
MATHEMATICS OF COMPUTATION 
VOLUME 64, NUMBER 212 
OCTOBER 1995, PAGES 1711-1715 

PARITY OF CLASS NUMBERS AND WITT EQUIVALENCE 
OF QUARTIC FIELDS 

STANISLAV JAKUBEC, FRANTISEK MARKO, AND KAZIMIERZ SZYMICZEK 

ABSTRACT. We show that 27 out of the 29 Witt equivalence classes of quartic 
number fields can be represented by fields of class number 1. It is known that 
the remaining two classes contain solely fields of even class numbers. We show 
that these two classes can be represented by fields of class number 2. 

1. INTRODUCTION 

A relationship between the Witt equivalence of quadratic number fields and 
the parity of the ideal class numbers has been noticed in [6]. There are seven 
Witt equivalence classes of quadratic number fields and it turns out that six 
classes contain some quadratic number fields with class number one, while the 
seventh class represented by the field Q(-7) consists exclusively of fields 
with even class numbers. As reported in [6], P.E. Conner offered a partial 
explanation for this phenomenon by pointing out that, for fields of arbitrary 
degree, the entire Witt equivalence class consists of fields with even class num- 
bers provided some Witt equivalence invariants assume specific values. These 
invariants are the global level, s(F), of the number field F and the local dyadic 
levels, si = s(Fo,), where Fpi, i = 1, ... , g, are the dyadic completions of 
F. According to Conner, if s(F) = 2 and s1 = = sg = 1, then the ideal 
class number of F is even, and so also any number field K which is Witt 
equivalent with F, has an even class number. Actually, Conner required the 
field F to be totally complex with -1 a local square at every dyadic prime in 
F but not a global square in F. These requirements are equivalent to s(F) = 2 
and s1 = = sg = 1, as can be seen by a straightforward application of the 
Hasse Local-to-Global Principle. 

We do not know of any examples of Witt equivalence classes of number 
fields which consist exclusively of fields with even ideal class numbers and do not 
satisfy Conner's conditions. In this note we propose to show that all quartic Witt 
equivalence classes can be represented by fields with odd class numbers except 
for those satisfying Conner's conditions. Thus the situation for quartic fields is 
very much like that for quadratic fields. Our proof will supply an appropriate 
example of a quartic field in each of the 27 quartic Witt equivalence classes 
which do not satisfy Conner's conditions. A more conceptual proof would be 
desirable but it has escaped our attention. 
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2. THE CASE s(F) = 2 AND 51 = = sg = 1 

For the convenience of the reader we recall the definition of the Witt equiv- 
alence invariant 

S(F) = (n, r, s, g; n,..., ng;'s ,.,sg) 

of a number field F (see [6]). It consists of the following field invariants: 
the degree n of the field F over the field Q of rational numbers, 
the number r of real embeddings of F into the field C of complex numbers, 
the global level s = s(F) of the field F, 
the number g of dyadic primes p), ... , pg of F, 
the local degrees ni = [Fpi Q21 of dyadic completions Fpi of F over dyadic 

numbers Q2, and 
the local levels si = s(Fp), where i = 1, ..., g. 
Here the level s(K) of a field K equals 0 if K is formally real, otherwise it 

is the least number of summands in an expression of -1 as a sum of squares 
of elements from K. It is well known that the level s(F) of a number field F 
assumes only the values 0, 1, 2 or 4. The Witt equivalence invariant classifies 
completely algebraic number fields with respect to Witt equivalence (that is, up 
to isomorphism of their Witt rings of quadratic forms). See [5] and [6] for 
details and related references. 

Now we will prove the following fact, first noticed by Conner. 

Proposition. Let F be a numberfield such that s(F) = 2 and s1 = = s = 1 
Then the class number of F is even, and every number field Witt equivalent to 
F has also even class number. 

Proof. Suppose the global and local levels satisfy the hypotheses and the ideal 
class number h of the field F is odd. Take a dyadic prime q of F. Then 
qh = (a) is a principal ideal and a is a nonsquare in F, since h is odd. We 
claim that all Hilbert symbols (-1, a)p are trivial, that is, 

(-1, a)p = 1 

for all primes , of F. For a dyadic prime , this is obvious since -1 is a 
local square at , (the local dyadic levels are all equal to 1 ). When p is a finite 
nondyadic prime, then a is a local unit at , (by our choice of a), hence again 
the Hilbert symbol is trivial. Since s = 2, there are no real infinite primes, 
and at complex infinite primes any Hilbert symbol is trivial. This proves our 
claim. However, -1 is not a global square, hence the nondegeneracy of the 
Hilbert symbol (combined with our claim) implies that a is a global square, a 
contradiction. Hence h must be even. If K is any number field Witt equivalent 
to F, then K and F have the same Witt equivalence invariant. Hence, if F 
satisfies Conner's conditions, so does K, and, as has been already proved, it 
has even class number. El 

We are concerned here with the classification of quartic number fields up 
to Witt equivalence so that n = 4. First we want to single out those Witt 
equivalence invariants which satisfy Conner's requirements. Observe that, if 
the local dyadic degree si = 1, then the corresponding local degree n1 has to 
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be even, and then use the fundamental equality n = n, + . + ng to conclude 
that there are exactly two possible values of g giving g = 1, nI = 4 and 
g = 2, n, = n2 = 2. It follows that there are exactly two Witt equivalence 
classes of quartic number fields satisfying Conner's conditions (these are listed 
as types 6 and 17 in the Table (see next page)). By the Proposition, these two 
Witt equivalence classes do not contain any fields with odd ideal class numbers. 
Our intention is to show that each of the remaining classes contains at least one 
field with an odd class number. In fact, we show that one can always choose a 
representative with class number one. 

3. COMMENTARIES TO THE TABLE 

The values of n, r, s, g, ni, si in the table below form the Witt equivalence 
invariant S(F) of the field F = Q(a)(, where a is a zero of the polynomial 
f(X) = X4 + ax3+ bx2 + cx + d with the coefficients a, b, c, d given in the 
same row of the table. 

The type is the Witt equivalence class determined by the corresponding value 
of S(F). 

Note that this is the same notation as in Table 1 of [4]. In that paper the 
Witt equivalence classes of quartic number fields have been described. See also 
[7], where the 26 classes containing 2-extensions are constructed in a systematic 
way. 

The last column of the table gives the value h of the class number of the 
field F. This has been determined with the aid of the results in [2]. 

The types 1-20 for which g < 2 are represented by fields F of odd index 
(more precisely the generating element a has odd index in F ). We have found 
the corresponding fields by applying Theorems 1-4 of [4]. 

For types 21-29 with g = 3 or 4, every field F has an even index. The 
types 21-26 were covered with the use of Theorem 5 of [4] and types 27-29 
were completed with the help of [1, Chapter IV, ?2, Theorem 3 and Chapter 
VI, ?3, Theorem 3] (see also [4]). 

As a result of the information gathered for quadratic and quartic number 
fields, the following question, first asked by Conner, arises: 

Question. If a number field F has the level s(F) different from 2 or at least 
one of the local dyadic levels si is not equal to 1, then is F Witt equivalent to 
some number field with odd class number? 

We have answered this question in the positive for quartic number fields, 
and by [6], the same holds for quadratic number fields. As to cubic number 
fields, they are all formally real so that s = 0 and we should expect that every 
cubic number field is Witt equivalent to a field with odd class number. This 
is indeed the case. For Corollary (3.4) in [6] gives a list of representatives of 
the eight cubic Witt equivalence classes and seven of these are fields with odd 
class number, while the eighth, numbered II in [6], can be replaced with the 
field generated by a zero of the polynomial X3 - 3x + 4, and this field has class 
number one. We owe this observation to A. Czogala ([3]). 

However, in the general case, we are unable to answer the question, and more 
insight (rather than numerical data) is needed. 
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TABLE 

type n r S g ni Si a b c d h 

1.4 4 0 1 4 1 0 -6 -4 2 1 
2.4 4 0 1 4 2 0 -4 0 2 1 
3. 4 2 0 1 4 1 -2 -4 0 2 1 
4. 4 2 0 1 4 2 -1 0 2 -1 1 
5.4 0 1 1 4 1 0 -1 0 1 1 
6. 4 0 2 1 4 1 0 18 -60 50 2 
7.4 0 2 1 4 2 -1 -1 1 11 
8. 4 4 0 2 1,3 4,4 -1 -4 1 2 1 
9. 4 4 0 2 2, 2 1,1 -2 -5 6 2 1 

10. 4 4 0 2 2,2 1,2 0 -5 0 2 1 
11. 4 4 0 2 2,2 2,2 -2 -11 -4 2 1 
12. 4 2 0 2 1,3 4,4 0 -1 -3 -1 1 
13. 4 2 0 2 2, 2 1,1 -2 -5 -2 2 1 
14. 4 2 0 2 2,2 1,2 0 1 -2 -2 1 
15. 4 2 0 2 2, 2 2,2 -2 1 0 -2 1 
16. 4 0 1 2 2,2 1,1 -2 -1 2 2 1 
17. 4 0 2 2 2,2 1,1 -2 -9 10 34 2 
18. 4 0 2 2 2, 2 1,2 -2 -13 14 58 1 
19. 4 0 2 2 2,2 2,2 0 -1 0 2 1 
20. 4 0 4 2 1, 3 4,4 -1 2 -1 2 1 
21. 4 4 0 3 1, 1,2 4,4,1 -2 -15 -6 14 1 
22. 4 4 0 3 1, 1,2 4,4,2 -2 -4 5 2 1 
23. 4 2 0 3 1, 1, 2 4, 4,1 -2 -7 2 -2 1 
24. 4 2 0 3 1, 1,2 4,4,2 0 -2 -1 -2 1 
25. 4 0 4 3 1, 1,2 4,4,1 -2 1 2 6 1 
26. 4 0 4 3 1, 1,2 4,4,2 -2 2 -1 2 1 
27. 4 4 0 4 1, 1, 1, 1 4,4,4,4 -2 -13 14 32 1 
28. 4 2 0 4 1, 1, 1,1 4, 4, 4,4 -2 -5 -2 -8 1 
29. 4 0 4 4 1, 1, 1, 1 4,4,4,4 -2 -1 2 8 1 
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