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NONSMOOTH DATA ERROR ESTIMATES 
FOR APPROXIMATIONS OF AN EVOLUTION EQUATION 

WITH A POSITIVE-TYPE MEMORY TERM 

CH. LUBICH, I.H. SLOAN, AND V. THOMEE 

ABSTRACT. We study the numerical approximation of an integro-differential 
equation which is intermediate between the heat and wave equations. The 
proposed discretization uses convolution quadrature based on the first- and 
second-order backward difference methods in time, and piecewise linear finite 
elements in space. Optimal-order error bounds in terms of the initial data 
and the inhomogeneity are shown for positive times, without assumptions of 
spatial regularity of the data. 

1. INTRODUCTION 

We shall consider initial value problems of the form 
t 

(1.1) Ut? + i3(t - s)Au(s) ds = f(t) for t > 0, 

u(O) = uo. 

Here, ut = 9u/9t and A is a selfadjoint positive definite second-order elliptic par- 
tial differential operator in Q C Rd, with Dirichlet boundary conditions, or, more 
generally, a positive definite linear operator in a real Hilbert space H. The kernel j 
is assumed to be real-valued and positive definite, i.e., for each T > 0 the kernel ,B 
belongs to L1 (0, T) and satisfies 

rT t 

(1.2) Jso(t) J/ (t - s)o(s) ds dt > 0 for all p E C[0, T]. 

As is easily seen by an energy argument, the positive definiteness of ,3 and A implies 
stability for the solution of (1.1), or 

t 

(1.3) 1u(t)1l < Iluoll + 2j lf(s)ll ds for t > 0, 

where fl . denotes the norm in the Hilbert space H. 
Such problems, or nonlinear versions thereof, are used to model viscoelasticity 

and heat conduction in materials with memory, cf. the references in [3]. When : is 
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smooth such equations are hyperbolic in nature, whereas if D has a weak singularity 
at t = 0, they exhibit certain features of parabohic equations. In particular, when 

(1.4) 3(t) = t-1/F(cv), 0 < av < 1, 

which is the case we shall consider in this paper, the homogeneous equation has a 
smoothing property corresponding to the inequality 

(1.5) IIu(m)(t) I,,+, < ct-(a+l)ml uo0 for t > 0, where IIuoI0v = IIA'/2uoII, 

for v > 0, for I,ul < 1 if rn > 0, and for 0? ,u 1< if m = 0, but with no further 
smoothing in the spatial variables. Here, C depends on Ol and m. 

The numerical solution of the problem (1.1) was studied in, e.g., [1, 3, 4, 6]. 
The methods considered in [3] and [4] were based on the standard finite element 
method in the spatial variable, together with some basic time-stepping methods, 
with appropriate quadrature formulas applied to the integral term. The analysis 
in [3] uses a combination of energy arguments and Fourier analysis in the time 
variable, and requires constant time steps. In [4] extensions to variable time steps 
were studied using only energy methods. The results in [3] and [4] show optimal- 
order error bounds which hold uniformly for small t, under specified smoothness 
assumptions. In [4] such uniform error bounds were derived also for solutions with 
weak singularities at t = 0, when certain estimates of type (1.5) hold, provided the 
time levels are suitably graded near t = 0. Our present main purpose is to show that 

. in the case of constant time steps, the error is of optimal order for the homogeneous 
equation, when t is bounded away from 0, even without further assumptions than 
uo E H, provided the memory term is appropriately approximated. (Similar results 
are well known for parabolic equations, cf., e.g., [7].) We also show some related 
results for the inhomogeneous equation. 

Our analysis will use Laplace transforms. The assumption that A is positive 
definite implies that A generates an analytic semigroup, so that for any w < wr and 
with M = M, we have the resolvent estimate 

(1.6) (zI+A)-'II< E- for zeZE={z#0: argzl <w}. 

This estimate, with w > wr/2, will be used in an essential way below. In fact, we 
could have replaced our assumption that A is positive definite by the property (1.6), 
with (1 + cv)r/2 < w < wr, where Ol is the parameter in (1.4), thus allowing more 
general nonsymmetric elliptic operators A. In the case of discretization in time our 
analysis also generalizes to a Banach space framework. 

We consider first the case of discretization in space only, and let Sh denote the 
piecewise linear functions on a triangulation of Q of standard type so that 

inf fh { - u-xl + hllu-xII I} Ch2I uI2, 
XE Sh 

where II now denotes the norm in L2 (Q) . (Higher-order elements could be similarly 
considered.) With A(., ) denoting the bilinear form associated with A, and (., ) 
the inner product in L2 (Q), the spatially discrete problem is then to find Uh (t) E Sh 
for t > 0 such that 

t 

(1.7) (Uh,t, X) + 
j 3(t - s)A(uh(s), X)ds = (f, X) for X E Sh, t > 0, 

Uh(0) UOh Uo 



NONSMOOTH DATA ERROR ESTIMATES 3 

For this problem it was shown in [3] that, with UOh appropriately chosen, 

rt 

(1.8) IjUh(t) - u(t)I < Ch2{Ou0112 + j Ut 112ds} for t > 0. 

Our purpose being to reduce the regularity assumptions on the solution, or data, 
we shall show below that if UOh = Phuo, where Ph is the L2-projection onto Sh, 

then, for t > 0, with C= C, 
t 

(1.9) IjUh(t) - u(t) II< Ch2{t-a-1 11Uo1 + t-I If(0)I + j(t - s)-I Ift(s)II ds}. 

We now turn to discretization in time only, and assume for the time being that 
A is a positive definite operator in a Hilbert space H. Let k be the time step, 
tn = nk, and Un the approximation of u(t,). We shall first consider the backward 
Euler method, and thus use oUn := (Un - Un-1)/k to approximate the time 
derivative in (1.1). For the integral we apply a quadrature formula 

n tn 

qn ((p) = wnj(pi 3(tn - s)cp(s)ds, where (s: (p0(tj), 

and thus consider the time discrete problem 

(1. 10) &Un + qn(AU) =fn := f (tn) for n > 1, 

U? = Uo. 

We will consider quadrature formulas qn ((O) which are positive definite in the sense 

N 

(1.11) QN ((P) :=-k qn ((p)(,n > 0, V(p, N, 
n=I 

which we may think of as a discrete analogue of (1.2). In [3] it is shown that this 
provides a sufficient condition for stability, and that 

N 

(1.12) IIUNII < IluOll + 2kZ E EfnllI 
n=I 

which is a discrete analogue of (1.3). With local and global quadrature errors 
defined by 

tn N 

En (p) :qn (() - !3(tn-s) fS(s)ds and EN(f) := k E QPn(iO)|1, 
n=I 

respectively, the stability yields the preliminary error estimate (see [3]) 

rtn 

(1.13) 1U ln _ u(tn) I < Ck j I Utt I I dt + 2Sn (Au). 

In particular, if En ( Q) is of first-order accuracy and u smooth, this error bound 
is 0(k). In the case that A is a second-order elliptic operator and Un is the 
time discretization of the spatially semidiscrete equation (1.7) with the appropriate 
U? uo, then the term on the right in (1.8) has to be added to the error bound 
(1.13) to obtain a complete error bound. 

In [3], and previously in [5], various quadrature rules satisfying the stability 
criterion (1.11) were proposed. In particular, for d E L1 (0, T) and positive definite 
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it was shown that with f the piecewise constant function taking the value ,oi in 
(tj, tj], the quadrature rule defined by 

qn (P) j X 3(tn-s8) (s)ds= Z?n-+ 1pj i.e., with j =|(s)ds, 
j=1 

is positive definite, and that 

rtn 

En (ss) < CTk / )0t ds. 

Using this error estimate together with a smoothing property of type (1.5), we can 
easily show, in the case of the homogeneous equation and discretization in time 
only, that 

rtn 

U un _-u(tn) < Ck ( luttll + IIAut I)dt < Cklluo0 2+, for E > O. 

As in (1.9), however, we want to assume only uo E H. For 3 as in (1.4) and for 
qn((po) chosen in a specific way, we shall be able to show that, with C = C, 

( 1. 14) f l Un n u (tn) ?I< Ckt-111 uo for n > 1 

in the homogeneous case, together with an associated uniform in time first-order 
estimate for the inhomogeneous equation with vanishing initial data. This will 
be achieved by using "convolution quadrature" as introduced by Lubich [2], or, 
equivalently, by thinking of 0 * ,o as the fractional integral (0/0t)-0tp, and then 
using the same formal approximation of 0/0t in both terms on the left in (1.1). 
Corresponding to the backward Euler approximation of 0/at, which has the char- 
acteristic polynomial (1- ()/k, one thus chooses the quadrature coefficients to have 
the generating function 3((1 - ()/k), where 3(z) is the Laplace transform of 3(t), 
i.e., 3(z) = z- for 3 in (1.4). In other words, one considers the quadrature formula 

n 00 

(1.15) qo(Qo) = ko'&Zn_jpJ, where E Z j/ (1-i)-, 3j 
j=O j=0 

It will prove convenient, however, to slightly modify this formula by omitting the 
term with j = 0 in (1.15), so that qn((p) = ko E>n1 0n-j*Oj. We shall show that 
the latter quadrature formula is positive definite, which implies, in particular, that 
the smooth data estimates of [3] hold. (For the special case a = 1/2 such a method 
was discussed in [6], cf. also [1].) In the case of a second-order elliptic A, with 
Un the completely discrete solution and with UOh = Phuo and f =-0, we have, by 
combination of (1.9) and (1.14), with C = Co, 

|Ut -U(tn)I ? U -Uh(tn)|I + I|Uh(tn) - U(tn)|l < C(kty1 + h2t I1 u0 

showing optimal-order convergence in both space and time for tn > 0, with no 
regularity assumption other than uo E L2(Q). 

In order to achieve higher accuracy, we next consider a time-stepping scheme for 
(1.1) which is based on the second-order backward difference approximation to ut 
defined by 

(1.16) DUtm (2Ut - 2U-1 + 2Utm2)/k for n > 2. 
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We note that the characteristic polynomial associated with this operator is 6(()/k, 
where 8(() = - 2( + 12 . The above then suggests that we use for the approxima- 
tion of the integral a quadrature rule of the form qn ((p) - kac> En30 Oj(piJ, where 

now the /3j have the generating function kc' Z:O/A0 j( - (6(l)/k), i.e., for the 
kernel (1.4), 

00 

(1.17) Z/1i(i =8(()-, with (()= =3 2(+ 1(2 
j=O 

It is known from [2] that this formula is of second order when applied to smooth 
functions with ,o(O) = 0, but is less accurate when ~o(O) $ 0, e.g., when 5o(t) -1. We 
shall therefore again use a modification, which this time may be written qn((p) = 
kc ( E n 

n-jsOj + On ijsoO). With this choice, we thus define our scheme to be 

DUn + qn (AU) = fn for n > 2, 

(1.18) &Ul + k'/o (2AU1 + 'AU0) = 2fl + lfo0 

U0 = uo. 

The particular choice of U1 is motivated by the fact that it will yield the desired 
error estimates. We note that the equation for Ul may be written DU1 + qi (AU) = 
f1 + 2f0, if we set U1 = uo. At each time step tn with n > 2, this scheme requires 
the solution of the equation 

(31 + kl+?coA)Un = 2Un-1 _ 1 Un-2 
n-1 

- kl+a E > n/jAUi - 1k1+c'n_VAuo + kfn, 
j=1 

and a linear system with the same operator has to be solved for U1. 
For the scheme (1.18) we first derive stability and smooth data error estimates 

for the inhomogeneous equation with vanishing initial data, and then present our 
main result, the nonsmooth data estimate for the homogeneous equation, 

11 n- U(tn)fl < Ck2t)2luofl for n > 1 

with C = C>, and a second-order estimate in terms of the data also for the inho- 
mogeneous equation. As with the backward Euler method, this may be combined 
with (1.9) to obtain a nonsmooth data estimate in the case of an elliptic partial 
differential operator A, with C= C, 

flUn - U(tn)Il < C(k2t72 + h2tn-1)fluofl for n > 1, when U? = Phuo. 

We add a remark concerning more general kernels p3(t): Our nonsmooth data 
estimates (and their proofs) remain valid on finite time intervals for kernels d3(t) 
such that 3 is analytic with I3(k) (z) I < C zI-,-k, k = 0, 1, in a sector I arg zI < 0 
with 0 > 21r. The first- and second-order convolution quadratures are then positive 

definite in the sense of (1.11) provided that RJ/(z) > 0 for fz > 0, i.e., whenever 
the kernel 3 itself is positive definite. 

The semidiscrete, backward Euler, and second-order backward difference meth- 
ods are treated in ??2, 3, and 4 below. 
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2. THE SPATIALLY SEMIDISCRETE PROBLEM 

We shall now consider the semidiscrete problem (1.7) and show the nonsmooth 
data error estimate (1.9). We begin with the homogeneous equation. 

Theorem 2.1. Let /3 be defined by (1.4) and let f = 0. Then we have for the 
solutions of (1.1) and (1.7), with UOh = PhUO, 

IjUh(t) - u(t)II < Ch2t-o-1IjuolI for t > O. 

Proof. Introducing the Laplace transform of the solution, 

u(x z)= j u(x, t)e-ztdt, 
0 

and recalling that (ut)^ = -uo + zui, we obtain from the homogeneous version of 
(1.1) that zui + 3Aui = uo, and hence, since 3(z) = z-, 

ui(z) = (zI + z- A)1uo = E(z)uo, where E(z) = z (Zl+?I + A)1. 

The solution of (1.1) may therefore be obtained by the inverse Laplace transform, 
with integration along a line parallel to and to the right of the imaginary axis. Let 
now 0 < 7r be a fixed number such that wr/2 < 0 < 7r/(1 + al). Then E(z) is analytic 
and satisfies IE(z)I < M/I z in So U {0}, and the path of integration may therefore 
be deformed into the curve r = F= {z:I arg z = O} (with Qz running from -oc 
to xo), so that 

(2.1) u(t) = e2+ j etzE(z)uo dz = E(t)uo. 

This definition of r will be used throughout the paper but it will be understood in 
what follows that when the integrand is singular at z = 0 and not integrable along 
r, this curve will be interpreted as going around the origin to the right. In our error 
estimates below the integrand will consist of a difference in which the nonintegrable 
singularities cancel, and thus such a perturbation is then not needed. 

Defining the positive definite operator Ah on Sh by (Ah4', X) = A(4', X) V 4', X E 
Sh, and noting that (1.6) holds with A replaced by Ah because the minimal eigen- 
value of Ah is bounded below by that of A since Sh is a subspace of H = L2 (Q), 
we have similarly, with UOh = PhUo, 

Uh(t) = 2 j| e Eh(Z)PhUOdz = Eh(t)Phuo, where Eh(z)=z(z1+I + Ah)1. 

Introducing the error operator Fh(t) = Eh(t)Ph - E(t), we shall show 

(2.2) IIFh(Z)I < Ch2z for z E r, where Fh(z) = Eh(Z)Ph -E(z), 

which implies our claim since Uh(t) - u(t) = Fh(t)uo and, with c:= sin(0 - /2), 

(2.3) IIFh(t)II = 112 j etzFh(z)dzll < Ch2 jz| &eCteZI dz = Ch2t-1. 

To prove (2.2), we note that since A(zI + A)-1 = I - z(zI + A)-1, (1.6) shows 

(2.4) IIA(zI + A)-'1I < M + 1 for I arg zl < w (w <wr), 
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and that (2.4) also holds with A replaced by Ah. We now write, with w = zl+ for 
zeF, 

(wI + Ah)<Ph - (wI + A)1 = Ph((wI + Ah) - (wI + A)-1)Ph 

-(I-Ph) (wI + A)-'Ph - (wI + A) (I-Ph) = I + II + III. 

Here, using (2.4), we have 

IIfIII < CIA-'(I - Ph)fl < Ch2, 

where the latter inequality follows from 

(A-1(I - Ph)V, () = (v, (I - Ph)A-1p) < llvllCh2 2IA-.pfIl2 < Ch21lVIl kllll 

Since II = III*Ph, 11II1 is bounded in the same way. Also, 

I = (wI + Ah)<-Ah(Ah-Ph - PhA-1)A(wI + A)-'Ph, 

and hence, using (2.4) and its analogue for Ah, we get 

fIIB < CIIA-jPh -A-'A + Il(I - Ph)A-1l < Ch2 

where in the last step we have used the standard L2 error estimate for the elliptic 
problem. Together, these estimates show (2.1) and thus complete the proof. fO 

We now turn to the inhomogeneous equation with vanishing initial data and note 
that, from the Laplace transforms of the solutions of (1.1) and (1.7), 

t 

(2.5) Uh(t) - U(t) = j Fh (t - s)f (s)ds. 

Hence, if f (s) = 0 near s = t, we have by (2.3) 

|lUh(t) -u(t)I < Chh2 j(t -s)- e11lf (s)lIds, 

without any regularity assumptions on f. In order to demonstrate an estimate valid 
also for f(t) #& 0 we now state the following: 

Theorem 2.2. Let /3 be defined by (1.4) and let uo = 0. Then we have, for the 
solutions of (1.7) and (1.1), 

IlUh(t) -U(t)lI < Ch2 (t-ll f(O)I + (t-s)-'lft(s)lI ds) 

Proof. Setting Jh(t) = ft Fh(s)ds we have, by integration by parts in (2.5), 

t 

UZh(t) - u(t) = Jh(t)f(0) + j Jh(t - s)ft(s)ds. 

Since the Laplace transform Jh(z) of Jh(t) is Z 1Fh(z), our result follows, using 

(2.2), from 

LIJh(t)H = 2= i j e zJh(z)dzll < Ch2 lectI ldzl = Ch2t-. D 

Together, Theorems 2.1 and 2.2 show the estimate (1.9) by linearity. 
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3. THE BACKWARD EULER METHOD 

We now consider the backward Euler time-stepping method (1.10), with qn(QO) 
defined by (1.15), without the term corresponding to j = 0. The main results in this 
section are the nonsmooth data estimate (1.14) for the homogeneous equation, and 
a related estimate for the inhomogeneous equation. However, we begin by showing 
that the scheme studied has the properties that makes it fit into the framework of [3]. 
In particular, we show the appropriate smooth data estimate for the inhomogeneous 
equation. 

We shall use the notational convention L4() wj wJ( for the discrete Laplace 
transform or generating function of a sequence {wj }. Thus, in the present section 
the quadrature formula is 

n 00 

(3.1) qn ((P) = k Z np-j (pj with i3( ) =Eyjji(i = (1 - 
j=1 j=O 

We begin by showing the positivity property for qn. 

Lemma 3.1. The quadrature formula qn in (3.1) is positive definite in the sense 
of (1.11), and hence the solution of (1.10) satisfies the stability estimate (1.12). 

Proof. We have 
N n 

(3.2) QN((P) = kl + E E n jP 
( 

n=1 j=1 

Because ,oo does not appear in this formula, we can choose ,oo := 0 in the definition 
of ,o. We want to express QN((P) as an integral of 31Wo12 around the unit circle, 
but since the radius of convergence of the power series for 3 is 1, some caution is 
needed. We therefore write 

N n 

QN((P) = lim QN,r(QO), with QN,,(sO) = k+1 E E r n-jOn jj v 
n=1 j=1 

and for 0 < r < 1 obtain by a simple calculation 
27r 

QN,r (QP) = kl+?' J2i(re 

Now R(1-) > 0 when 1 < 1, and hence RO(() = R(1 - ()-c > 0 for 0 < a < 1. 
Since QN,r(P) is real-valued, we conclude that QN,r(SO) > 0 for all ,o E RN. Letting 
r -+ 1, we conclude that QNQ(P) > 0 for all o C RN. 

We also need estimates for the quadrature errors En (p) and En (p) defined earlier. 
We note that the global error is 0(k), uniformly for small t, even though the local 
error exhibits a weakly singular behavior. 

Lemma 3.2. We have, for n > 0, 
rtn 

(3.3) HcEn(so)|| < Ck{tn 1Hs-(0)H s )/(tn?1- s)c-lH1t(s) 1 ds}, 

and, consequently, for tn < T, 
(tn 

gn((p) < CTkfi|| o(O) || + / 11 ?t lids } 
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Proof (cf. also [2]). We define 

(3.4) q(t; (p) = k' E /3jP(t - tj) = (k * 9)(t) for t > 0 
O<tj t 

where /3k = ka & 0 3j6tj, with 64 the delta function concentrated at T, and note 
that q(t; p) is continuous from the right at t, and that q,(p) = limt_t- q(t; p) for 
(p continuous. We further define 

(3.5) ?(t; p) = q(t; p)-( * p)(t) (Yk * p)(t) fort > 0, Yk =- Ok , 

so that En(Qp) = liMt-t-E(t; W). Since o(t) = 1 * o(0) + (1 * pt)(t), we have (note 
that Yk * (1 * t)= (-Yk * 1) * Pt) 

(3.6) cQ; (P) = (Yk * 1)(p(0) + (7k * 1) * (Pt =(.; 1(P(0) + e(.; 1) * Pt. 

To show (3.3), it is therefore enough to show 

(3.7) |E(t; 1)I < Ck(t + k)a-1 for t > 0. 

For t c [0, k) this follows at once by ?(t; 1) = kQo-ta/F(a+1 ) O(ka), and it thus 
suffices to consider t > k. For t E [tn_, tn) In > 1, we have q(t; 1) = kaEj=1p, 
and 

n-1 n-I a 
1:)3j = E(-' -(-1T (a 1)=Fc- 1) + 0(nce1) , 

j=O J=O 

where in the last step we have used Stirling's formula. Hence, 

?(t; 1) q(t; 1)-( * 1)(t) = (tc - ta)/]F(, + 1) + kaO(n-l) = kO(t-'), 

which completes the proof of (3.7) and thus of the lemma. O 

For later reference we give an alternative proof of (3.7) which also shows that 
Lemma 3.2 remains valid, more generally, for 3 with ,3 analytic and 0(k)(z) 
CzI-a-k for k - 0, 1, in So with 0 > 7r/2. The quadrature formula is thus defined 
as above, now with kcf3j the coefficient of (J in the expansion of the analytic 
function 3(0) = 3((1 - ()/k) around the origin. As before, we may restrict the 
discussion to t > k. 

We have by the Laplace inversion formula, with F as earlier (recall that in this 
case F is interpreted as passing to the right of the origin), 

(3.8) (, * 1)(t) =21 j eztk(z) dz , where ki(z) f3(z)/z. 

We shall prove that q(t; 1) = (13 * 1)(tn-1) + kO(ta-l) for t E [tni, t)tn) n > 1, 
which shows (3.7) since, by (3.8), 

(13 * 1)(t) - (1 * 1)(tn-I)l < Ck j e-clzltzl-adzl < Ckt-1. 

We have, for small p, 

27ri jk1(1 ) 
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and hence, since nj- (-j-1 = ((-n 1)7(1 - 

(3-9) q(t; l) -k?tn k-j (-nk^11 ( 

where we have used the fact that /3((1 - ()/k)/(1 - () is analytic for small (, and 
thus does not contribute to the integral. We now change variables ( = e-,k and 
deform the resulting contour {z = k-1 log (1/p) + iy: IyI < ir/k} to Fk = {z E F 
I2zI < ir/k} (note that the contributions from the line segments on =z-=:r/k 
cancel by periodicity), and obtain 

(3.10) q(t; 1) = 
1 

ezt n1k(1_ ) dz, t E [tn-1, tn)1 n > 1. 

Upon forming the difference of (3.10) and (3.8) (with t = tn-1), the desired bound 
(3.7) now follows by elementary estimates: we have 

JP\P eztn-lck(z) dz < Cf e-CIZItIzI-ce-1 ldzl < Ckt1-1 
r\rk r\rk 

Since lk'(z)l < CIz -L-2 on lk, we obtain, with Zk = (1- e-zk)/k = z + 0(kZ2), 

Aj(Zk) - k(Z)l 
< 

CIz|a2 Zk - ZI Ck|zl a, z E 1k, 

and consequently 

eztn-l (k(zk) - k(z)) dz < Ck e-clztlzl-c ldzl < Ckt,,1 

Combining these estimates proves (3.7) and hence the lemma. 
We remark that (3.7) and hence (3.3) remain valid even for ae > 1, which is 

easily seen by using a contour which goes around the origin to the right, e.g., along 
lzl = 1/t. In the proof of Theorem 3.3 we shall have a use for this observation in 
the case ae = 1. 

As a result of Lemmas 3.1 and 3.2, together with (1.13), we may now conclude: 

Theorem 3.1. With q, as in (3.1) we have, for the solutions of (1.10) and (1.1), 

stn 
ifu n- U(tn)ll < CTk{ IAUOll + J (fluttll + flAuttl)dt} for tn < T. 

We are now ready to show our nonsmooth data error estimate for the homoge- 
neous equation. 

Theorem 3.2. If f 0 and qn is given by (3.1), we have, for the solutions of 
(1.10) and (1.1), 

n- u(tn)f < Cktjl|luoll for n.> O. 

Proof. It turns out to be convenient for the analysis to write u = uo + v, where v 
thus satisfies 

vt +/ *Av =-(p3* 1)Auo for t > 0, with v(0) = 0. 

Taking Laplace transforms, we obtain 

zv(z) + ,3(z)Ai(z) = -,(z)i(z)Auo, 

with /3(z) = z- and 1(z) = z, or 

v(z) = z-1B(z)uo, where B(z) =-A(z1+cI + A)-1. 
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Thus, by applying the Laplace inversion formula, since B(z) is analytic in Eo, we 
can write 

(3.11) ~ v(t) = k i Z (z) dz u(, K(z) = z`1b(z). 

We now turn to the approximate equation (1.10) with f 0 and write, analo- 
gously to above, U7 = u( + Vn, and thus obtain for our discrete problem 

&Vn + qn (AV) =-qn (1)Au() for n > 1, with V( = 0. 

Multiplying by Q' and summing from 1 to ox, we obtain for the generating function, 

+V' V(?) ? E qr, (AV) -n = qn (1)nAu(. 
n=1 n=1 

Since V( = 0, we have qn (AV) = q((AV), and hence the first sum equals 
"NC n 

qn(AV)Qn = E -n_jn-j AV3? =()AV(?); 
n=1 n=O =() 

for the right-hand side we have similarly, with 1k (0,1,1,1,...), and hence 
lk(() ?/(1-I 

-E qn(l)QAuo( k) ( )Au. 
n=1 

We thereIore obtain 

V(?) = 1k(()B(?) ()uo. 

This expression is analytic at ? = 0, so that V(?) = EnX-=0 V72Q has a positive 
radius of convergence, and hence, for p sufficiently small, 

V 2- i jC1n(1 )-1B(1)d0(u = y2 iX K(k-)d(uo. 

This formula for V7 is of the same form as (3.9), with K(z) u( instead of k(z), and 
the representation (3.11) of v(tn) corresponds similarly to (3.8). Using the fact that 

(3.12) Ilk(z)fl < C IzK-1 and flK'(z)II ? CIzI-2 for z E E 

we may therefore repeat the arguments of the proof of (3.7) with oz = 0 to show 

flVn _ v(tn) 11 < Ckt- 1 jluo 11 for n > 1. 

Since Un - u(tn) = Vn - v(tn), this completes the proof. O 

For the inhomogeneous equation with vanishing initial data we have the fol- 
lowing 0(k) error bound with low regularity assumptions on data. By linearity, 
Theorems 3.2 and 3.3 together cover the general case. 

Theorem 3.3. If uo = 0 and qn is given by (3.1), we have, for the solutions of 
(1.10) and (1.1), 

/lU72 -/(7)l k(I ttn 
ll un _ U(tn) || < Ck l ||f(?) || + / li ft II dt 
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Proof. Taking Laplace transforms in (1.1), we have this time 

ii(z) = E(z)f(z), where E(z) = z (z1+'I + A)-1, 

and therefore, with E(t) defined as in (2.1), 

t 
u(t) = (E * f)(t) = E(t - s)f (s) ds. 

Similarly to the above, from (1.10) we have, with f() I f(ti)(i, 

U(() k ( 1_ Ik+ 
(1 )A)lf(() - 

so that 
n oo 

Un = kEEn_jf(tj), where E() - kZEji. 
j=1 j=O 

Thus, Un has the same form as qn(f), with E(z) in the role of 03(z). For the error 
analysis we can therefore again go through the steps of the proof of Lemma 3.2, 
replacing every occurrence of kcf3j by kEj, and ,5(z) by E(z), noting that by (1.6) 

flE(z)fl < Clzl-l and flE'(z)Wj < C IzI-2 for z E Zo. 

This corresponds to the case a = 1 in Lemma 3.2, and the result thus follows. O 

4. A SECOND-ORDER BACKWARD DIFFERENCE METHOD 

We now turn to the second-order backward difference method. In this case the 
time-stepping scheme is (1.18), where, with &(() = 3 2- + 1(2, 

n 

(4.1) qn(Gp) = k?(Z/3n-j 0j + 3n-1i~o0), where /3(c) = 3(&(()) = 

j=1 

Again we begin by considering the method in the framework of [3]. It turns out 
that the stability of the scheme (1.18) is related to the A-stability of the backward 
difference approximation defined by (1.16). For completeness we include this fact, 
in the form of the following lemma. 

Lemma 4.1. We have RJ(() = R(3-4(+ 2)/2 >0 when <?1, ($ 1. 

Proof. With= + ii we have, for 42 + q2 < 1, 7 1, 

<( =1 (62 _ 772 - 44 + 3) > (2 - 24 + 1 > 0. El 

We are now in a position to show the stability of (1.18). 

Lemma 4.2. The scheme (1.18), with qn as in (4.1), is stable in the sense that 

n 

flUnll < C{W|uofl + kZ llfifl} for n > 0. 
j=O 
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Proof. By linearity it suffices to consider the cases uo = 0 and f = 0 separately. In 
the case uo = 0 we shall show that QN('O) > 0, where QN(O) is as in (3.2). The 
proof is analogous to that in Lemma 3.1, using this time the fact that R/3(() = 

R&(()- > 0 when I(I < 1 and 0 < ag < 1, since R6(() > 0 by Lemma 4.1. Once 
this is known, the proof proceeds as in [3]; the fact that the equation at t = t, 
is different from that in [3] does not present any difficulty if we take thi as the 
starting level, and use U0 = U-1 = 0. 

In the case f = 0, U' solves the homogeneous equation. We then appeal to our 
Theorem 4.2 below which shows, using the stability of the continuous problem, 

i|Un|i < |lU - U(tn)2I + IuI(tI)II ? CrJ|IuoIl + C|Iuo|| < CIIuol|. D 

We now show that the quadrature rule qn is second-order accurate away from 
t = 0, with the global error uniformly 0(k2) for small t when (o(0) = 0. We remark 
that, as in Lemma 3.2, the result is valid for any kernel ,3 with ,3 analytic and such 
that I3(k)(z)l < M Izj-k, k = 0, 1, in Eo, with 0 > 7r/2. 

Lemma 4.3. For the quadrature formula (4.1) we have for n > 0 
rtn 

HlEn( ()H < Ck2 {ttH0-2 )H + t j1Hcpt(0)11 + j (tni- s)a-l Hlptt(s)HI ds} 

and, consequently, if p(0) = 0, 
rtn 

En ((p) < CTk2{Hfpt(0)| + | 1f pttlids} for tn < T. 

Proof. We begin by considering the case p(0) = 0, and write (p(t) = t ypt(O) + 

got - s)>ott(s)ds, or ,o = ,?t (0)T + T * ptt, where r(t) _ t. Defining q(t; p) and 
E(.; p) as in (3.4) and (3.5), we find, with !k = ke ,0 jzt, 

?(t; p) = ((/k -3) * p)(t) = ?(t; T)ct(0) + (?(; T) * pt)(t) for t > 0. 

(Note that now, for ,o continuous with ,p(0) = 0, q(t; p) is continuous at t = tn, that 
limt,tn q(t; (p) = qn((p), and that E(t; p) has analogous properties.) It thus suffices 
to show 

(4.2) js(t; r) I < Ck2 (t + k)?e-l for t > 0. 

For t E [0,k), we have e(t;T) = kn/3ot - (3 * r)(t) = 0(k ?l), and for t c 
[tn-i, tn), n > 1, 
(4.3) 

n-I n-1 

q(t; r) =knZ I 3j (t-ttj) (t-tn)qo (1) + qn (r), where q%1(1) = j 
3=0 j=o 

We shall show below that 

(4.4) qo (1) = (i3 * 1)(tn) + O(kt-1), 

(4.5) qn(T) = (1 * T)(tn) + O(k2to,1 ). 
Since 

t 

(3 * T)(t) = (i3 * 7)(tn) + (t - tn)(13 * 1)(tn) + j(t - s)1(s)ds, 

and the latter integral is of order 0(k2t?n1), these estimates imply (4.2). 
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To show (4.4), we note that, with p small, 

27ri jki-i-l/: (6(?))d? 

and hence 

q (I) = k = 2i d, 

where, using the factorization 6(() = - (1-)(3 - ) and setting u(?) = (3 - 

one has 
n-1i 

g(() = ? jI =-1 =?nI 8() 

j=O -IW 

Hence, since the last term is analytic near ? 0, we have, with k(z) =(z)/z, 

()()=k1 ?n-18?6 ()d 

Making the transformation k ez and setting Zk = &(e-kz)/k, we obtain 

qn-l(1j =2iri Petn Z,u(ekz )(Zk) dz, 

again with Fk {Z E F Q?z I< ? i/k}, and hence, with E(c(1) = q0 (1)-(/3*i)(tn) 

cn(1) = 2ri 1k etnZ(u(ekz)ik(zk)- k(z)) dz - 1 j et,zk(z)dz. 

We rewrite the first integrand as 

,(e-kz)K(Zk) - R(Z) - (,u(e kz)- _1)k(Zk) + (k(Zk) - k(Z)) 

Since Ii(e-w) = 1+0(w) and clz| < lZkl < Clzl on rk, and since kR(z)l < C jzj-a-1, 
the first term is bounded by CkI z I. Further, since Zk - z = 0(k2Z3) for bounded 
kz, and kR'(z)l < CIzj-o-2, we obtain 

(4.6) kI(Zk)-kR(Z)l < Ck21z| +1 < Cklz| for z E rk 
It follows that 

E( i)I < CkJ e--cz z l dzl + C e-ct,Izllzl-- ldzl < Cktc-1 
rk r\rk 

which is (4.4). 
We now turn to (4.5) and note similarly to the above that (3 * r)^ (z) = , I(z) 

3(z)/z2, and that Ej_ = =/(1- )2, and hence 

qn(T) = k +Z ( ) = k n n-Iy (()Rl k )d(, 

where [tu(?) = ((3 - ()2/4. Setting once more ( = e-kz, we find 

En(T)= 2 i 1k etIz(Il(ek )kI(Zk) - kI(z)) dz-2iri \ e zkl(z)dz. 

Now [l(e-w) = 1 + O(w2), and we conclude as above, using (4.6), that 

Itl (e kz)kl(zk) - kil(z)I < Ck21z| for z E Fk 
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From this we obtain easily that lEn(T)I < Ck2t?1-,I which is (4.5). 
It remains to show the result of Lemma 4.3 when p(t) -o(O) $ 0, i.e., that 

en(1) = 0(k2ta-2). Setting 1k = (0, 3, 11, ...), we have now qn(1) = qo(Ik) and 
hence 

,qn (1) (n= ik(() k /3(e() = - 

;) 3( (?i) 
- 

k_' 
j~~~~~1 ~~~~2(1-c) 

k 

where It2(?) = (:3 - C)2/4, so that 

q (1) k j/ ,-n-I2 1k , etnZu2(e-kz)k(Zk)dz. 

Therefore, 

En(l) = 2rri 1 et z(u2(e kz)(zk) -K (z)) dz -2i f et7 z(z)dz. 

Now ,A2(e-w) = 1 + O(w2 ) so that, with (4.6), 

I, (e- ) (Zk) - i(z)) < Ck2|zj-R1 for z E Fk 

and it follows that IEn(1)I < Ck2ta-2, which completes the proof. Cl 

Using the above Lemmas 4.2 and 4.3, one easily shows the following optimal- 
order error estimates for the inhomogeneous equation with vanishing initial data. 

Theorem 4.1. Under the appropriate regularity assumptions we have for the so- 
lutions of (1.18) with (4.1) and (1.1) with uo = 0, 

otn 

lU n _ u(tn)fl < Ck2{flAut(O)11 + j (flutttfl + flAuttfl)dt}. 

We now turn to the homogeneous equation and prove the following nonsmooth 
data estimate. 

Theorem 4.2. For f 0 O we have for the soluttions of (1.18) with (4.1) and (1.1) 

flun - U(tn) fl < Ck2t 21lUof| for n > 1. 

Proof. Writing again Un = uo + Vn for n > 0, we may write our scheme, since 
qn (o) = q (f) when ?oo - 0, as 

DVn + qn(AV) -qn(l)Auo for n> 1, with V = V-1 = 0. 

With the above notation, we obtain for the generating functions 

( k I + 130( k )A) V(() =-($)ik(()Auo, with ik(() = ( (2 

or 

V(() = lk(() B(k)uo, where B(z) =-A(z1+IA)-A1. 

Hence, proceeding as in the proof of Lemma 4.3, we have, with K(z)-z- B(z), 

Vt n 
j A2 ~~K(()d(- uo = ii1 etz, t 2(e kz )K(Zk) dz uo, 27ri klu 2ri e l( )fzdu, 

and hence, with Gk(Z) = ,12(ekz)K(zk) -(z), 

V - v(tn) =2ri 1 etnzGk (z)dz uo -2ri z etzK(z)dz uo. 
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Using (3.12), one shows this time flGk(Z)l ?< Ck2lzl on rk, and concludes 

1 n _ (n 1<C2t-2 IIUO l| 1i Vh-V(tn~)I ?< Ckt) n oii 
which completes the proof. O 

We remark that assuming uo E D(A) rather than just uo E H reduces the 
singular behavior of the error bound at t = 0. In fact, similarly to above one may 
show IIA-1Gk(z) I < Ck2 z - on rk, and hence 

flyvn _V (tn)Il < Ck2 jZ -cee-ctnlZlldzl IfAuoll = Ck2t-1 flAuoll. 

In particular, this shows a uniform error bound of order O(kl+'2) for tn > 0, which 
conforms with the estimate in [3] for second-order schemes with 3 as in (1.4). 

We end with an optimal-order error estimate for the inhomogeneous equation 
with low regularity assumptions on data. 

Theorem 4.3. For uo = 0 we have, for the solutions of (1.18) with (4.1) and 
(1.1), 

rtn 

flUn _ u(tn)fl < C k2 {t_jIlf(O)lI + |mft(0)fl + j lfttll dt}. 
n~~~~~~~ 

Proof. We proceed as in the proof of Theorem 3.3 and obtain, setting U0 = 0, 

00 1 

U(() = E(b() ){ f )(n + (f (t1 )+ 2_f(?))(} where E(z) =z (zl+'I + A)-1, 
j=2 

so that Un is the convolution quadrature approximation of E * f defined by 

n 0o 

U= kEEn-jf(tj) + 1kEn-1f(0), where E(6-(i) 
- 

kZEji. 
j=1 j=O 

The result thus follows as in Lemma 4.3, with E(z) in the role of 3(z) and 
=1. ' 
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