
MATHEMATICS OF COMPUTATION 
VOLUME 64, NUMBER 212 
OCTOBER 1995, PAGES 1687-1704 

VORONOI-ALGORITHM EXPANSION OF TWO FAMILIES 
WITH PERIOD LENGTH GOING TO INFINITY 

BRIGITTE ADAM 

ABSTRACT. We consider families of orders of complex cubic fields introduced 
recently by Levesque and Rhin and find the Voronoi-algorithm expansions and 
the fundamental units. We compare with the Jacobi-Perron algorithm expan- 
sions. 

1. INTRODUCTION 

A common problem of number theory is the search for parametrized families 
of positive integers N such that the field Q(/N-) has a fundamental unit which 
is simply written according to the parameters. Such families have been given 
by Halter-Koch [5] and Williams [12]. In the complex cubic case, the funda- 
mental unit of infinite families of fields Q(iYMAI) is given by Stender [10]. For 
some of these families, the Voronoi-algorithm expansion [ 1], [2] and [ 1 1], which 
generalizes the continued fraction algorithm to three dimensions, has been cal- 
culated by Dubois [2] (with period length 1 or 2) and by Williams [12] (with 
period length less than or equal to 6). Levesque and Rhin [7] presented the 
Jacobi-Perron algorithm [9] expansion (another generalization of the continued 
fraction algorithm to higher dimensions) of two parametrized infinite families 
Q (al), each depending on two parameters. These expansions being periodic 
(with the period length going to infinity), they obtained a unit of these fields 
and conjectured that this unit is fundamental in the order Z[a]. Fahrane [4] 
proved this for one of these families when one of the parameters is large enough 
(a noneffective result), whereas Louboutin [8] proved that this unit is a bounded 
power (the bound does not depend on the parameters) of the fundamental unit 
in the order Z[o]. 

In this paper we provide a result which allows us to give the Voronoi-algorithm 
expansion of these two families. We obtain the following results: 

- the period length of these expansions goes to infinity. 
- the unit given by Levesque and Rhin is fundamental in the order Z[a]. 
- for one of these families, Voronoi and Jacobi-Perron algorithms are the 

same, i.e., the Jacobi-Perron algorithm provides exactly all the minimal 
points given by the Voronoi algorithm. 
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Kuhner [6] also presented the Voronoi-algorithm expansion of one of these 
families, and Dubois and Fahrane [3] study the second one. 

2. MINIMAL POINTS SEARCH METHOD 

Definition 2.1. Let a I, a2 be two real numbers so that 1, aI, a2 are indepen- 
dent over the rationals. We let L = (1, a1I, a2) = Z + Z.a1 + Z.a2 and for all 
P = (u, v, w) (respectively Q) in Z3 we define V/ = yI(P) = u + val + Wa2 
(respectively q = 0(Q)). Let F be a positive quadratic form with real coeffi- 
cients of rank 2 so that F(l, 0, 0) = 1 and F(0, 0, 1) > 1. We say that V/ is a 
minimal point adjacent to 1 on the right (further on, we will not specify "right") 
in relation to L and F if V/ = min{q such that g > 1 and F(Q) < 1}. 

In this section we will give a proposition which, using an isotropic vector 
of the quadratic form, allows us to restrict to 5 the number of choices for a 
minimal point adjacent to 1. 

We will assume in the rest of this section that (W2, 1, 01) is an isotropic 
vector of F, and we define 

01 = [0)2] + al, Ql = ([0)2], 1, 0), 
02 = [C(2] + al + a2, Q2 = ([C)21, 1), 
03 = [w32] + al - a2, Q3 = ([2], 1, - 1), 
04 = [0)21 - I + al, Q4 = ([C)2] - 1, 1, 0), 
05 = [0)21 - I + a I + a2 , QS = ([0J21 - 1 ,1) 
06 = [C)2] + 1 + 2a1 - g2, Q6 = ([02] + 1, 2, -1), 
07 = [w)2] + 2a1, Q7 = ([C)2], 2, 0), 
q08 = [2] + I + l1 - a2, Q8 = ([02+1, l,-l), 

where [...] is the greatest integer function. If 0 < al < 1 , 0 < a2 < 1, we see 
that 

{04 < 03 < 01 < 02, 
)04 <05 <01 < 02, 
q01 <q$7 <k06, 

01 <08 < 06 

and 
{if a2 < a1, then 02 < q7, 

if 2a2 - 1 < a, < a2, then 07 < 42 < 06, 
if al < 2a2 - 1, then 07 < 06 < 02, 
if 2a2 - 1 < 0, then 2 < 08-- 

Lemma 2.2. Let F be a positive quadratic form in three variables with real co- 
efficients of rank 2 such that 

F(l, 0, 0) = and F(O, 0, 1) > 1. 

Suppose that F has an isotropic vector (w2, 1, w1). Then we can write 

(1) F(u, v, w) = a(w - w t1 V)2 + 2b(w - w)1V)(U - w2V) + (U - 2v)2 
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and 

(2) F(u, v, w) = [w _ (CN + 2 bW2)V+ 2 bU]2+ a(w_ -Iv)2 

+ (1 - 2-)(u - W202 a 

with a>1 and b2<a. 
Proof. Let M be the matrix of the polar form associated with F. Writing 

( 1 a12 a13 
M= |ai2 a22 a23 

\a13 a23 a33/ 

with a33 > 1 , we deduce 

{ a12 = - - WIaI3, 
a22 = (W(2)2 + 2Wa1a2a13 + a33(aI)2, 

a23 = -aI3W2 -a33I, 

since (o2, 1, WI) is an isotropic vector of F. If we write a = a33 and b = 

a13, we obtain the formulas (1) and (2). Since F is a positive form of rank 2, 
wehave b2<a. o 

Now we can state the next proposition. 

Proposition 2.3. If O < 1,< 1, (02 > 1, 0 < al < 1 0 < a2 < 1 and 
4b2 < a, we have 

1. If F(QI) <1: 
a. if b < 0, then the minimal point adjacent to 1 is 01k 03 or 04; 
b. if b > 0, then the minimal point adjacent to 1 is 01 or 05. 

2. If F(Q1) > 1 and F(Q2) < 1: 
a. if b < 0, then the minimal point adjacent to 1 is: 

i. 02, 03 or 04 if a2 < a1, 

ii. 03, 04 or 07 if 2a2 - 1 < a, < a2, 

iii. 03, 04, 6 or 07 if a1 < 2a2 - 1; 
b. if b > 0, then the minimal point adjacent to 1 is: 

i. 02 orq05 if 2a2-1 < 0, 

ii. 05 or 08 if 2a2 - 1 > 0. 

Remark. Inequality 12bl < 1 implies 4b2 < a (since a > 1). 

Proof of Proposition 2.3. Let V/ = u + vaI + wa2 be the minimal point adjacent 
to 1. 

1. We assume first that F(Q1) < 1. 
a. We first claim that v $A 0. If v = 0 we have: 

if u = 0, then F(P) = aw2 > 1; if w = 0, then F(P) = u2 > 1; 
and 

ab if u $0 and w $0, then F(P)>-+(1-2-)>1, whichis 
2 a 

impossible. 
b. Next, we claim that if VI :$ 03, then u, v, w are all nonnegative. 
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Since F(P) < 1 and 4b2 < a, we have (u - w)2v)2 < 2; but 02 > 1, 
then uv > 0. We have (w - w)v)2 < 2, then wv > 0 or Iwl < 1. 
If wv > O, then v < 0 implies that u < O and w < 0, which is 
impossible because V/ > 0, so we have v > 0, u > 0 and w > 0. 
If wv <0, then wl = 1. If w = 1, then v <0 and u <0. If 

ab 
u = 0, we have F(P) > 2 +(1 -2-) > 1, and if u < 0, we have 

2 ~~a 
V/ < 0, which is impossible. 
If w = -1, then v > 0, u > 0 and (w - wIv)2 > 1, and if 
u < [w2v], then (u - w2v)2 > 1 and F(P) > 1; if u = [2v], then 
V/ = 03 or VI > qi; and if u > [W2V] + 1, then VI > 01i. 
Therefore, wv < 0 implies that VI = 03 . 
Thus, we have proved that if VI : 03, then v > 0, and u and w 
are nonnegative. 

c. We claim that v = 1. 
For, if v > 2, we have (u - w2V )2 < 2, then u > 2[W2]- V2 and 
u > [2], so VI > 0 

d. Study of u and w . 
Since u > [0)2] - 1, we have (U - 0)2V)2 < 2. 
We claim that w < 2. 
If w > 2 and u > [C)2], then > 02 > 01 ; and if u = [w)2]- 1, 
then (u - (2V )2 > 1 and (w - WIV)2 > 1, so F(P) > 1. 
If u > [0)2] + 1, then VI > 02 > (1ki 
In case w = 1, if u = [w)2v], then VI > 1, so u = [w)2]- 1 and 
V/ = 05 . 
In case w = 0, if u = [wJ2V], then V = k1; and if u = [2]- 1, 
then VI = 04 . 

Moreover, if b < 0, we have F(Q5) > 1; and if b > 0, we have 
F(Q3) > 1 and F(Q4) > 1. Thus, the first part of the proposition is 
proved. 

2. Let us assume now that F(Q1) > 1 and F(Q2) < 1 . 
As before, we have u > 0, v > O and w > 1 . 
a. We assert that v < 2. 

If v>3, wehave u>[wJ2]+1;andif w>0,then V>q02. If 
w = -1 and u > [C(2] + 1, then V > 02; and if U = [C)2] + 1, we 
have (u - (2V )2 > 1 and (w - (V)V)2 > 1, so F(P) > 1 . Therefore, 
v = 1 or v = 2. 

b. The case v = 1. As in the proof of the first part, we have u > 
[C)2]- 1 and w < 2. 
In the case w = 1, if u > [()2], then V > 02; if u = [()2], then 
VI = 02; and if u [02] - 1, then VI = 05 
In the case w = 0, if u > [2], then V > 02; if u = [W2], then 
VI = ; andif u= [C)2]- 1, then V = 04. 
In the case w = -1, if u > [C)2] + 1, then V > 02; if U = [C)2] + 1, 
then V = 08; if u = [2], then VI = 03(; and if u = [C)2]- 1, we 
have (w - ()V)2 > 1 and (u - w)2V)2 > 1, so F(P) > 1 . 

c. The case v = 2. In this case u > [)2]. 

If w > 1 , then V/ > 02 
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In the case w = O, if u > [C()2], then V > 02; and if u = [C)2], then 

V/ = 07 - 
In the case w = -1, if U> [)2] + 1, then V > 02; if u = [W2] + 1, 
then V/ = 06; and if u = [C(2], then (w -_ wjV)2 > 1 and (u- 
w2V)2> 1, SO F(P) > 1. 

Moreover, if b < 0 we have F(Q5) > 1 and F(Q8) > 1; and if b > 0 
we have F(Q3) > 1, F(Q4) > 1, F(Q7) > 1 and F(Q6) > 1 . Thus, the 
second part of the proposition is proved. o 

3. VORONQI ALGORITHM 

Let K be a cubic algebraic number field of negative discriminant and L 
a lattice (L C R3) of K with basis { 1, al, a2}. As before, to each point 
P = (u, v, w) (respectively Q) in Z3 there corresponds an element V = 

VI(P) = u + val + wa2 (respectively 0 = q(Q)) in L, and we define 

(3) F(P)= N( =VI 

where N denotes the norm of K over Q, and VI' and VI" the conjugates of 

Definition 3.1. We say that VI = VI(P) is a minimal point of L if for all q = 

q+(Q) in L so that 0 < q < VI we have F(Q) > F(P) . We define the increasing 
chain of the minimal points of L by: 

VIo= 1, 

Vkk+I = min{VI such that V > VIk and F(P) < F(Pk)} if k > 0. 
Then VIk+l is the minimal point adjacent (on the right) to VIk in L. Let a 
be any order of K and L = &. By Voronoi we know that the previous chain 
is of the purely periodic form: 

*- , e V/1-I 1 VIi *-- VIi- VIl = ,e1i *-- , e I- 1 

where 1 denotes the period length and e is the fundamental unit of . To 
calculate such a sequence, it is sufficient to know how to construct the minimal 
point adjacent to 1 in a lattice L = (1, al, a2)- Indeed, let VI0 = 1 and VIi 
be the minimal point adjacent to 1 in Lo = a = (1, aI, a2)- 

a. We choose an auxiliary point q$1 so that { V1i, 01k, VI0} is a basis of Lo . 
b. VI2 is the minimal point adjacent to VI1 in 1 = (VIi, q$1, VI0) is equiv- 

alent to - being the minimal point adjacent to 1 in L1 = (1, 1, VQ.). 

This process can be continued by induction. 

4. APPLICATIONS 

4.1. Study of the first family. Let c > 2 and m > 1 be two integers; we consider 
the polynomial 

f(X) = X3 CmX2_(C_1)X_Cm. 

This case was considered by Fahrane [4] and by Kuhner [6]. Levesque and Rhin 
[7] have shown that f(X) is irreducible and has exactly one real root a. 
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4.1.1. Statement of the theorem. 

Theorem 4.1. Let a be the real root of the polynomial f(X), K = Q(a), and 
a= Z[a]. Then 

(i) The chain of the minimal points of a is: for 0 < s < m - 1 

o=1 ql3s+l = a( ) V3s+2 = a2( a )s 
V~~O ' ~~a -cm a -cm 

Ca + a 
V13s+3 = ( )5+1 and q/3m+1 = a( a -cm a -cm 

(ii) e = a( )m is thefundamental unit of a and the Voronoi-algorithm 
a - cm 

expansion period length is 1 = 3m + 1. 

4.1.2. Proof of Theorem 4.1. For this proof we need the following formulas: 

Cm <aC + cm < at < cm + _ 
a 

and 

+a2 a(a -cm) 

Let L = (1, al, a2) be a lattice in K and V/ the minimal point adjacent to 1 
in L. Writing yi = u + val + wa2, we have the following lemmas: 

Lemma 4.2. For an integer s, 0 < s < m, 

Cs 
if L = (1, a - Cm, -), then (u, v, w) = (cm, 1, 0). a 

Proof We verify in this case that F is a positive quadratic form, which we can 
write in the form (1) and (2) with 

a a(a-cm) cm-s a Cm-2s b =- m-S wJ2 =a, (01 = 
- cm- a 

Wehave0 < a)I < 1, 1 2>1, 0<al < 1, 0<a2< 1 and 4b2<a,since 

4b2 - a( _Cm)2 
= <1c a cm 

With the notation of ?2, we have ki = a, so that 

F(Q1)N <1 and b <O. a a 

According to Proposition 2.3, the minimal point adjacent to 1 is k1, q3 or 
074. But Q3 = (Cm, 1, -1), and according to (2) we have 

F(0) > 2 a 
(1 + 

-_ )22 a + Cs 
cm s 

2cm-2s a 2cm-2s 2 a- 

Finally, 0$4 = a - 1, and 

N(a_ 
-) 2cm + 

C_-2> 
2cm + c - 2 

Therefore,e(u) 
= (> 1 at. 

Therefore, V/=$1i.e., (u, v,w) =(CM, 1, ). o 
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Lemma 4.3. For an integer s, O < s < m - 1, 

ifL=(l, Cs, -), then (u, v, w) =(cs, 1, 0). a 
Proof. As in the proof of Lemma 4.2, we have 

Ol Cta(a-Cm) csa cSa 
Cm ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(2 wl1= -~(a Cm a=cm b=- 2cm c Cm cm 

and 0 < oi < 1, (02 > 1, 0 < al < 1, 0 <a2 < 1. Moreover, 

12bl = cm) < 1. 

Then we can use Proposition 2.3. We have 

Cs?l 
= a(a _Cm) and N(a-cm) = cm+l, 

so 

F(Q1)= 2m-2s-I <1 and b<0. 

We have Q3 = (cS, 1, -1), and from (2), 

a 
[(1+Cs(c-Cm))2 + (1+ c(a Cm))2] > 2 0 C-m +c(acm ( 

We have Q4 = (cs - 1, 1, 0), and from (1), 

+ a(a -cm) S csa)(1-cm)2 F (Q4) = o 1) (?2 + aot- )c(Cs _ + (1+ (Cs ) 
c Mcm cm cm 

Simplifying the two last terms, we obtain 

a2(a _Cm)2 2Cs (a -cm) C2S 
F(Q4) =1 + 2 (Cs + (a cm)2 > 

C2m-s cm +2m(Cm >1 

Therefore, tv =q$1,i.e., (u, v, w) =(cS, 1, 0). o 

Lemma 4.4. For an integer s, 0 < s < m - 1 

ifL=(1, 
a- cm a(a(- CM )>, then (U v,w) = (C , 1,0). 

Proof. As before, we have 

C2m-2s-I Cm-s-I C-i i Cm-s 

a = xa-m b = 2 ( cm -a. ' )2 =C(Xc)S) a(m c) 2 Cm a ~2 
a(a -cm)a 

and 0 < t1< , 02 > 1, 0< a1 < 1,0<a2 < 1. Moreover, 

12bl=cm-S-1(c-I - I) <c-s < 
cm a 

So we can use Proposition 2.3. We have 

a cm-2s-2 
Oi= CS and F(Qj) = < l and b > 0, 

so V/ = 01 or V = 05. By using formula (1) for F(Q5) and F(Q1), we have 

F(Q5) = F(Q1) + 1 + (a - 2aw1 - 2b) + (2{w2} - 2b{w02}) + 2bwl, 
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TABLE 1 

k Lk=(1, V k1 k? Iq5k+ I 
Wk Wk Wk Vk 

0 (1, a cm, cm.) (cm, 1,0) (c-1, 0, 1) 
a 

3s+ I (I (, a -Cm, cs)| (CM, 0 )| (O, 9 , 1)| 

3s+2 (1,,C 1) (cS1, 0) (0,0,1) 

3s + 3 | (1, '_ Q(C)) (Cm , 1, 0) (0, 0, 1) 

where {C)2} = N2 - [2]. We claim that a - 2awl - 2b > 0. Indeed, 

b 1 a - 2aol - 2b cm-S 2 1 
< - hence C m-s-i 1-- cm-s-1 2cm- 1 cm-s-i a(a - cm) a) Cm-I' 

Since - = +-, we have 
a(a cm) a2 

a-2aw b >Cm-si-2-2b Cm-s-i Cm-s-i 2 1 a 
~ 

- 
2a+ 

- 2 c 2 

Cm-S-i a av2 (1 --I -)2- 

Ifs<m-1, Cm-i-s >2 2C < 1 and 1m- < 1 so a - 2awol - 2b > 0 

as claimed. If s = m - 1, then 

1 1 2 1 1 
a - 2aw, - 2b = (1 + Cm-) + (2 - a + (cm - a) > 0. 

Moreover, 2{co2} - 2b{w(2} > 0 so F(Q5) > 1. Therefore V' = k, i.e., 
(u, v W) = (cm-l-s, 1, 0). c 

We prove the theorem by induction with the help of these lemmas in the 
following way. 

Let Lo = (1, a - cm, cm) According to Lemma 4.2 we have VI = a. a 
a. We choose 1 = a(a - cm). 
b. We obtain LI = (1, a -cm, c ),and by the same lemma we have ,=a, 

2 
i.e., V2 = a 

If we continue this process, we obtain, for 0 < s < m - 1, the results given 
in Table 1. In the table we have written 

cm 
00 = a - cm, C/- = - 

a 
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and the third and fourth columns correspond to the coordinates of 4k and of 

5k+I in the lattice Lk. 
Wk 

Now, the chain of minimal points Vk of Z[a] can easily be found with the 
help of the successive quotients .lk+i Hence, 

VIk 

q'3m+1 = a( acm 

We have 

N(i3m++) = 1 and N(yi1) 1 if O < i < 3m. 

Therefore, V/3m+1 is the fundamental unit e in &, and the Vorono'i-algorithm 
expansion period length is / = 3m + 1. 

4.1.3. The Jacobi-Perron algorithm. 

Definition 4.5. Let a 1, a2 be two real numbers. The Jacobi-Perron algorithm 
expansion of (a I, a2) is given by two sequences (ai) (bi), (i > 0) of integers 
defined by 

0 0 
a1 =aj , a2=a2; 

{ and for v > 0: a, = [(X] , bv = ['v]; 
a,+? 1 aV+=1 a2 

Remark. The basis of the lattices Lk, 0 < k < 3m, are given by the Jacobi- 
Perron algorithm expansion of (a (a - cm), a). 

For 0 < k < 3m we define the transition matrix from Lk to Lk+, by 

V k V k+lI 
Mk | k | O k+ I 

The matrices Mk are given by the previous lemmas, i.e.: 

(cm 1 O 

Mo= c- I 0 1 
I 1 0 

andfor O<s < m- 1, 

lcm I ? Cs 1 cm-s- I I 0\ 

M3S+1= 0 , M3s+2 0 |OO ,M3S+3= ( O 1 I 
\I 0 0 100 k 0 0 

According to Levesque and Rhin [7] we can write 

(alk 1 0O 

Mk = bl-k 0 11 IvkKh 0 01 

where / = 3m + I and a,-k, bl-k are defined by the Jacobi-Perron algorithm 
expansion of (a(a - cm), a). 
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Remark. For the quadratic form F, an isotropic vector in Lk has for 1 < k < 
3m the coordinates 

k-I 

(al2 bk-I 

where a k-I and a k-i are defined by the Jacobi-Perron algorithm expansion 
of (a(a - cm), a) 

4.2. Study of the second family. Let c > 2 and m > 1 be two integers; we 
consider the polynomial 

f(X) = X3-(Cm + C-1)X2-(Cm -1)X-cm. 

Levesque and Rhin [7] have shown that f(X) is irreducible and has exactly 
one real root. 

4.2.1. Statement of the theorem. 

Theorem 4.6. Let a be the real root of the polynomial f(X), K = Q(a), and 
a =Z[a]. Then 

(i) The chain of the minimal points of a is 

2 ca_ 
V/o = V, 1 =a /2 = a ' 3 =-Cm 

a2 2 a2 
yQ = a( aet Cm 

)t ,Y4t+l = a(x a -m )t for I < t < m -1 

a atl- )+cm 
a-c 

ca 
Yt+2 -aa(c(-1)+c a2 )t Y/4t+3=( )t+l for 1 <t<m -2; 

a -cm a - cm a -cm 

and Y4m-2=( a-cm Y/4m-1(_cm)m 

a2 
(ii) The fundamental unit of 6is e =a( a -cm ) and the Voronoi:algorithm 

expansion period length is 1 = 4m - 1. 

4.2.2. Proof of Theorem 4.6. For this proof we need the following formulas: 
cm 

C2 < a < C2 + 

and 
1 1 c 

I + a + 2 a-c ' a a2 -a-cm' 

where c2 = Cm + C - 1. With the same notation as before we have the following 
lemmas: 

Lemma 4.7. For an integer t, O < t < m, 
Ct 

ifL = (1, a - C2, ), then (u, v, w) = (c2, 1, 0). 

Proof. The proof of this lemma is analogous to the one of Lemma 4.2 of the 
previous section. 
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Lemma 4.8. For an integer t, 0 < t < m - 1, 

Ct-1 Ct1 
ifL = (1, + -, ), then (u, v, w) = (ct, 1,0); 

a a2 a 

if t=O or t=m- 1, 

ifL=(l,c + -, -), then(u,v,w)=(ct,I 1). 
a a a 

Proof. The coefficients a and b of the quadratic form F in relation to L and 
the isotropic vector are given by 

a b a(a -C2) (02= a a(cmt -1) + cm 

cm 2cm cm-t ~i cm-ta 

and 0< a), < 1, C2> 1, 0<a < a , 0<a2 < 1. Moreover, 

121 a(a -C2)<1 12b= I ka-2 < 1. 
cm 

According to (1), we have 

F(Q1) =( [I - Ct (a - cm)]2 + c2t( a _ 1)2 
cmL Cma cm 

(- [1- 
ct (a-Cm)]- (a -cm) 

cm Cma cm 

so that, on expansion, 

2t~aC 
F(Qj) =- + a - cm)2 +l+- 

'~lcm C~2m 'Cma cm 

- 2m (a - c) -2m (a - cm)a(a- C2). 

We observe that 

1 a-C2 _ C 

(4) cma cm a _cm 

then 

cm - m (a-cm)[2 + a(a - C2) -C'_l_ 

Thus, F(Q1) < 1 is equivalent to 

- a ( cm)[2 + (-C2)-c t+] > 0. 

cm cm 

Multiplying by I cm and replacing a(a - C2) with cm - 1 + - , we see that 

Cm 
this condition is equivalent to 1 + cm + -- ct+l - cm-t > 0. Hence: 

a 
(i) if 0 < t < m - 1 , then F(Q1) < 1 ; 
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ct+I 
(ii) if t =0 or t = m - I, then F(Q1) > 1, but in this case 02 = a- m 

a - Cm~~~~~~ 
-C 

and N(02) - C2m+ , so F(Q2) = 2m 2t-1 < 1. 

We have F(Q3) =F(Q1) + a + 2awol + 2bwO2; then 

a a 'a(C m-t~ )+Cm a(a -C2) a -cm 
F(Q3) = F(Qi)) + a + c Cm 

cm cm cm-tacm mt 

We observe that a - C2 < 2 and that a - cm < a(cmtis equivalent 
a 

Cm1 Cm Cm im 
to c-i + + <cm i+-,i.e., 0 <(CmtC) + (cm+ 1-) 

aa a a a 
which is true. So F(Q3) > ma> >. 

cm 
We have 

(5) F(Q4) = F(Q1) + 2bw1l + I + 2{w)2} > F(Q1) + 2{w)2}, 

so F(Q4) > F(Qj) + 2{cW2} since -I < 2baw1 < 0; then 

a ta -C m 
F(Q4) > -C2m(a-cm)[2 +a(a-C2) -ct+] + 2 Cm t 

The right-hand term is greater than I if and only if 

cm [1-ct (2 + a(a--C2) -ct+1) + 2ct] > 0 

cm 
which is equivalent ( replacing a(a - c2) with cm - 1 + -) to 

a 

Ct 
1 + ct + c2t+l-mn - ct-m - > 0, 

a 

which is true for 0 < t < m - 1, so F(Q4) > 1. We use Proposition 2.3, 
observing that b < 0. 

(i) If 0 < t < m - 1, then V' = 'k,i.e., (u, v, w) = (ct, 1, 0). 
(ii) If t = 0, then 2a2- I < al < a2, so V = 02 or 07. Furthermore, 

F(Q7) = 4aw)2 + 8bw)ja)2 - 4bw)i[w)2] + (2w)2 - [a)2])2 and 4aW2 + 8bw1W2 = 0 
if t= 0, so F(Q7) > 1 and I = 02, i.e., (u, v, w)=(ct, 1, 1). If t=m-1 
and m > 2, then a, > a2, so I = 02, i.e., (u, v, w) = (ct,1,1). o 

Lemma 4.9. For an integer t, 1 < t < m - 2, 

if=(1, ac m a(a -Cm) m),then(u,v,w)=(1,1,0). 
ifL =(1, a(ct+l - 1) +cm ' a(ct+l - 1) + cm thnu,vw)( 10. 
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Proof. We have 

c2m+1 

a=~ a=(a- Cm)[(Ct+l 
- 

1)2 -a(a- C2)(Ct+l 
- 

1) + Cma- 

b = (ct+1 - C)(C2 - - 2cm) + at(a - C2)2 - 2cm + Cma(a - C2) 
2[(ct+l - 1)2 - (a-C2)(Ct+l- 1) + Cma] 

cm-ta a(a - cm) 
a(cm-t_ 1) + cm a1 (cm-t- 1) +cm 

and 0 <(,1 < 1, ()2 > 1 , 0 < al < 1, 0 < a2 < 1. Study of b writing 
N 

2b =- we have 
D'9 

N = a(a- C2)2 + cma(a - c2) - 2cm+t+l (a -c2)(ct+ -1) 

hence 

N > a(a -C2)2 + Cma(a - C2) - C2m - (a -C2)(Cm- 1) =n; 

we have 

n = (a - C2)[a(a -c2) + Cma - (Cm- ' 
1)] - c2m, 

so 

n = Cm(a C-C2)[C-1 + Ca + -]-C2m, 
a 

cm 
replacing a(a - C2) with cm - 1 + -. Further, 

a 

1lmn a 2)(C 1) C2 - C c 
c -mn = (a-c )(c-)- C =(C-1)(a-C2-) > 0. 

a a 

We have D > 0, so b > 0. We claim that 12bI < 1 this is equivalent to 
N - D < 0. We have 

N -- D = [a(a - c2)2 - cm+t+l + [Cma(a -c2) - cma] 

+ [a(a - C2)(Ct+l - 1) - cm+t+ - (Ct+1 _ 1)2 _(a - C2)(Ct+l1 )- 

So N - D < 0, and 12bl < 1. 

We have 

F (Q 1) N (C) t _ _ l 
___- 

_ __1_ __2__ _<__ __ F ) b = (ct+1 1)2 - a(a - C2)(Ct+l-1) + cma 

therefore the minimal point adjacent to 1 is 01 or 05; but 05 < 1 , so y' = 0q 
i.e., (u, v, w) = (1, 1, 0). o 

Lemma 4.10. For an integer t, 1 < t < m - 1, 

ifL = (1, a - cm a(Ct+l-1)+C m then (u,v,w)=(cm,t, 1,0). 
Ct+l I ct+la 
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Proof. We have 

a = (Ct+1 - 1)2 - a(a - C2)(C'+l - 1) + Cma b = 2(ct+l - 1) - a(a - C2) 
c2t+2 2ct+i1 

a(Cm-t _ 1) + Cm 1 

a(a-Cm) a 
a 

and 0< wi < 1, 52 > 1, 0< ai < 1, 0< a2 < 1- Moreover, 4b2 <a. 
Indeed, 

a - 4b2 = 2t+2 {cma - a2(a - C2)2 + 3(ct+' - 1)[a(a - C2) - (ct+' - 1)]} > 0. 

We have 
cm 

F(Q1) = 2t+2 < 1. 

(i)If t<m-2,then b<O and q= q1, q$3 or 04. But 

F(Q3) 
> 

2(1+)2 > 2 

and according to the inequalities (Ct+l - 1)2 > 0, a(a - C2) < Cm , (C t+1 - 1) < 

(cm-i - 1) and a> C2, we obtain a > 2, so F(Q3) > 1. According to (5) we 
have 

F(Q4) = F(Q1) + 2bcwl + 1 + 2{2} > F(Q1) + 2{I2}- 

To prove that F(Q4) > 1, it is sufficient to prove that 2boil + 1 + 2{f2} > 0. 
We have 

2bwl + 1 + 2{2} = 2(c - 1) - a(a - C2) + 2(a(cm -t 1) + cm - Cmt-I 
Ct+ Iac a(a -CM) 

2 1 Cm+i 
Ct+l[ a + -C -(a -C2)] 

C+Ia a -cm 

a - C21I I cm 
+ + 2[-- + ( 

Ct+ I a a -cm a(act Cm) 

and according to (4) the first term equals zero and so F(Q4) > 1 + a C2 > . 
Ct+ I 

Therefore, i.e., (u, v, w) (Cmit, 1, 0). 
(ii) If t = m- 1, then b > 0 and V = q1 or q5. We have 

F (Q ) = a(a - 1) + cm 
Ctma 

and by multiplying the conjugates, we obtain 

F (Qa) (a-C2) + a2(a-C2)2 + Cm(a2-a) + 2cm Q - a 1 
C2ma >Cm 

therefore, F(Q5) > 1 and V = +k, i.e., (u, v, w) = (cm-l-t, 1, 0). o 

We obtain for 1 < t < m - 2 the results given in Table 2. 
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TABLE 2 

k | Lk = ( 1, Ok k- 
I 

| 
k+ 

I 
Okl 

0 (1,a-C2, 
m 

(c2, 1,0) (cm-1,O, 1) 

1 1 (1,a-C2, ) (C2, 1,0) (0,0,1) 

4t2 (1(1 2 (1 C ) (1, 1, 0) (0 ,01) 

4t+ 3 | (1 actm aaC C)+c )c ) (Clcm ,O 1 ) (m-l- - 1, 0) 

4m 1, a -C2, Cm) (C2, 1, 0) (ct - 1, 0, 1) 

4m+- I /1CtmI + ,tl) (ctml,,1) (C0,0,1),0) 

a'c + 2 C, 

4t + 2 (I1 a(cm )+C (-C ) ( 1 01 ) (O 0, 1,) 

4t + 3 1, (a-cm a(C+ -)+CM) (m-1-t 
0 

) (CM-1-t - 1 , 0, 1) 
Q + (I5.tl 5 C+Ic 

4m -4 (1,-aC2, 5x (C2 5 1,50) (c I _ 0 1) 

4m -3 (1, C + CX,_) (C , 1,1 cml1O 

|4m -2| (I c (Xcm - 1 )+Cm a-C ) (1, 0,5 1) (O,5 1,5 O) I 
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In the table, we have written 

cm 
0= a - C2 and -i= a 

As before, we deduce that 

a 2 
Y4m-1 = a( a - cm 

We have 
N(q4m_1)=landN(qj):$1 if 0<i<4m-2. 

Therefore, ,4m-,1 is the fundamental unit e in a and the Voronoi-algorithm 
expansion period length is 1 = 4m - 1 . 

4.2.3. The Jacobi-Perron algorithm. For this family the basis of the lattices 
Lk, 0 < k < 4m - 2, are not all given by the Jacobi-Perron algorithm expansion 
of (a(a - c2), a). The transition matrices are given by 

f cm + C-r 1 0 mm-1 M C( 0 /1 1 1 
MO= cm-1 0 1 , Ml = O 1 5 M2 I I 0 5 

(C\ 1 0 ( 1 1 0 (Cm-i 0 1 

ki1 0 1 0 
for I < t < m- 1 

( cm + Ci 1 ( 0 

M4 ct ) I m j 1, 

for I < t <m-2: 

L a t b b th i di b tcm-l-t e 0o 
M4t+l a R n [7 M ],+2 o - C2),1a), Mfo+3 hcm-h-t O 1l 

21 0 O, 1 0 0/ 0 0/ 

and 

cm 
I 

I 0 1 

M4m-3 = cm-1 I 0 , M4m-2 = 0 1 0. 

I 0 O, 1 0 O, 

Let ai and bi be the integers defined by the Jacobi-Perron algorithm expansion, 
given by Levesque and Rhin [7], of Wa( - C2) 5 a) , for which the period length 
is A = 4m + 1 . For 0 < k < 4m - 4, k :$ 2 and 3, the transition matrices are 
given by the Jacobi-Perron algorithm: 

if k = 0 or k= 1: 
laA-k I o0 

Mk= b( k O 1 | 

\1 0 OJ 

if 4<k<4m-4: 
M ak kI I 0\ 

Mk =lbA-k-1 I? 1|- 
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For k = 2 and 3 we have the relation 

/aA-4 1 0\ (a)3 a2 1 

M3M2= |b_4 0 1)b3 0 1 ) b( 2 0 
\1 0 O, 1 0 O, 1 0 O, 

and for k = 4m - 3 and 4m - 2 we have the relation 

(a1 1 0\ (a2 1 0'\(a3 1 

M4m-2M4m-3 bi 0 b20 1 b3 0 1. 
'10 0 100 10 0 

Remark. For the quadratic form F, an isotropic vector in Lk has the coordi- 
nates: 

if k= 1 or k=2: 
ak-I 

1I, 
ak-I - bk-1 

if k =3: 

/2 
a13 - b3 

1 

if 4<k<4m-3: 

/2 

iak - b 

if k=4m-2: 
ark+ 1 

aek+1 - bk ( +~k+1) 

where a2 and a' are defined by the Jacobi-Perron algorithm expansion of 
(a( - C2), a) 
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