiple a of the exponent of A. Let Ca = e2rila and F = 
Q(Ca), so that F contains the values of each character x of A. Given a 
positive integer m, we pick any prime I above 1 in F(Cpm) and let vr be the 
valuation at I extending vl. 

(1.1) Lemma. If m > 1, then 
vl(hl/h- 

1) > 0. Furthermore, if vl(hl/h-_l) 
> 0, then vr(Bi,,,) > 0 for some odd character X corresponding to K and 
some Dirichlet character q/ of order pm and conductor pm+l . 

Proof. The lemma follows easily from the analytic class number formula and 
the known integrality properties of B1, , (cf. [17] and [26, Chap. 7 exer- 
cises]). o 

We apply the lemma as follows. Fix a value 
(**) 

c> c= v_(iP- - 1) + max ({vp(r - 1): r prime, r 0 1, rja}, vp(a) - 1, 0). 

If I is a fixed prime above 1 in F(4pc), this choice of c ensures that I re- 
mains inert in F(,pd) for d > c, so we may also denote the prime over I in 
F(4pd) by [. To see that I remains inert, note that we may assume 1 { a. 
Otherwise we may just remove all factors of 1 from a, which leaves c' and 
the relevant residue degree unchanged. Since c' > 1, we may also assume 
that p a. Otherwise we just replace a with pa. Let a r Hei be the fac- 
torization of a into prime powers, and let t be the exponent of the group 
(Z/aZ)Xx fl (Z/ri-Z)X HlZ/(ri - 

1)ri ''. Thus, p - I t and 

k:= vp(t) = max ({vp(ri - 1)}, vp(a) - I) 

Writing t = (p - 1) * pk .s, we have 

VP(lt _1) = vp((ip_)Pks _ 1) = Vp((lP)Pk -1)=Vp(lp 1) + k = c'. 

Hence, It 1 (mod a) and It _ 1 (mod pC') but It - 1 (mod pC'+l). This 
implies that [ is inert in F(4`Pc,+,)/F(4Pc'), and hence in F(Cpd)/F(4pc). 

For the rest of this section, we take p = 3. For each character X of A, put 
m% = fX/(fx)3 . For each integer y, define a polynomial 

M'x - I 

Gy,x(T) = Z X(y + 3Ci) Ti E F[T]. 
i=o 

(1.2) Proposition. Let c, [ and X be as above. If d > max{2c - 1, 2}, if 
V/ is a character of order 3d with conductor 3d+1, and if vr (B1, X,) > 0, then 
for each y 1_ (mod 3), 0 < y < 3c, there exists a primitive 3d-C+L-th root of 
unity C such that G.,,(4) 0 O (mod [). 
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Proof. Assume that 
v1(B1,xv) 

> 0. Now we use the rational function fy(T) 
defined in (A.O) of the appendix by 

fy(T) = ( Z X(b)Tb)/(Tmx3c- 1). 
b=y (mod 3C) 

O<b<mx 3c 

Here we regard fy(T) as having coefficients in F. For the case of p = 3, it 

is proved in (A.2) of the appendix that if vr(Bi,,x) > 0, then fy(CY1) =_ 0 
(mod [), where C. is a primitive 3d+1-th root of unity independent of y, the 
exponent y-I is taken 3-adically, and y is as in (1.2). From the definition of 
fy(T) .we then see that 

O < Vl (fy(CYr)) = vi (x(b);1b) 
- Vb (_VY ym -) i. 

Hence, 

X%(b)C,, 'b =_O (mod 1). 
b 

Writing b =y+ 3C i allows us to sum instead over i from 0 to m. - 1 , yielding 

mx-i 

0 E X(y + 3ci)4Cy 13ciC = Gy x(C)Cv (mod Q), 
i=o 

upon setting v = ., 3. Since C. is a primitive 3d+ -th root of unity and 
d > c, C is a primitive 3d-c+l-th root of unity. The proposition follows. 0 

As a consequence, we obtain the following effective versions of Washington's 
theorem for the case of p = 3. 

(1.3) Proposition. Let K be a complex abelian number field with conductor 
not divisible by 9 and let a be a multiple of the exponent of A = Gal(K/Q). 
Define F = Q(Ca), fix c as in (**), and choose a prime I of F(4CY) above 
1, where 1 $ 3 is an odd prime number. Let M denote the ring of integers of 

F(Y3c). For each character X of A and each integer y, let Gy,x(T) be the 

image of Gy,x(T) = Em x-1 %(y + 3ci) Ti in (1/[)[T]. 

Suppose that d > max{2c - 1, 2}, let hd- denote the relative class number 
of K3d and suppose that for every odd character x corresponding to K, there 
exists an integer y 1_ (mod 3), 0 < y < 3C, such that for each primitive 3c-th 

root of unity r in &/[, we have that T3 - r does not divide Gy,x(T) in 

(6&/1)[T]. Then v, (. 

Proof. The proof is by contradiction. If v, (h^L-) > 0, then v[(Bi,xv,) > 0 

for some odd character x corresponding to K and some character Vt of order 
3d and conductor 3d+1 , by (1.1). Let &' be the ring of integers of F(43d-c+l ), 

so that a c C' , and recall that we can also regard I as a prime of &'. Fix an 
arbitrary y _1 (mod 3) in the range from 0 to 3c. Applying (1.2), we see that 
Gy, (C) = 0 in &'/[t, for some primitive 3d-c+ -th root of unity C in &' with 
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image Z in 9'/[. Since [ is inert from a to a", the corresponding residue 
field extension is of degree 3d-2c+1 , and is generated by 4Z. Now 4 satisfies the 
polynomial T3d - r E 6/[[T] for some primitive 3C root of unity r in 0. 
Because it is monic of the correct degree, this must be the minimal polynomial 
of 4. We conclude that T3d - 

2 c 

Gy,(T). Since y was arbitrary, this 
completes the proof by contradiction. o 

(1.4) Corollary. Let K and c and p = 3 be as in (1.3). If 3d-2c+l > mx for 

each odd character X of A, then v/ = 0. 

Proof. The condition (T3d-2c+l - ) { G , x (T) of Theorem (1.3) holds for each 
X, because our assumption means that the degree of the first polynomial is 
greater than the degree of the second. Note that GI . is not the zero polynomial 
because the constant term is x(M) = 1 . o 

2. STABILIZATION OF A- IN THE CYCLOTOMIC Zp-TOWER 

As before, we let p and l be distinct odd primes, and let K be a complex 
abelian field. We also assume that neither 12 nor p2 divides the conductor of 
K. Again there is no loss of generality in doing so. We assume known an M 
such that 

(2.0) IA7(KPm)I = IA7(KPM)I 
for all m > M. Equivalently, as we saw in ? 1, 

(2.1) B1,0 6 0 (mod [), 
where 0 = X qIpm X is any odd Dirichlet character of K, Ipm is any primitive 
Dirichlet character of conductor pm+l and order pm, m > M, and [ is any 
prime above l in Q(6). 

We now show how l-adic L-functions allow us to pass from Kpm to Kpmln 
in (2.0). Denote the l-adic Teichmiiller character by w1 and let LI(s, Owl) be 
the l-adic L-function satisfying (see [26, p. 57]) 

(2.2) L1(O, cowl) = -(1 - O(1))B1,a. 

Let 9(T, Ow1) be the Iwasawa power series associated with Ow1, as in [26, p. 
123]. Then 

(2.3) LI(s, Owl) = (u - 1, Owl), 

where u = u= 1 (mod 1), u - 1 (mod 12). 
If qIgn is a primitive Dirichlet character of conductor jn+1 and order ln 

(n > 1) , then 

(2.4) LI (s, 5 y /ln col ) = g(S,ln us-,Ocl) 

where Cln = qIn(u)-1 is an ln-th root of unity. By possibly increasing M to 
an M' that depends only on K, 1, and p, we can obtain 

1 - (1) =1 -XC/pm(1)*0 (mod [) 

for m > M'. For such m, it is clear from (2.2)-(2.4) that B1 , 0 (mod [) is 
equivalent to B1, OVn 0 0 (mod [') for all n > 0, where [' is the unique prime 
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above [ in Q(6, yV/p). Hence, IAT(KpmIn)I = IAT(KpMI in)l for m > M' and 
n > 0. It follows that Af (Kpoo) = )- (KPM'). 

In short, an explicit form of Washington's theorem (i.e., knowing AM in (2.0)) 
and some elementary number theory (to ensure that 1 - x Ipm (1) W 0 (mod Q) 
give an explicit level Kpm' at which the A- -invariant stabilizes. Moreover, the 
same technique would apply to any CM-field K for which the i-class numbers 
were known to stabilize in the cyclotomic Zp-extension of K. 

In our numerical examples, in which p = 3, we will take advantage of our 
computation of Gy, (see ? 1) to obtain the stabilization of A- in a somewhat 
different manner (see ?4). 

3. COMPUTATION OF RI FOR A COMPLEX ABELIAN FIELD 

We assume that l is an odd prime and that k is a totally imaginary abelian 
number field of conductor not divisible by 12. The invariant A- (k) will be 
computed via its connections with /-adic L-functions, as in [3]. 

Let w, be the /-adic Teichmiiller character modulo I, and let u = expl(1) = 
1 + l + 12/2! + * * * in 7Z . Suppose x $ w7 1 is an odd character associated 
with k. By our assumption on the conductor of k, the l-adic L-function 
LI (s, Xwol), defined for s E ?Z,, has a unique associated power series 

00 

9(T, Xwo) = ZaiTi, 
i=o 

with coefficients in the ring 6 = 69, obtained by adjoining the values of X 
to Z1, such that LI(s, Xwl) = G(us - 1, Xcol). The power series 9(T, Xcol) 
has a Al-invariant, which may be defined to be the least i such that ai does 
not lie in the maximal ideal of M Such an i exists by the theorem of Ferrero 
and Washington [6]. Set 

RI (Xcl) = RI (9(T, Xcwi)). 
Then, again by virtue of our assumption on the conductor of k, 

(***) ~~~A-(k)= IX0) 

where X runs through all odd characters associated with k (except 1 l in the 
event that it is associated with k). 

Our computation of AI(xwol) = )1(9(T, Xwl)) is based on the following 
result. We will use the convention that log, on Zf is defined by the power 
series for log(1 +x) when i _ 1 (mod 1) and log,(i) = log,(i/lo(i)) in general. 
For each positive integer n, let wl. (T) = (1 + T)'I - 1, and define the integer- 
valued function Lln (i) by 

0 > Lln(i) > -in, Lln(i) _ logl(i)/1 (mod ln). 
(3.1) Proposition. If xcol is a nontrivial primitive Dirichlet character with con- 
ductor f = fo or f = fol, l t fo, then 

1n+1 fo-J 

-fog'(T, Xwi1) Z j * X(i + jln+1)(I + T)-LIn(i) (mod wl(T)). 
ilj=O 

iti 

Proof. This may be derived from the formula immediately preceding the state- 
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ment of Theorem (1.2) in [3, p. 103]. Simply multiply both sides of that 
formula by (1 + T)k and sum over k. o 
(3.2) Corollary. Let X be an odd character satisfying the conditions of (3.1), 
and let n be a positive integer. Then 

(ln -1)/2 /fi0-I 

-fo,'(T, Xwl) _ 2 E Ej x(i +jln+l) (+T)-Lin(i) (mod wjn(T)). 
i-l j=O 1=1 

Proof. The sum Efiol(fo-_ )X(i+jln+l) vanishes for each i because i+jln+l 
runs through a complete residue system modulo fo which is constant modulo 
1, and X may be factored as a nontrivial character modulo fo times a character 
modulo 1 . Setting j' = fo- 1-j and i' = ln+i -i, we observe that X(i+jln+l) - 

-X(i' + j,ln+l). Thus, the inner sum in (3.1) is the same for i (summing over 
j) and for i' (summing over j', which is equivalent). Now L(i) = L(i'), so 
we see that the same term in the outer sum in (3.1) is obtained for both i and 
i/ = jn+i - i, implying the result. a 

4. THE ALGORITHM 

The algorithm for computing Al (Kpo) may now be described in full. We 
assume that p = 3, that 1 > 5 is a prime, and that K is a complex abelian 
number field with conductor not divisible by 12 nor by p2 = 9. 

Corollary (1.4) and Proposition (1.3) provide the basis for determining an 
M such that 

IAT (K3M)I = IA (K300)I. 
This is the first step mentioned in the introduction. First we calculate c' as in 
(**) in ? 1 and choose c = c'. Thus, if F is the field of character values of 
A = Gal(K/Q), then each prime I above 1 in F(43C) remains inert in F(43d) 
for d > c. Then we determine the smallest d such that 3d-2c+l > max, {mI}, 
where mx = fx/(fx)3, and d > max(2c - 1, 2). By (1.4), we may take M= 
d - 1. If M = d - 1 > max(2d - 1, 2), we try to reduce this choice of M by 
using Proposition (1.3) as follows. For each odd character X, we set y = 1 in 
Proposition (3.1) and verify that 

(T3m2l - r) f Gy, x(T) 
for each r of order 3c in (/ [)I . If we succeed, then (1.3) shows that M can 
be reduced to M - 1 . In this case, as long as the new value of M is still greater 
than or equal to max(2c - 1, 2), we use (1.3) again to try to further reduce 
M. If the verification fails, we try another value of y =1 (mod 3C). This is 
repeated until there are no y's left to try, and we can reduce M no further. 

Having finished the first step of the algorithm, we have obtained a value of c 
and, for each odd character X of K, an M > max(2c- 1, 2) - 1, and a y- 1 
(mod 3), 0 < y < 3c, such that 

Gy x (C) 0 0 (mod 1) 

for any primitive 3d-c+l-th root of unity 4, where d > M. Suppose we now 
replace X by XVIln , where V/ln is a primitive Dirichlet character of conductor 
jn+l and order ln, n > 1 . One checks that c' in (**) is unchanged. There is a 
unique (totally ramified) prime V' above i in the new field of character values. 
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We now make the further assumption that 3 does not divide the conductor of 
K. Thus, mx = fx . Since the values of l/1n are congruent to 1 modulo (', we 
have 

jn+ IfX-1 

Gy, x y (T) Z E X(y + 3'i)T1 
i=o 

f -1 ln+l-1 

- Z %X(Y + 3c(i + kfx))TL+kfx 
i=O k=O 

Gy x (T))(Tfx - 1) (mod V'). 

As 3 f.ln+ 
I , we have Gy, Xvn 0 0 (mod I) whenever Gyx () t 0 (mod t) 

and C has 3-power order. Applying Proposition (1.2) to Kln , we see that 

IA-(K3dln)I = IA!(K3Mln ) I 

for any d > M, n > 0, where M is as determined above for K. We conclude 
that if neither 12 nor 3 divides the conductor of K, then Al (K3.) = Al (K3M), 

where M has been determined in step 1 (we take an M that works for all odd 
characters X of K). This completes the second step. 

Our third and final step is the computation of Al (K3M). First we invoke 
* *) with F = K3M, so that 

Al (KPM)= E )1(xw,), 
x#w7'1 

where X runs through all odd characters associated with K3M. Then (3.2) 
allows us to compute kKXWI). Since wl, = (1 + T)l - 1 E (T', 1), we may take 
n = 1 and determine AI(XwcI) = )I(G(T, X(oi)) as the lowest power of T in 
the sum in (3.2) whose coefficient does not lie in the maximal ideal of 1x, as 
long as this answer is less than 1. Otherwise, we determine ).(G(T, Xwol)) by 
choosing larger values of n as necessary. This completes the algorithm. 

5. COMPUTATIONS 

Computations were performed using Mathematica on the Silicon Graphics 
Iris 4D/480 at the Computer Facility of the University of Vermont Division of 
Engineering, Mathematics, and Business Administration. Steps one and three 
are easily reduced to testing the divisibility of various integral elements in a 
cyclotomic field Q(Cc) by a prime above 1. We represent such an element by a 
polynomial q(Cc) in Cc, and let Dc(x) be the minimal monic polynomial of c 
over Q. In (Z/lZ)[x], an irreducible factor Cc(x) of (Dc(x) corresponds to 
a prime of Z[c] above 1, namely I = (1, Cc(4C)), where Cc(x) is any lifting 
of Cc(x) to Z[x]. Then q(;C) lies in [ if and only if Cc(x) divides q(x) in 
Z/lZ[x]. This condition may be tested in Mathematica by taking the greatest 
common divisor of Cc(x) and q(x) modulo 1 to see if it is different from 1. 

In order to check our program, we used it to compute some invariants which 
could be verified independently. First we computed A- for three fields, each 
of which is a composite of an imaginary quadratic field and a cyclic cubic field. 
Namely, we took the composite of Q(SvPTT) with the cubic subfield of Q(7), 
the composite of Q (v'ZT) with the cubic subfield of Q(7), and the composite 
of Q(v/B- 13) with the cubic subfield of Q(%l9) . We obtained the values 3, 2 and 
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6, respectively. These are in agreement with what one obtains by applying the 
Gras-Kida-Kuz'min formula (*) for an extension of degree 3 over an imaginary 
quadratic field. The invariants for these imaginary quadratic fields are found 
in Gold [8]. We computed Ay(Q(C19)) = 7, in accord with Childress [2], and 
verified the values 1 and 2 of A5 for two individual characters (the product of 
the 5-adic Teichmtiller character and the quadratic characters of conductor 37 
and 53) considered by Ernvall and Metsankyla [5]. 

TABLE OF RESULTS: Computations when p = 3, K = Q(VX/) and L is 
the relative cubic extension of K contained in K(Cr). "Jump" denotes the 
difference in the two preceding columns after subtracting the contribution due 
to trivial zeros. 

1 D r )L (K) )- (L) A- (K3.) )- (L3-) Jump 
5 4 7 1 1 1 3 0 
5 4 13 1 3 1 3 0 
5 4 19 1 1 1 3 0 
5 7 7 0 0 0 0 0 
5 7 13 0 0 0 0 0 
5 7 19 0 0 0 0 0 
5 11 7 2 2 2 4 0 
5 11 13 2 4 2 4 0 
5 11 19 2 4 2 4 0 
5 19 7 1 1 1 3 0 
5 19 13 1 3 1 3 0 
5 19 19 1 1 1 3 0 
5 31 7 1 1 1 3 0 
5 31 13 1 3 1 3 0 
5 31 19 1 1 1 3 0 
5 210 7 0 2 0 4 4 
7 3 7 1 1 1 1 0 
7 3 13 1 1 1 3 0 
7 3 19 1 3 1 3 0 
7 19 7 1 1 1 1 0 
7 19 13 1 1 1 3 0 
7 19 19 1 7 1 9 6 
7 31 7 1 1 1 1 0 
7 31 13 1 1 1 3 0 
7 31 19 1 3 1 4 1 
7 143 7 3 3 5 6 1 
7 143 13 3 3 5 9 2 
7 143 19 3 6 5 8 1 
11 7 7 1 1 1 3 0 
11 7 13 1 1 1 3 0 
11 7 19 1 3 1 3 0 
11 8 7 1 1 1 3 0 
11 8 13 1 1 1 3 0 
11 8 19 1 3 1 3 0 
11 19 7 2 2 2 4 0 
11 19 13 2 2 2 4 0 
11 19 19 2 4 2 4 0 
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It is worth noting that in the first and second lines of the table, the value of 
A- (L3 ) is the same even though the splitting behavior of the ramified primes 
is different in each case. In the first case, there is a unique ramified prime, 
which is inert from the maximal totally real subfield, while in the second there 
are two ramified primes which have split from the maximal totally real subfield. 

The increase Al (L3- ) -A- (K300) = 2 in all but one of the tabulated examples 
for 1 = 5 and 1 = 11 is exactly accounted for by the trivial zeros of the 
additional 5-adic L-functions which one must consider when passing from 
K300 to L3oo. Following a suggestion of L. Washington, we sought an example 
with a nontrivial contribution to the increase by choosing fields K and L such 
that the 5-rank of the ideal class group was greater for L than for K. He 
provided the example of D = 210 and r = 7, in which these ranks are 2 
and 0, respectively, while no trivial zeros of the associated 5-adic L-functions 
occur. This forces A- (L) to be at least 2. In fact, we found a conjugate pair 
of 5-adic L-functions associated with L which had nontrivial simple zeros, 
showing that A- (L) = 2, while A- (K) = 0. To our surprise, when passing to 
L3-, we found a second conjugate pair of L-functions with simple nontrivial 
zeros. - Consequently, Al (L300) = 4, while Al (K300) = 0. In this example, the 
conductors involved are divisible by 3, which makes for minor modifications in 
the algorithm described in the previous section. 

The tabulated examples for 1 = 7 also reflect the occurrence of some non- 
trivial and higher-order zeros modulo a prime above 1, as seen in the positive 
entries in the column labeled "Jump." 

APPENDIX (BY LAWRENCE C. WASHINGTON) 

The purpose of this appendix is to prove the congruence needed for the proof 
of Proposition (1.2). However, from this congruence it is possible to give a fairly 
quick proof of the main result of [25], so we include it: 

Theorem. Let e and p be distinct primes, and let L be an abelian extension 
of Q. Let Lpo /L be the cyclotomic Zp-extension of L. Let fen be the exact 
power of e dividing the class number of the n-th intermediate field Lpn . Then 
en is bounded as n - oc. 

The proof we give is basically a variation of that given by Sinnott [21], though 
we avoid the use of p-adic measures. In a sense, we work in the style of [27]. 

First, we need some notation. Let e and p be distinct primes. Let q = p if 
p is odd, q = 4 if p = 2. Any primitive odd Dirichlet character can be written 
in the form X yin, where X is a Dirichlet character with X(- 1) = -1 such that 
pq does not divide the conductor f of X, and y/n has p-power order and 
conductor qpn for some n, or is trivial. Let 

1 qpn 

.B1, = x Z b XY/n (b) 
qpb =1 

be the generalized Bernoulli number. Let cx = Z [X( 1), x(2), ...], let Y be 
the field of fractions of &x, and let Cp n be a primitive pn-th root of unity in 
the algebraic closure Y of S. Let I be the prime of Y. As explained in 
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[24], to prove the theorem it suffices to prove that, for each such X, 

1 
-Blx 0O (mod e) 

for all n sufficiently large. For the proof of Proposition (1.2), we need to make 
"sufficiently large" effective, at least in the case p = 3. 

Fix c > 1 large enough that the extension (4pn)/Y(4pc) has degree pn-C 
whenever n > c. This is possible since a prime above f cannot split completely 
in a global cyclotomic Zp-extension, hence must be inert starting at a certain 
level; the present situation lies in thp completion of such a situation. In the 
following, we assume that n > max(2c - 1, 2), hence n > c. 

Let mx = f if (f, q) = 1 and mx = f/q otherwise. Let qn = mxqpn. Let 
4 be a primitive qpn-th root of unity. For y E Z, define Ay(C) E sY by 

Ay (')= E {+}x(b) b, 
b-y (mod pC) qn 

b mod q, 

where {x} denotes the fractional part of x (so 0 < {x} < 1). Then 

(Cqc- - 1)AY(c) = Z ({b q } -b 

- Z x(b)Cb _ qC Zl x(b) b. 
b_y (mod pC) b-y (mod pc) 

O<b<qc- I O<b<q, 

Multiplication by Cqc-1 - 1 #: 0 kills the second sum, so it must be 0. Therefore, 

Ay (C)= fy (C) 

where fy(T) E 9( T) is given by 

(A.0) fy(T) = ( Z x(b)Tb)j(TqcI -1). 
b_y (mod pc) 

Q<b<qc-l 

Since X is odd, fy (T-1) = fy(T). 
Suppose now that IB1,XVIn 0 (mod ) . Let y 1- (mod p). Then (all 

congruences are mod ) 

O-Trace9(c,,)/ (Y(pc) Ifln(Y) bq x(b)Vn (b) 

pn-c n(y)-1 Z { x} X(b)Y/n(b), 

cl b-=cky (mod qpf-C) 

O<b<q, 

where a runs through the b(q)-th roots of unity in Zp . We have used the fact 
that y,n(by-I)Pc = 1 (by-I)Pc = a (mod qpn) for some ac X (by-la-l)Pc - 1 
(mod qpnf) X by-la-l 1 1 (mod qpn-C). 
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Write b = ay(l + qpn-cz) (mod qpn) . Then 

V/n(b) = V/n(y) V/n( I + qpn-c)z (since n > 2c- 1) 
= pflCY)4y/q I =n (y) Cb(ay) 

where Cvn is some primitive qpn-th root of unity independent of y. Therefore, 

0 2_ I b x { }X(b)ny). 
cl b=cay (mod qpn-c) 

O<b<qn 

Let t 1_ (mod pC) . Change y to ty, then apply ato: Cvn n-* Ct. This is an 
automorphism of Y(Cvn) over Sr(Cpc) by the choice of c, and the congruence 
mod ? still holds. Summing over all such t modulo qn, we obtain 

2 _pcZE E {V 2}X(b)y Y - !PCZf(4cVn 
a b=cay (mod pC) Cl 

O<b<qn 

Fix once and for all a set R' of representatives for the set of roots of unity a 
modulo I1. Since fJay(C- 'Y ) = f-ay(4nCa YI) ,Ithe above condition becomes 

(A. 1) O- E fcy (cw a- y 

ckER' 

When p = 3, we have a = +1, hence R' = {1}, so we obtain 

(A.2) O-fy(Cy_') (mod ), 

where C4pn is a primitive 3n+l-th root of unity independent of y, y 1_ 
(mod 3), 0 < y < 3c, and n > max(2c - 1, 2). This is the formula needed in 
the proof of Proposition 1.2. 

In the remainder of the proof of the present theorem, we only use (A. 1) in 
the case y = 1 . The following result is useful. 

Lemma. Let t1, .. . , tS E Zp be distinct mod pM for some M > 1. Suppose 
there is a primitive pn-th root of unity ,pn with n > M + c, and constants 
Cl ,cs E E such that 

Zci pn_O (mode). 
i=l 

Then ci _ O (modf) for all i. 

Proof. The hypotheses imply that S Y(Cpc) for i # j . Therefore, 

0 _ Trace9(Cpn)19(Cpc) (pntj C4i) pfCci 

so CjO. 0 

It is fairly easy to deduce Corollary (1.4) from this lemma. It is also possible 
to use this lemma for larger values of p to prove a version of Corollary (1.4) 
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for these primes as well. This is essentially what was done in the case of p = 5 
in [23]. We show below how to use the lemma to obtain a proof of the theorem. 

Let k = &I/(In6) be the residue field of a1 and let k be its algebraic closure. 
Let ,up c k be the set of p-power roots of unity and let F be the ring of 
functions from jpp to k. Let U denote the function given by U(x) = x for 
all X E Jps 0. For ,B E Zp, we have U8 E F. 

Let {al, ... , a,j be a Z-basis for Z[{fa}] = Z[Cp-1], regarded as a subset of 
Zp under some fixed embedding. 

Corollary. The functions Ual,..., Uar are algebraically independent over k. 
Proof. Suppose we have a relation 

c(d)U =0, c(d) E k, (d) = (di,..., dr) Zr. 
(d) 

Since al, ..., ar are linearly independent over Z, the exponents E aidi are 
distinct in Zp , hence incongruent mod pM for some sufficiently large M. Take 
any n > M + c and evaluate at any primitive pn-th root of unity 4pn . The 
lemma implies that C(d) = 0 for all (d) . This proves the corollary. 0 

A similar proof shows that the ring k[{Ua}] = k[Ual, U-al, ... , Uar,-ar] 
is an integral domain, so we may form its field of fractions k({Uai}). 

Let f,(T) E k(T) be the reduction of fa(T) modulo e. We claim that if 
the theorem fails, then 

Z f(Ua')=0 
aER' 

in k({Uai}). 
Let Q(T) = Tqc- 1 and Po(T) = Q(T)fj(T) E k[T]. Write 

JJ Q(U6 13 fci(Ua = : Ff1 Q(U )1 P,(Ua') 
tIER' aER' aER' [fct# J 

- Z ciUti for some ci E k, ti E Z[Ial]. 

Since rIflER Q(Ufl') $& 0, it suffices to show that ci = 0 for each i. 
Evaluating the above at C., , we have that 

EciiC /- 
= 

43 c-l 1) E gsa(t;y =-O (mod 1), 
fi aER' 

by (A. 1) with y = 1. If the theorem fails, then this congruence holds for an 
infinite set of integers n. The lemma implies that ci 0 for all i. This proves 
the claim. We now need the following result. 

Proposition (Sinnott [19]). Let k be a field, let X1, ..., Xn,, Z (n > 1) be 
indeterminates over k, and let Y1,..., Ym (nm > 1) be nontrivial elements of 
the group Hi Xiz generated by X, ..., Xn in k(X1 ... , Xn). Suppose that 
Yi, ..., Ym are pairwise multiplicatively independent (that is, for i :$ j, and 
integers a and b, we have Yia = yb if and only if a = b = 0). Then a relation 
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of the form 
ri(Yi) + + rm(Ym) = O 

with rj E k(Z) can occur only if rj(Z) E k for all j. 

We apply this result as follows. Let Xi = Uai and Y., = Un'. Since a/a' f 

Q unless a = +a', the elements Y., for a E R' are pairwise multiplicatively 
independent. Let r,(Z) = fx(Z). We obtain fx(Z) _ dsx (mod 1) for some 
do E e , for all a. Let a = 1. The coefficient of Z in the numerator of fi (Z) 
is x(l) = 1 0 0. Therefore, fx(Z) 0 constant, so we have a contradiction. 
Therefore, 2B1, x v 0 (mod 1) for all sufficiently large n. This completes 
the proof of the theorem. 

ACKNOWLEDGMENT 

We thank Warren Sinnott for some useful discussions and for running some 
of our computations through a check of predicted relative class numbers using 
his programs. 

BIBLIOGRAPHY 

1. J. Buhler, R. Crandall, R. Ernvall, and T. Metsankyla, Irregular primes and cyclotomic 
invariants to four million, Math. Comp. 61 (1993), 151-153. 

2. N. Childress, Examples of A-invariants, Manuscripta Math. 68 (1990), 447-453. 

3. D. S. Dummit, D. Ford, H. Kisilevsky, and J. W. Sands, Computation of Iwasawa lambda 
invariants for imaginary quadratic fields, J. Number Theory 37 (1991), 100-121. 

4. R. Ernvall and T. Metsankyla, Cyclotomic invariants for primes between 125000 and 
150000, Math. Comp. 56 (1991), 851-858. 

5. , Cyclotomic invariants for primes to one million, Math. Comp. 59 (1992), 249-250. 

6. B. Ferrero and L. Washington, The Iwasawa invariant i,p vanishes for abelian number 
fields, Ann. of Math. (2) 109 (1979), 377-395. 

7. E. C. Friedman, Ideal class groups in basic Zp, x ... x ZpS -extensions of abelian number 
fields, Invent. Math. 65 (1982), 425-440. 

8. R. Gold, Examples of Iwasawa invariants, II, Acta Arith. 26 (1975), 233-240. 

9. R. Gold and M. Madan, Kida's theorem for a class of non-normal extensions, Proc. Amer. 
Math. Soc. 104 (1988), 55-60. 

10. G. Gras, Sur les invariants lambda d'Iwasawa des corps abeliennes, Pub. Math. Fac. Sci. 
Bdsanson (1978/79). 

11. K. Iwasawa, A note on class numbers of algebraic number fields, Abh. Math. Sem. Univ. 
Hamburg 20 (1956), 257-258. 

12. , On F-extensions of algebraic number fields, Bull. Amer. Math. Soc. 65 (1959), 
183-226. 

13. , Riemann-Hurwitz formula and p-adic Galois representations for number fields, 
T6hoku Math. J. 33 (1981), 263-288. 

14. J.-F. Jaulent and A. Michel, Classes des corps surcirculaires et des corps de fonctions, 
Seminaire de Theorie des Nombres Paris 1989-90, Birkhauser, Boston, 1992, pp. 141-162. 

15. Y. Kida, 1-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 
519-528. 

16. L. Kuz'min, Some duality theorems for cyclotomic F-extensions over algebraic numberfields 
of CM-type, Math. USSR-Izv. 14 (1980), 441-498. 

17. H. W. Leopoldt, Eine Verallgemeinerung der Bernoullischen Zahlen, Abh. Math. Sem. Univ. 
Hamburg 22 (1958), 131-140. 



1674 EDUARDO FRIEDMAN AND J. W. SANDS 

18. H. G. Ruck, Hasse- Witt-invariants and dihedral extensions, Math. Z. 191 (1986), 513-517. 
19. W. Sinnott, On the y-invariant of the F-transform of a rationalfunction, Invent. Math. 75 

(1984), 273-282. 
20. , On p-adic L-functions and the Riemann-Hurwitz genus formula, Compositio Math. 

53 (1984), 3-17. 
21. , On a theorem of L. Washington, Asterisque 147-148 (1987), 209-224. 
22. S. S. Wagstaff, Jr., The irregular primes to 125000, Math. Comp. 32 (1978), 583-591. 
23. L. C. Washington, The class number of the field of 5n th roots of unity, Proc. Amer. Math. 

Soc. 61 (1976), 205-208. 
24. , Class numbers and Zp-extensions, Math. Ann. 214 (1975), 177- 193. 
25. , The non- p-part of the class number in a cyclotomic Zp-extension, Invent. Math. 49 

(1978), 87-97. 
26. , Introduction to cyclotomic fields, Springer-Verlag, New York, 1982. 
27. , On Sinnott's proof on the vanishing of the Iwasawa invariant up , Algebraic Number 

Theory in honor of K. Iwasawa, Advanced Studies in Pure Math., vol. 17, Academic Press, 
Boston, 1990, pp. 457-462. 

DEPARTAMENTO DE MATEMATICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DE CHILE, CASILLA 
653, SANTIAGO, CHILE 

E-mail address: friedman0abello. seci .uchile. cl 

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF VERMONT, BURLINGTON, VER- 
MONT 05405 

E-mail address: sandsDmath. uvm. edu 


	Cit r277_c282: 


