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EFFICIENCY OF A POSTERIORI BEM-ERROR ESTIMATES 
FOR FIRST-KIND INTEGRAL EQUATIONS ON 

QUASI-UNIFORM MESHES 

CARSTEN CARSTENSEN 

ABSTRACT. In the numerical treatment of integral equations of the first kind 
using boundary element methods (BEM), the author and E. P. Stephan have 
derived a posteriori error estimates as tools for both reliable computation and 
self-adaptive mesh refinement. So far, efficiency of those a posteriori error 
estimates has been indicated by numerical examples in model situations only. 
This work affirms efficiency by proving the reverse inequality. Based on best 
approximation, on inverse inequalities and on stability of the discretization, 
and complementary to our previous work, an abstract approach yields a con- 
verse estimate. This estimate proves efficiency of an a posteriori error estimate 
in the BEM on quasi-uniform meshes for Symm's integral equation, for a hy- 
persingular equation, and for a transmission problem. 

1. INTRODUCTION 

In recent decades adaptive mesh refining proved to be a tool of high practical 
importance in numerical analysis of partial differential equations. The questions of 
how and where to perform the refinement and whether this is "efficient" (a concept 
to be defined) is subject of many papers, and we refer, e.g., to [1, 14, 15, 16, 17, 18, 
23, 24, 28, 29, 30] and the references quoted therein. The framework of adaptive 
methods, introduced by Eriksson and Johnson [14, 15] for finite elements, is studied 
in [3, 4, 5, 6, 7, 81 for boundary element methods (BEM) and covers weakly singular 
and hypersingular integral equations, integral equations for transmission problems, 
and the coupling of finite elements and boundary elements. However, the questions 
of efficiency of the adaptive algorithms and the sharpness of the a posteriori error 
estimates have been studied by numerical experiments only. 

In this paper we focus our attention mainly on quasi-uniform meshes (for reasons 
which become clear later and are discussed in ?8.4) and then prove that one of the 
a posteriori estimates is sharp, i.e., a complementary inequality holds. We first 
describe a typical example and state the results obtained; the subsequent sections 
contain proofs, more abstract results and further applications. 

Consider Symm's integral equation: Given f find q with 

(1.1) 5v3(x) -f(x) (x; r). 
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Here, F = &Q is a polygon, the boundary of a bounded two-dimensional Lipschitz 
domain Q, and 

(1.2) VO(x) :=-X(Y) log Ix -yldsy 

is the weakly singular single-layer potential operator. 
Equation (1.1) is equivalently related to the Dirichlet problem for the Laplacian 

(1.3) Z\u=O inQ , u = uo onI, 

with given Dirichlet data uo. Indeed, using the right-hand side 

f (x) = uo(x)-!- uo(y)Y) logjx-yjdsY (xCF) 
aT ny 

in (1.1), one obtains q= a, i.e., the unknown q in (1.1) is the normal derivative 
of the solution u of the Dirichlet problem. Moreover, once ulr and q are known, u 
is given via a representation formula (see, e.g., [10]). 

Under some assumptions on Q (cf. ?5), the single-layer potential V: H-1/2(F) 
HI/2(F) is linear, bounded, symmetric and positive definite. (H1/2(r) is the trace 
space of H1(Q) and H-1/2(F) - Hl/2(F)*, see ?5 for details.) For f E Hc (r) 
Lax-Milgram's lemma guarantees that (1.1) has a unique solution q C H-I/2(r), 
which then belongs to L2(rF) [9]. Moreover, by Cea's lemma, Galerkin methods like 
(Galerkin) BEM are quasi-optimally convergent. The simplest of such discretiza- 
tion schemes is described by a partition (a so-called mesh) Xw {=1,... , Pn of the 
polygon F in intervals (so-called elements) F1,... ., Fn. Then 

(1.4) S?(F) V{h C L'(F) VhjFi C R for all j 1,... , N} 

denotes the linear space of piecewise constant functions and h(w) C So (F) is defined 
as the local mesh size, i.e., h(w)Irj := IFjl := length of Fj. 

Lax-Milgram's lemma guarantees a unique solution Oh C S? (F) of the Galerkin 
equations, which are equivalent to 

Rh = f - Vh I So(F). 

Here, I means orthogonality in L2(r), i.e., fr Rh h ds 0 for all VPh C S? (F). Note 
that Rh E H1(F), so that the derivative a Rh = R' of Rh along F with respect to 
the arclength exists and belongs to L2 (F). 

Theorem 1 ([4]). There exists a constant c > 0 (depending only on r) such that 
for any s C [0,1] there holds 

(1.5) ||- Oh IH-s(F) < c| Rh b1 || h(T) . Rh I2(l ) 

An immediate consequence of Theorem 1 is 

(1.6) 0 - Oh IIH-s(1) < c max h(T)s | Rh IL2(1) 

with max h(T) fl h(T) flLo(p). Compared with (1.5), the estimate (1.6) is rea- 
sonable if max h(w)/min h(w) is not too large, min h(w) := min{h(w)(x): x E F}. 
That means that there is a global constant cu such that for all meshes X under 
consideration, 

(1.7) max h(w)/min hQ(,) = FmXakx|rj/lrkl <k cu. 

We prove in this paper the reverse inequality of (1.6) and hence affirm the sharpness 
of the estimate in Theorem 1 for quasi-uniform meshes. 
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Theorem 2. If f is continuous and smooth on each side of F, there exist constants 
CO, ho > 0 (depending only on F, f and cu) such that for all partitions r of F with 
max h(7r) < ho and (1.7), and for s E [0, 1], one has 

(1.8) max h(7r) || R1 L2(r) < CO fl X-1 -h IIH-s(F). 

The rest of this paper is organized as follows: The general framework of a poste- 
riori estimates presented in [4] is recalled and enlarged to cover an abstract comple- 
mentary estimate in ?2. The three ingredients of this estimate are (i) approximation 
properties (upper and lower bounds for the the best approximation), (ii) inverse 
assumptions and (iii) stability of the discretization of the trial functions in a certain 
sense. A more transparent implication is derived in ?3 while the proof is given in ?4. 
The abstract results are studied for Symm's integral equation in ?5 and Theorem 
2 is proved there. Two other applications concerning the hypersingular integral 
equation and an integral equation for some transmission problem are described in 
??6 and 7. The paper concludes with miscellaneous comments in ?8, including a 
comparison of the estimates in [4] and [5]. 

2. ABSTRACT SETTING 

We recall the general approach of [4] for a posteriori error estimates, enlarge it 
and add a complementary abstract estimate. 

Let X1 c Xo and Yi c Yo be real Banach spaces, and let Xo := [Xo, XI]o and 
Yo := [Yo, Y1]o be defined by interpolation of these spaces, 0 < 0 < 1, cf. [2]. We 
briefly list a few properties inherited from interpolation, which are assumed in the 
sequel: There are positive constants co,x and cO,y such that for all x C X1 and 
y E Y 

(2.1) 
flxfle ? ox. fxfl~0. flfl%1anid fl y fly6 < co,y fl11y .l- -1 yfl 1. 11 x llx, < cO,X 11 x ||X,-0 1Ixlx n 1 IO<C 11 x IIYOo 1 Y IY 

Let L(X; Y) denote the Banach space of linear bounded mappings between the 
Banach spaces X and Y, and let 11 IIL(X;Y) be the corresponding operator norm. 
Then, for each Aj C L(Xj;Yj), j 0,1, with Ao0x1 = A1, the restriction Ao = 
Ao I x belongs to L(Xo; Yo) and 

(2.2) 11 Ao lIL(X,;Y&) < 11 Ao 11Lb7 11 Ao fL(X1;Y1) 

Let A = AO be such a mapping and assume, in addition, that AO : Xo -* Yo is 
surjective and injective. Then, fix a right-hand side f C Yi and the solution u E Xo 
of 

(2.3) Au = f. 

We apply the Galerkin method to approximate u. Let Sh C X1 and Th C YO* be 
finite-dimensional subspaces such that there exists some uh C Sh satisfying 

(2.4) th(AUh) = th(f) for all th C Th. 

The residual Rh := f - Auh and the error eh := u - uh are related by the following 
estimate. 

Theorem 3 ([4]). There exists p C YO* satisfying 

(2.5) IHPHIY* =IlRhIlY = p(Rh), 
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and there holds 

(2.6) IlehlXo ?< co,y * JJA1 |L(Ye;Xe) |lRhlly tiff IIP - thlyl 
th ETh 0O 

Proof. To make the presentation self-contained, we give a brief outline of the proof. 
The existence of the (weighted) peak functional p C YO* satisfying (2.5) follows from 
a well-known corollary of Hahn-Banach's theorem. Since A = AO: Xo - Yo is 
bijective, we have eh = A-'Rh and 

llehlIXo ? A IIL(Ye;Xe) IIRhI Yo 

By interpolation, IlRh IYo ?co Y 11 Rh I7jo - 11 Rh 110 l The proof is concluded by 
standard duality arguments, using (2.4) and (2.5), 

11 Rh YO = P(Rh) = (P-th)(Rh)? Rh IYo P P-thY (thCTh). D 

This abstract estimate can be made precise, e.g., Theorem 3 implies Theorem 1 
for Symm's integral equation (cf. ?5). Since other examples are also covered by the 
given framework, we state the efficiency result in a related abstract form. 

The following concepts (i)-(iii) are essential where we consider a family of 
Galerkin methods described by a family of discrete subspaces (Sh h C I) and 
(Th: h C I) of XI and YO*, respectively. 

(i) Approximation property. Assume that the solution u C Xo of (2.3) also 
belongs to XI. Then, for each h C I, let 

E(u, Sh) := inf{il u-Vh ||X: Vh C Sh} = || U-lhU ||x1 

be the best approximation error in the norm of XI and let 1h: X1 -* Sh denote 
a projection such that HIhu is the best approximate in Sh. Assume E(u, Sh) > 
O (provided the Galerkin method converges quasi-optimally, otherwise we obtain 
Uh = u and this is the exceptional case we are not interested in) and define 

F (u, Sh)= ? 

(ii) Inverse assumption. For each h C I let 

I h IXi 
G(Sh) sup{ : Vh E Sh \ 01{ 

(iii) Stability. For each h C I let 

Ph 2XO -* Sh be a projection 

such that Ph E L(Xo, Xo) and Ph Ix1 C L(XI, XI) with norms 

II Ph lj := sup{ 
P 

:vCXJ\ {O}} j O, 1. 

Then, for h, H C I, define 

6(U, Sh, SH) := (U, SH) 
E(lu Sh) 

(2.7) (i+ co,x PH I . [F(u, SH)G(SH) IPHJO]I10) 
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Remark 1. For Symm's equation we have Xo = H-1(F), X1 = L2(F) - Yo, Yi = 
H1 (F), and, as we shall see below, by standard arguments, E(u, Sh) - F(u, Sh) 
h, G(Sh) h-'. The projection Ph will satisfy 11 Ph flo, 1f Ph 11f < C. In this case, if 
H= ch, 

6(U, Sh, SH) Ce, 

which is smaller than 1 for sufficiently small e. 

Theorem 4. Let A E L(Xi,YI), h,H E I with Sh C SH; consider U,Uh C X1, 
eh := U - Uhh, Rh Aeh E Yi, and assume (i) -(iii). If 8(u, Sh, SH) < 1, then 

(2.8) 

1]PH |l |PH | - 11 Rh IIYI ? PHf-l0 Sh PH |j A IIL(Xi;Yi) G(SH)'0 || eh IIXe. 

The proof of Theorem 4 is given in ?4. 

Remark 2. The complementary character of the two complementary inequalities of 

Theorems 3 and 4 should be emphasized: No assumption on the test functions or 

the residual (neither (2.4) nor bijectivity of A : Xo- Yo) is required in Theorem 

4, which are essential in Theorem 3. Conversely, the approximation, inverse, and 

stability properties of the trial spaces, the main ingredients in Theorem 4, play no 

role in Theorem 3. 

3. SPECIALIZED SETTING 

Since E(u, Sh), F(u, Sh) and G(Sh) can be bounded if Sh are spline function 

spaces, we state in this section a more transparent form of the abstract estimate of 

Theorem 4. Let (Sh : h E I) be a family of subspaces of X, where the index h is a 

positive parameter, say, I c (0,1). Suppose Sh C SH for all h, H E I with H < h 

and that UhEI Sh is dense in XI. Suppose that there exist positive constants 

cc, cIc, cp and real constants al, d such that for all h C I 

(3.1) F(u,Sh) < cc, ha, 

(3.2) G(Sh) < c13 h, 

(3.3) || Ph llIo | jj Ph ||1 < Cp. 

Corollary 1. Assume (3.1)-(3.3) and a + -H > 0. Define 
1-0 1-0 

C1 := 2 + 2co,x * C * c c 

C2 := -2c 11 A IIL(X1;Y1) C3- 

Then, for each h C I, we can find H C I with 

(3.4) E(u, SH) <-E(u, Sh) and H < h, 

and we have || Rh ||YI < C2 H13(1-0) eh lIXe 

Proof. Use the above notation in Theorem 2 to see that (3.4) implies 8(u, Sh, SH) < 

1/2. Then, (2.8) proves the corollary. O 

As chosen in Corollary 1, H depends highly on h and we need more information 

on E(u, Sh) to control this in (3.4). 
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Corollary 2. In addition to the assumptions of Corollary 1 let there exist constants 
7, q, ho, 0 < r, q < 1, such that for all h E I with h < ho we have 

(3.5) E(u, Sn.h) < q. E(u, Sh) and rq h E I. 

Then, there exists co > 0 such that for all h C I with h < ho 

(3.6) H| Rh flYi < co hl1-0) H| eh 11X6. 

Proof. Use (3.5) and H = r h in Corollary 1 with a natural number k > 
- log(ci)/ log(q). O 

Remark 3. The assumptions on F(u, Sh), G(Sh) as well as an upper bound of 
E(u, Sh), like E(u, Sh) < c h , are standard tools in finite element and boundary 
element analysis (see, e.g., [19]). The assumption on the stability (concerning cp) 
is sometimes used implicitly. The only additional assumption is some kind of lower 
bound of the best approximation error E(u, Sh), e.g., c' ha < E(u, Sh), such that 
(3.5) holds: E(u, SH) < c H? < c r1 'hl' < c rf7/c'E(u, Sh). 

4. PROOF OF THEOREM 4 

We need two lemmas to convey the assumptions to the interpolation spaces. 

Lemma 1. For any Vh C Sh, h E I, we have 

|1 Vh HIxi < || Ph 1|o || Ph 110 * G(Sh) * 11 Vh lXe. 

Proof. By interpolation of the projection Ph as a mapping in L(Xj, X1) for j = 0,1 
we get as in (2.2) (where the image X1 is fixed) that Ph C L(Xo, X1) with 

11 Ph 11L(Xo;Xi) < 1f1 Ph L (XOXi ) . 11 Ph H1. 
By the inverse assumption (ii), 11 Ph |IL(XO;Xi) < 11 Ph Hlo G(Sh). An application of 
the bound of 11 Ph HIL(Xo;Xl) (to Vh = PhVh) proves the lemma. O 

Lemma 2. For any h C I we have 

|U - HIhu ixo < co,x F(u, Sh)1 u u-Hhu fix1 
Proof. Combine the approximation property with (2.1). LI 

Proof of Theorem 4. Let h, H E I with Sh C SH and define wH := HIHu. By 
continuity of A = A1 : X- Y* we obtain 

(4.1) || Rh flY1 < || A IIL(X1;Y1) 11 eh fixi 

and then focus on the error eh = U - Uh. By the triangle inequality and Lemma 1 
(with VH = WH - Uh E SH) we obtain 

(4.2) 

|| eh fix1 < E(u, SH) + || PH II' Oi PH 1 G(SH)10 WH - Uh fiXo8 

By the triangle inequality and Lemma 2, 

(4.3) | WH - Uh liXo < co,x F(u, SH)10 . E(u, SH) + || eh llxe. 

Combining (4.2), (4.3) and 

E(u,SH) < E(uH) S eh lIx1, 
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one infers 

(4.4) || eh KIX1 < 6(u, Sh, SH) | eh KiX1 

+ || PH H *l |PH I *G(SH)10 |l eh lIXe 

Now, (2.8) follows from (4.1) and (4.4). a 

5. SYMM'S INTEGRAL EQUATION 

We use the notation from ?1 and recall that F is a polygon in R2. The Sobolev 
space Hs (R 2) is defined as usual [21] and 

Hs(F) {tij C 12() 11 C H1/2+s(R2)} s > 0, 

H?(r) = t2 (r): Ho (F) L ' 

Hs(r) H-S(rF)*, s < 0, 

Hos (r) {u C Is(r) uds = O}, 

L 2(r) H= vO(r): 

where Hs (F)* is the dual of H-s(F) with respect to the extended inner product 
in L2(F). Further, Yo = H0(F) is the interpolation space of Yo = L2(F) and 
Y, = H1(F) and Xo - H0-1(F) is the interpolation space of Xo = H-1(F) and 
XI =XL2(r), 0 < 0 1, COX = CO,y 1. 

It is also known that A := V is a pseudodifferential operator and is a linear and 
bounded mapping between Hs '(F) and Hs (r) for any s E [0, 1] [9]. Throughout 
this paper, we assume cap(r) < 1, so that V defines a positive definite bilinear form 
on H-1/2(F)2 [25, 26, 27]. Here, cap(F) is the capacity (or conformal radius or 
transfinite diameter) of F and cap(F) < 1 is satisfied if, for example, Q is included 
in a disc with radius < 1, which can be arranged by scaling. Moreover, by the 
regularity results in [9], V: L2 (r) -) H (F) is bijective. Hence, V satisfies the 
assumptions on A in ?2, and we obtain in particular Theorem 1. 

Proof of Theorem 1. The assumptions of Theorem 3 are satisfied in the present 
case and Rh = p is easily verified. Hence, with Theorem 3 and some standard 
estimation of the approximation error Rh - HhRh, one proves (1.5) (cf. [4]). 0 

In the next steps we prove the estimates described in ?3, where it is sufficient that 
f in (1.1) is continuous and f 1 belongs to H3(w) for each side w of the polygon F. 
Then, q = V-1(f) C L2(F) and we are interested in its L2(F)-best approximation 
error 

(5.1) 

E(q, Sh) = min| | - /)h 1IL2(r) ' Ph C S(rF)} = 11 H/- . I lL2(r); 

here, fh is the orthogonal projection onto Sh = S(F) in L2(r). If q is constant, 
then E(Q, Sh) = 0 and Rh = 0 indicates q = qh. Thus, we may, and will, assume 
q to be nonconstant in the following. 

Proposition 1. Provided / is not constant, there exist positive constants -y, ho, 
c , and c' (depending only on F, f and cu in (1.7)) such that 0 <-a < 1 and either 

(5.2) c, < max h(w)-' . E(O, Sh) < c-, 
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or y= 1/2 and 

(5.3) c' <-max h(7r)-1/2 log-1/2(max h(r)) E(4(, Sh) < c^, 

holds for all mreshes 7r with max h(7r) < ho and satisfying (1.7). 

Proof. As it is proved in [10], the solution X of (1.1) has the form 

m 
(5.4) + (x) = ?)0(x) + 1:cj )j (x), x C ]r, 

j-l 

where qo E H2 (F) and the real constants cj depend on f, but the singular functions 

j depend on the corners of the polygon only. Here, qj is of the form 

?j (x) = r- Xji(x) or qj$(x) = ri log(r) Xj(x), 

where r is the Euclidean distance between x and the nearest corner of 1. Further- 
more, Xj is a smooth cutoff function with a small compact support which is one on 
a neighborhood of some corner of r. The exponent /3j is determined by the interior 
angle wj at the related corner: /j + 1 = k7r/wj for some nonnegative integer kj. 
Since 0 < wj < 27r, wj =h r, we conclude j, > -1/2. Moreover, the second case 

/j (x) = r log r appears if /j + 1 = kj7r/wj is integer, whence only if ,Bj > 1. 
We split the proof into several steps considering q(x) - r, q(x) r rologr, 

4(x) E H2(r) first before we come back to the general case. We analyze the 
approximation properties locally, so b is approximated on the real unit interval by 
Sh(0, 1) on a quasi-uniform mesh on (0, 1) described by a partition 0 = xo < xl < 

X2 < - * < Xn < Xn+1 1. Define mj = h71 xJ?+1 +(x) dx = IhOlx,xj+) and 

hj:=X+1 - xjfo1j- ,*- -n 
Case 1. Let q(x) xP for x E (0,1), and -1/2 < 3 < 1/2, /3 7 0. Let 

0 < a < a + h < 1,Summary: " and consider the error 11 - m IIL2(a,a+h), where 4 
is approximated by the constant m = h-1 *?aa+h $(x) dx. Some calculations show 

(5.5) 11 Xm 1lL2(a a+h) - a2+1 7(h/a) (a > 0), 

(5.6) || - m flL2(O,h) (1 + /)2 + 1) h (a = 0), 

where 

(1( )2I-1 ) -I [( 16)3 ] (6 >O) 2/3+ 1 8(1 + 0)2 

A power series expansion of r} in 6 shows 

(5.7) r(6) = Cl *63 + higher-order terms in 6 

with a positive constant cl (depending only on /3 > -1/2). Note that, the first 
exponent in (5.7) is expected to be three (because of linear convergence when a 
constant approximates a smooth function). Moreover, one can conclude from (5.7) 
and (5.5) that 

(5.8) C2 < 71(6) * 6-3 < c3 for all 6 E (0, cj] 

with constants cj depending on / and cu. 
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According to (5.5) and (5.6), 

(5.9) || - fhi) L2(r) ho ((l + )2(2 + l) 

n 

+ Z(xj/ho)23+1 ,(hj/xj)) 
j=1 

Since 2 - 2p > 1, we have with Riemann's Zeta function ( 

n oc 

,: j2,3-2 < ((2 - 2p) = E: j2O-2. 

j=1 j=1 

Using this, (5.8), (5.9), and (1.7), one finally obtains (5.2) for q(x) = x and 
Sh = SO(Oi I), -y = d + 1/2. 

Case 2. Let q(x) = x13 for x C (0, 1) as before but now = 1/2. The above 
calculations remain true for = 1/2, in particular (5.8) and (5.9) hold, but the 
zeta function has a pole at 1. Using the well-known formula 

n 

Ej1 =login + C + 0(1/n) (n -* oc) 
j=1 

involving Euler's constant C = 0.577... instead, the above arguments prove (5.3) 
for O(x) = x1/2 and Sh = SO(0 1). 

Case 3. Let H C H1(0,1), e.g., O(x) = xlogx for: > 1. Then, the estimate 
max h(T)-1 .11 0- Hhq 1L2(r) < C4 is well known. Conversely, let q C H2(w) for 
at least a compact subinterval w of one side of F where X is not constant. Then 
we have a compact nonempty subinterval [a, b] where q' E C([a, b]) attains values 
between C5 and C6 with C5 C6 > 0. As it is easily seen, 

(5.10) C7 * min h(7r) < || - Hh(h 1|L2([a,b]) < 11 - Hh/ 1IL2(r) 

holds in this case for some positive constant C7. This proves (5.2) for X = 0q, for 
q(x) = x logx, and also for q(x) = x3 with 13 > 1/2, Sh = S(, 1). 

So far we proved for each summand in (5.4) an inequality 

(5.11) 

C < - max h(7r)-'3j log(max h(7r))3' | j-IHhqj ||L2(r) < cj 

with positive cj, c;, i3j, 13j being independent of h. 
The triangle inequality and (5.11) prove (5.2) or (5.3) for 13 := min{/30, 

/3m} > 0. The proof of the upper bound is immediate while the proof of the lower 
bound uses that the terms with exponent 13 are dominant and that 13 = 13j is 
possible at most once at each corner. We omit the details. C: 

Remark 4. Upper bounds for the best approximation error E(q, Sh) are well known 
for spline functions. Indeed, regularity of q can be measured in the convergence 
rate of E(, Sh) (see, e.g., [13, p. 358]): 

E(q,Sh) = O(max h(7r)) if and only if X E H1(F) 

provided we have a uniform mesh (i.e., cu = 1). In particular, this explains that 
(5.2) is false for O(x) = x1/2. 
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Remark 5. A model example is studied in [18] where, in particular, E(, Sh) is 
computed with q(x) = xO and Sh consists of (possibly discontinues) piecewise 
polynomials of degree p at most on a uniform mesh of (0,1) with meshsize h. In 
particular it is proved (cf. arguments in [18, p. 603] and [18, Part 2, Corollary 2.1]) 
that the limits of 

h-P E(, Sh), -h-P /-og(h) E(q, Sh) and h-0-1'2 E(?), Sh) 

exist as positive real numbers as h 0+ for p < 3 - 1/2, p = -1/2 and 
p > /3-1/2, respectively. This confirms Cases 1 and 2 in the proof of Proposition 
1 for p = 0 for a uniform mesh (cu = 1) and extends the arguments to splines with 
polynomials of arbitrary degree. 

Proposition 2. There holds F(;, Sh) < max h(7r). 

Proof. Note that IJh is the L2-projection onto S?(r). Let sup,7 denote the supre- 

mum among all nonzero q in H' (F). Then we have 

-(?)/IH() sh rh) -Th) ds 

llXlh IIHI (r) 

< max h(ir) j - IhcS 1 L2(r), 

using II - IHhrl 11L2(r) < max h(Qr) II 7?' 11L2(r) for all r1 C H'(r). 

Let prime or E denote the derivative along the straight sides of the polygon F 

with respect to the arclength. Conversely, given f E L (r)) let I(f) be defined by 

integrating f along r with respect to the arclength. This defines I(f) up to an 

additive constant on each side of F, which is chosen such that I(f) is continuous 

at each corner. So far, 1(f) c H'(F) is defined up to an additive constant, which 

is fixed by fr, I(f) ds 0 O. This defines I: L2 (r) -* Ho (F) 

Lemma 3 ([4, Lemma 3]). For all s e [0, 1], I is an isomorphism between Hos-(F) 
and Ho (F) with 0 I(f) - f for all f C HO-1 (F). 

Besides SO(F), define 

(5.12) S7(r) := {wh E H'(F) : w, E S?(F)}, 

the linear space of continuous and piecewise linear functions with respect to a mesh 

The following result shows G(Sh) < C/h. 

Proposition 3. There exists a constant c > 0 such that for all meshes w with 
max h(rx) < 1 

(5.13) jj Wh IIH'(F) < c min h(r)-' 11 Wh 1IL2(F) for all wh C 

(5.14) 11 Wh IIL2(r) < c min h(Xr)-r k hIIH-1(r) for all '/h C S?(F) 

Proof. The inverse inequality (5.13) is well known and easily proved by direct calcu- 

lations on each element. According to Lemma 3, I: SO (r) nL2() -( Sr (F) n L2 (r) 

is an isomorphism, and (5.14) follows essentially from (5.13). l 

For each &b E H-'(F) define Ph t7 E S (F) by 

PhV4 :7$ + 
a 

H' Il7()- VP) for Vb0 := IFI-1 Xb ds 

where lH) iS the L2-projection onto Sf (F) (see [6] for a similar construction). 
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Proposition 4. The operator Ph is a projection onto S? (F) which is bounded as a 
mapping between H-1(F) and H-'(F) or between L2(F) and L2(F). 

Proof. It is known that 1H) is continuous as a mapping between L2 (F) and L2 (F) 
and between H1(F) and H1(F) [12]. According to this and Lemma 3, Ph is linear 
and bounded as a mapping between H-1(F) and H-1(F) and between L2(F) and 
L2(F). Finally, direct calculations show Phfh = 'h for each 'h E S?, i.e., Ph is a 
projection onto S? (F). D1 

Proof of Theorem 2. Using the above notation and that of ?3 the Propositions 2-4 
show (3.1)-(3.3) where, as usual, the index parameter h is identified with max h(-r) 
for a mesh ir satisfying (1.7). 

Given a mesh 7r, let r = 1/k for an integer k and define a new mesh by dividing 
each element F3 of ir in k pieces of length lFjl7k. Then, the new mesh satisfies 
(1.7) as ir does. Moreover, according to Proposition 1, we obtain (3.5) with some 
q which depends on k, ca, c/, and -y. A simple calculation, indicated in Remark 3, 
shows that we obtain 0 < q < 1 by choosing k large enough. Note that r1 depends 
only on ca, c, and y. Therefore, Corollary 2 leads to Theorem 2. C] 

Remark 6. Note that a solution u of (1.3) satisfies q$ = E Hj 1/2(F). Hence, we 

might be interested in determining X EC Ho1/2 (F) with 

(5.15) j(V -f)> ds = 0 for all E Hj-/2(F). 

The corresponding numerical method is: Find Oh E Sh S? (F) nL() with 

(5.16) j(Vh - f)Vh ds = 0 for all 'h E Sh. 

Equations (5.15) and (5.16) have unique solutions according to Lax-Milgram's lem- 
ma. In this case, one also obtains Theorems 1 and 2 from Theorems 3 and 4. 

6. HYPERSINGULAR INTEGRAL EQUATION 

The Neumann problem for the Laplacian 

A\u=O inQ , - to on F, 
On 

is related to the hypersingular integral equation 

(6.1) Wv(x) = f(x) (x F). 

Here, f can be computed from the Neumann data to and v = ulrt is the trace of u. 
The hypersingular operator 

(6.2) Wv(x) :- ]v(Y) log Ix-yldsy 

is linear, bounded, symmetric and a Fredholm operator of index zero [9]. Since W 
- a Va [22], W is positive definite between Ho72(F) and Ho 2(F). Furthermore, 
A = W is a continuous mapping between X1 Ho' (F) and Y1 = L (F) as well 
as between XO = Lo(F) and YO = Ho-1(F). Let Lo(F) be endowed with the usual 
norm in L2 (F), but endow Ho (F) with the equivalent H1(F)-seminorm. 
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Fix f E L2(F) and the solution v E Ho (F) of (6.1). Let Th = Sh = S (F)nHo' (F) 
as defined in (5.12) for a partition ir of the polygon F with (1.7). Let Vh E Sh denote 
the Galerkin solution, i.e., 

Rh := f - WVh I S,(F), 

where I means orthogonality in L2 (F). 

Theorem 5 ([4]). There exists a constant c > 0 (depending only on F) such that 
for any s E [0,1] there holds 

(6.3) 2| -Vh IIHs() < C * || Rh 11'2(rlI h Rh L(F R L2 (r) 

For quasi-uniform meshes, (6.3) is 

(6.4) |V - Vh IHs(r) < c * max h(7r)l | Rh L2(r). 

As Theorem 5 follows from Theorem 3, we infer its converse from Theorem 4. 

Theorem 6. Assume that f is smooth on each side of the polygon. Then there exist 
constants co, ho > 0 (depending only on F, f and cu) such that for all partitions ir 
of F with max h(7r) < ho and (1.7) and for s E [0, 1], there holds 

(6.5) max h(7r) || Rh 1IL2(r) < CO * || V-Vh IIHs(F)- 

Proof. Let TIj denote the L2-projection onto Si (F) for j = 0, 1. Since we endowed 

Ho (F) with the norm 

11W = (j w(s) 2 ds) (w E )) 

the relation E(v, Sh) = |V- WhII H'() 
is equivalent to v' - w' L S?(F) for each 

Wh E Sl(F). Thus w' = 171 7v' and E(v, Sh) = V'-10JV'l L2(r). Since the derivative 
v' of the solution u of the Neumann problem, v = ulr, has a similar decomposition 
as X in (5.4), this and the results of ?5 verify the assumptions of Corollary 2. We 
omit the details. 

Remark 7. A second proof of Theorem 6 is possible using the close relation between 
V and W and a modification of Theorem 2. Indeed, 3: v' and Oh := Vh satisfy 
V = F:= I(f) and 

j V(qh)5h ds = j F'bh ds for all 'Oh E S (F) n L2(F). 

Thus, q E Lo(F) and qh E L2(F) are solutions of problem (5.15) and (5.16), 
respectively. Then, arguing as in Remark 6, we can obtain Theorem 6 from Theorem 
2. 

7. INTEGRAL EQUATION FOR A TRANSMISSION PROBLEM 

In the transmission problem we seek harmonic functions u1 and U2 in an interior 
and exterior domain Q and R23 \ Q, respectively, with a prescribed jump (f, g) of 
their Cauchy data at the polygonal boundary r = &Q (see, e.g., [11, 6] for details). 
This transmission problem is equivalently related to a boundary integral equation 

(7.1) H(v)= -(1A+ H)(f) 
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[11], where (f,g) E H1(r) x L2(r) is given and 

H:=( -K 4 ) HS(r) x Hs-l(r) - H,(r) x Hs- (r). 

Here, V and W are given in (1.2) and (6.2), respectively, and the double-layer 
potential and its adjoint are defined by 

Kv(x) := -?jv(y) , log Ix-yl dsy, 

K'q(x) : - (jq(Y) log Ix-yldsy. 

The operator H is linear, bounded and bijective for s E [0,1] and (7.1) has a 
unique solution (v, b) C H(i(r) x L2(r) (see [11, 6]). Define Sh := s (r) x so(r) 
and Th :- S7(r) x S1 (r) for a partition 7r of the polygon r. The Galerkin BEM 
for (7.1) reads: Find (Vh, bh) E Sh such that the residual 

(Ri, R2) := - (I + H)(f) _-H(V?h ) C Hl (p x L 2(r) 

satisfies 0 = fr(RI <)h + R2 * Wh) ds for all (~bh, Wh) C Th. 

Theorem 7 ([4]). There exists a constant C > 0 such that, for 0 < s < 1, 

K1( ) -( Qh)IIHs(r)xHs-1(r) ? c K 1 )HbY2p)2 *h(r) ( Ri)H8L2(r)2- 

While Theorem 7 is a consequence of Theorem 3, its converse estimate is con- 
cluded from the complementary results presented in ??2 and 3. 

Theorem 8. If f and g are smooth, there exist constants co, ho > 0 (depending 
only on r, f, g and cu) such that for all partitions rr of r with max h(7r) < ho and 
(1.7), and for s C [0, 1], there holds 

max h(7r)S||(R2)||L2(r)2 ? Co I ) - (f) HS (r) x Hs-1 (r) 

Proof. It can be checked that the assumptions of Corollary 2 are satisfied as in 
the previous cases. One combines arguments of ??5 and 6 for q and v and uses 
regularity results from [11]. We omit the details. 

8. COMMENTS 

8.1. Efficiency. Once the Galerkin solution qh eiz S0 (r) is known, compute 

2 f I TrX\I2 a. = [(Vqh)Ax) - ds., 

where, e.g., Vqh(x) is calculated analytically and the integral along rF is approxi- 
mated numerically; hj = Irj . For s = 1/2, the upper bound in Theorem 1 is C. B1, 
where C is a constant and 

B1 := (a2. Ea . h2) a2 2 

j=1 j=1 

Since fr V( (.) ds defines an inner product which induces an equivalent norm in 
H-1/2(r), the quantity 

h 1/2 

a_h := B-1. V(O - h) ( - h) ds) 
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is called efficiency quotient. We say that an error estimate is efficient if its efficiency 
quotient ah satisfies 0 < c0 < ah < C1 < oc for all discretizations under consider- 
ation. Using this concept we proved in this paper that the a posteriori estimates 
obtained in [4] are efficient for BEM on quasi-uniform meshes (in two dimensions) 
and gave a general guideline in ??2 and 3 on how to analyze this in other examples. 

8.2. Numerical tests. The efficiency quotients ah are computed for various nu- 
merical examples reported in [5, 6, 7, 8]. From this, the efficiency results of this 
paper are confirmed; one observes efficiency in practice. 

8.3. Comparison with another estimate. Another a posteriori error estimate 
is proved in [5] which bounds the error (in the H-1/2(F)-norm) from above by 
C. B2, where C is a constant and 

n 

B2 :=Sh 2. 
j=1 

(notation as in ?8.1). Numerical computations reported in [5] show a slow decrease 
of the related efficiency quotient as n tends to infinity, even on quasi-uniform 
meshes. This "loss of efficiency" is indicated by the following example. Imagine 
that the residual is uniformly distributed on a uniform mesh 7r, i.e., suppose a, = 

- = an and h1 - = hn. Then, B,. n = B2. According to the efficiency of 
Bl, this shows that B2 overestimates the error by a factor u, whence B2 is not 
efficient in this model situation. However, if singularities occur, the estimate in [5] 
could be efficient. 

8.4. Restrictions on the mesh. The condition of a quasi-uniform discretization 
(1.7) is used several times in the proofs. For an arbitrary mesh we have (1.6) and, 
according to (2.8) and (5.13), 

min h(7r) || R' 
1IL2(p) < cO 

C 
|| 

- Oh 11H-s(r) 

in Theorem 2 (assuming that 6 is small). Hence, the methods of this paper used 
for the proof of efficiency give the impression that one needs (1.7). One way of 
overcoming this difficulty is to take local properties of the operator A into account. 
These appear to be unavailable in the literature for the operators studied here on 
polygons. 

8.5. Further applications. The results in ??5-7 are stated for the simplest dis- 
cretization only. It is known that Propositions 2-4 also hold for spline functions 
of higher degree, and this is expected for an (adapted version of) Proposition 1 
as well (cf. Remark 5). Indeed, the essential additional condition is (3.5), which 
may be proven in many other situations where u is not an arbitrary function in X1 
but, e.g., is related to a solution of a partial differential equation and then inherits 
much more regularity. Therefore, it is expected that (3.5) is true for a larger class 
of discretizations, including problems in three dimensions, and is not restricted to 
solutions which are related to the Laplace equation. 
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