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CONSTRUCTION OF LOCAL C1 QUARTIC SPLINE 
ELEMENTS FOR OPTIMAL-ORDER APPROXIMATION 

CHARLES K. CHUI AND DONG HONG 

ABSTRACT. This paper is concerned with a study of approximation order and 
construction of locally supported elements for the space S4 (A) of C1 pp (piece- 
wise polynomial) functions on an arbitrary triangulation A of a connected 
polygonal domain Q in R2. It is well known that even when A is a three- 
directional mesh A(1), the order of approximation of S4(A(1)) is only 4, not 
5. The objective of this paper is two-fold: (i) A local Clough-Tocher refine- 
ment procedure of an arbitrary triangulation A is introduced so as to yield the 
optimal (fifth) order of approximation, where locality means that only a few 
isolated triangles need refinement, and (ii) locally supported Hermite elements 
are constructed to achieve the optimal order of approximation. 

1. INTRODUCTION 

Let Q C R2 be a connected polygonal domain and A an arbitrary triangula- 
tion of Q. As usual, Sk(A) denotes the subspace of the space Cr(Q) of pp (:= 
piecewise polynomial) functions with total degree < k over the partition A. The 
approximation order of Sk(A) is the largest integer p for which 

dist(f, Sr(A)) < C|A|P 

holds for all sufficiently smooth functions f, where the constant C depends only on 
f and the smallest angle in A. Here and throughout, the distance is measured in 
the supremum norm 11 * 11 and JAI := sup{diam : T TE A} denotes the meshsize of 
A. 

It is well known that for k < 3r + 1 the optimal approximation order of k + 1 
cannot be achieved in general. For instance, de Boor and Jia proved in [2] that if 
k < 3r + 1 and A is the three-direction mesh AM, the order of approximation of 
the space S'(A(1)) is at most k. In this paper, we introduce a local Clough-Tocher 
refinement procedure of an arbitrary triangulation A in order to achieve the optimal 
(fifth) order of approximation by Cl quartic pp functions over this locally refined 
triangulation A of A. Here, locality means that the Clough-Tocher triangle is 
applied only to some isolated triangles in A, and as usual, a triangle is called a 
Clough-Tocher triangle, if it is subdivided, by using an interior point (such as the 
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centroid of the triangle), into three subtriangles. We will also construct certain 
locally supported Hermite elements, which will be called star-vertex splines, to 
achieve this optimal approximation order. 

Generation of an optimal mesh is one of the most important facets in finite 
element modeling. The method of local Clough-Tocher refinement of triangulations 
introduced in this paper can be undertaken without any element distortion, and 
our local interpolation schemes will help in drastically decreasing the computational 
complexity as compared with the standard (global) Clough-Tocher scheme. 

For a vertex v in the triangulation A, the degree of v, denoted by deg(v), is 
the number of edges emanating from v. We call a triangulation A an odd- (even-) 
degree triangulatzon if the degree of any interior vertex in A is an odd (even) 
number. The organization of this paper is as follows. Our local Clough-Tocher 
refinement algorithm will be introduced in ?2. We shall see that the number of 
local Clough-Tocher refinement steps, if needed, is quite minimal in general. In 
particular, triangulations A such as any odd-degree triangulation and the four- 
direction mesh A(2) do not even need any refinement in order to achieve the optimal 
(fifth) order of approximation from S4(A). A refinement of the three-directional 
mesh AM1) that already admits fifth order of approximation from S4 is shown in 
Figure 1. In ?3, based on this local Clough-Tocher refinement A of A, we outline 
a procedure for constructing a local basis. This local basis will be called a star- 
vertex spline basis for the space S4 (A). An explicit scheme of Hermite interpolation 
from the space S4(A) that provides the optimal fifth approximation order will be 
discussed in ?4. 

FIGURE 1. A refinement of the three-direction mesh 
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2. A LOCAL CLOUGH-TOCHER REFINEMENT PROCEDURE 

For a given triangulation A of a polygonal domain Q C 1R2, we need the following 
notations. 

V: the set of all vertices in A, 
VI: the set of all interior vertices in A, 
Vb:= V \ VI: the set of all boundary vertices in A, 
E: the collection of all edges in A, 
El: the collection of all interior edges in A. 

Furthermore, we will use N to denote the total number of triangles in A. 
We call an interior vertex v a singular vertex if (i) its degree is deg(v) = 4 and 

(ii) v is the intersection of two straight line segments. If ej1,,ej,ej+l are three 
consecutive edges with a common vertex v, then the edge ej is called a degenerate 
edge with respect to v, provided that the two edges ej-, and ej+l are colinear. We 
consider 

VG: the set of all boundary vertices, all singular vertices, and 
all interior vertices with odd degrees, 

and we call each v c VG a good vertex. In addition, we will call two vertices in A 
neighbors of each other if they are connected by some edge in A. 

We are now ready to describe an algorithm for constructing a local Clough- 
Tocher refinement A of an arbitrary triangulation A so that the order of approxi- 
mation from S4 (A) is full (i.e., five). 

Local Clough-Tocher Refinement (LCTR) Algorithm. 
Let Vo = V\VG. 
Dowhile (Vo = 0) 
Pick any vertex v in Vo and consider its neighbors. 
If there exists a neighbor u of v such that u E VG or u is a vertex of a 
Clough-Tocher triangle and that the edge [u, v] is nondegenerate with 
respect to v, 
then delete from Vo both v and all the other neighbors of u connected 
to u by nondegenerate edges with respect to themselves. 
Call the remaining set the new Vo. 
Else, pick any neighbor u of v and subdivide any (but only one) triangle 
T E A with edge [u, v] into a Clough-Tocher triangle, and delete from Vo all 
the vertices of T as well as all the neighbors of any vertex of r connected 
to r by nondegenerate edges with respect to themselves. 
Call the remaining set the new Vo. 
Endif 
Enddo 

The new partition formed by applying the LCTR Algorithm will be denoted by 
A and called a LCTR of the triangulation A/. Corresponding to A, we use V, VI, 
Vb to denote the set of all vertices, the subset of interior vertices, and the subset of 
boundary vertices of A, respectively. We define E, El, Eb and VG in a similar way. 
For any set A, we use the notation #A for the cardinality of A. A rough upper 
bound estimate on the number of the refinement steps to form A from A is given as 
follows. From the LCTR Algorithm, it is clear that only a triangle which has either 
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(i) only nonsingular even-degree interior vertices, or (ii) an edge which is degenerate 
with respect to a nonsingular interior vertex, may need refinement; and whenever 
a Clough-Tocher triangle is formed, at least one nonsingular even-degree interior 
vertex is exempt from further consideration in the LCTR Algorithm. Therefore, 
the number of refinement steps in the LCTR Algorithm, or equivalently the number 
of Clough-Tocher triangles added to A to form A, is bounded from above by 

L = min{ , m}, 

where t is the number of nonsingular even-degree interior vertices in A and m is 
the number of triangles which have either (i) only nonsingular even-degree interior 
vertices, or (ii) an edge which is degenerate with respect to a nonsingular interior 
vertex. In particular, if A is an odd-degree triangulation (so that ? = 0), or if A is 
a four-direction mesh A(2) (so that m = 0), then A = A. In other words, for these 
two types of triangulations A, there is no need of refinement at all. A refinement of 
a three-direction mesh Ai1) using the LCTR Algorithm has been shown in Figure 
1. Observe that for A = AM, once a Clough-Tocher triangle is formed by a LCTR, 
there are generally nine nonsingular even-degree interior vertices that are exempt 
from further consideration in the LCTR Algorithm. 

In general, according to the LCTR Algorithm, we also see that once a Clough- 
Tocher triangle is added to A, at least two nonsingular even-degree interior vertices 
(in A) are changed to odd-degree vertices (in A). For any v c VI, let degA(v) and 
deg, (v) denote the degrees of the vertex v in A and A, respectively. If deg, (v)- 
deg,,(v) = 0, then either v C VG or v has a neighbor in VG with odd degree, or 
else, v is connected to a vertex of a Clough-Tocher triangle. On the other hand, if 
deg, (v) - degA (v) - 0, then v is a vertex of a Clough-Tocher triangle. Observe 
that a vertex with odd degA (v) might be changed to a vertex with even degA (v). 
In this case, all the neighbors of v are neighboring vertices of a Clough-Tocher 
triangle. In general, any LCTR A of A has the following properties. 

Properties of A. Any nonsingular even-degree interior vertex u in A has at least 
a neighbor of good vertex in VG, or else, u is a neighbor of some vertex of a Clough- 
Tocher triangle. 

Let u- denote the number of singular vertices in A. Then it is well known from 
[11 that 

dim S4 3#VI + 4#Vb + 3N-#El + =3#V + 4#Vb + #E + of 

On the other hand, since A and A have the same number of singular and boundary 
vertices, we have 

(1) dim S4 (A) = 3#VI + 4#Vb + #E + o. 

In this paper, B-net representations of pp functions will play an important role 
in our discussion. For completeness, we give a very brief review of this topic ( more 
details can be found in [3]). Recall that for any positive integer k, a Bernstein-Bezier 
polynomial basis of degree k is given by 

BS,(x) = (IH)l, a = (a0i,al,ca2) E3, Hal := aO +al +a2 = k, 
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wher-e = (co, (1 , W) is the bar-ycentr-ic ordinate of x with r-espect to sorme triangle 
T =[u,v,w] an(1 

0C =o>)1 lfc2 all( (t f al !a2! 

The points 

XCOT = -(aOU + a1V + a2W), k, = 

are usually called domain points of the triangle T and the set of all (lorlain points 
on A will be (lenote(1 by X. For each function s E SO (A), let 

s(x) = bba, T(x), a B x E T E A. 

IcaI=k 

Then the rnap 

(2) bs E RX X 
XT bC.T, a Ct, Cac = k, TE A, 

is called the B-net representation of s. It is well known that to each tr-iangleT E A, 
the rnatrix 

(BO T (X3.T )) I =k. 131=k 

is invertible. Thus, the linear systerm 

I: CO,_B3,T(X-Y,T) { ,a A 

has a unique solution. 
Since this linear syster (lepen(1s only on the barycentric coordinates of XC.T,, the 

solution {IC,;3} is in(lependent of T. Let [ ] denote the point-evaluation functional, 
narmiely: 

[XCO.T] f f (XCZ T ) 

Then it is well known (see [4]) that the functionals 

LO'T = aCO, Y[X- T] c EE ZC | k, 

forrii a (lual basis of {BO.T, lal = k} in the sense of 

La.TB3T = aa, 3, lal = 101 = k. 

Furtherrnore, there is a positive constant Ck, (lepen(ling only on the (legree k, such 
that 

(3) L T sup ||L, Tf|I, = rrmax Ic,31 <? COk, 

for a E z4 ,alal = k. 
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From (3) and the fact that b,(x,,-,) = L.,-,s, we have the following. 

Lemma 1. If s E Sk(A) and b8 E Rx is the B-net representation of s, then 

llslloc < jjbsttKo < CkJ1s11o 5 

Now, let r = [u, v, w] and T = [u, v, w]j be two triangles in A with common edge 
e = [u, v]. Also let (C1, C2, C3) denote the barycentric coordinates of wi9 with respect 
to r. Then it is well known that the C1-smoothness conditions across the edge e 
for s E S4 (A) are determined by the relation 

(4) bc+e3,i= Cib?+ei,r + C2bae+e2, + C3bce+e3,TO 

where a = (a,, a, O) E E+ with a,, + a, = 3, el, e2, and e3 denote the standard 
unit vectors in R3, and b,, = b,(xa,,) is the B-net representation of s as defined 
in (2). 

3. A STAR-VERTEX SPLINE BASIS 

A subset P of domain points will be called a determining set of the space Sk(A) 
if and only if every s E S(/(A) is identically zero whenever its B-net representation 
bs vanishes on P. Such a determining set P is called a minimally determrining set 
if there is no determining set with fewer elements. Clearly, P is a determining set 
for Sk(A) if and only if the linear map s F-+ b81-, defined on Sk(A), is one-one; also 
P is a minimally determining set for Sk(A) if and only if this one-one linear map 
is also onto. To construct a local basis of the space S1 (A) for a LCTR A of A, we 
choose a minimally determining set P for S41(A) so that the B-net ordinate b(x), 
x E X \ 2, is dependent only on a very small subset of the B-net ordinates that 
are close to x. This has several important practical advantages: first, the cost of 
point-evaluation of the interpolant would be less dependent on the amount of data; 
second, a local change in the data only alters the interpolant locally; and finally, a 
locally supported basis derived from such a determining set would ensure that the 
space SI(A) has the optimal (fifth) approximation order. To find a determining 
set for S41 (A) with these properties, we introduce the following notation. 

For any triangle T = [u, v, w] E A with a given vertex u E V, we define, following 
[1], the set 

Xn ={x"-r: aeu = k - n} 

of domain points on T E A associated with the vertex u. In addition, for any u C V, 
we will call 

R n= UXn ={xc,-r: u = k-n, T E A} 
ieu 

the nth ring around u. The corresponding nth disk around u is defined by 

n 
DJ = U R= { xc,,: axu > k-n, T E A}. 

j=o 

Next, we introduce the notation of some subsets Y7n, u E V, as follows. 
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FIGURE 2. The points in Y12, n =0,1, 2, where u is a singular vertex 

(A) Let n = 0, 1. For each u E V, we choose a triangle T- = [u, v, w] attached to u 
and define 

(5) fun := Xu,-. 

(B) Let n = 2. 

(i) If u E Vb or if u is a singular vertex (see Figure 2), then we define 

(6) u := X2, U R n(Ue) 
e E E,,, 

where EU denotes the collection of all edges with common vertex u E V. 
(ii) Let u be a nonsingular even-degree vertex in VI (see Figure 3 on next page). 

According to the LCTR Algorithm, if u E V \ VG, then we can choose an edge 
ec = [u, v] E EU, which is nondegenerate with respect to u and is not an edge of 7 

as already selected in (5) (where T in (5) is adjusted if necessary) such that either 
V E VG or else, v is a vertex of a Clough-Tocher triangle. If there is a Clough-Tocher 
triangle Tu attached to u, then we always select ec = [u, u-], where u- is the interior 
vertex in the Clough-Tocher triangle Tu. Let E denote the collection of all such 
edges eC. Then we may define 

(7) RU,T (R ( u e)). 
ezAe,eE Eu 
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< ~~~~~~ X - - - * 

I*\/ 

0~ ~~~~~~~~~~~~ %: 

FIGURE 3. - The pints in YUn, n = 0,12,wee V 

(iii) If u E VI is an odd-degree vertex (see Figure 4), then we define 

(8) YU-R2O(U e). 
eCEE 

Finally, we set 

2 

1.P: = U ynu U 

n=O 

Let xC denote the center of the edge ec and define 

(10) P :=(U p2)\( U XC). 
uEV- c GEc 

Then we will see that 2 is a minimally determining set for the space S4((A), as 
follows. 

Theorem 1. For each b: rP F-* R , there exists a unique g E S4(A) such that the 
B-net representation bg of g satisfies 

bg i' = b. 

To prove Theorem 1, we need the following lemma. 

Lemma 2. For any u E V, the set P2 defined in (9) uniquely determines those 
functions in S41(A-) that have identical B-net ordinates on D'. 
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FIUE4 h onsi unn = 0,1, 2, with odd values of deg(u) 

Vm 

FIGURE 4. The points in Y27,, rn 0, 1,2, with odd values of deg(u) 

Proof. The proof of this lemma depends on Lemmas 2 - 4 and 6 in [1]. In fact, it 
suffices to show that b, vanishes on D2 whenever it vanishes on 2. 

For a boundary vertex u c Vb = Vb, this follows by the smoothness condition 
directly . 

Now, suppose that u is either a singular vertex (cf. Figure 2) or a nonsingular 
even-degree interior vertex (cf. Figure 3). Since p 2 contains three noncolinear 
points in D', b, must be zero on D' according to the C1-smoothness condition. 
It is easy to see that by the smoothness condition and the fact that ec is non- 
degenerate with respect to u, the remaining B-net ordinates in R2 are also zero. 

For an odd-degree vertex u (cf. Figure 4), it follows by the smoothness condition 
that the zero b,-values on P2 force all of the b,-values on D' to be zero. By 
writing out explicitly the coefficients in terms of the ratios of (signed) areas in the 
smoothness condition (4), it is easy to verify that the determinant of the coefficient 
matrix for the remaining unknowns is 2. Therefore, all the other B-net ordinates 
on D2 must also be zero. This completes the proof of the lemma. D 

Proof of Theorem 1. It is easy to see that there are (3 + deg(u)) points in 2 for 
a nonsingular interior vertex u, and (4 + deg(v)) points in P2 for a singular or 
boundary vertex v. Furthermore, it follows from (1) that 

#7' = 3#Vo + 4#Vb + #E + o- = dim S4(). 

Thus, if we can prove that P is a determining set for S4 (A), then P is also a 
minimally determining set of S4, (A). For this purpose, let us arrange the vertices 
in V in an appropriate order, and extend the B-net ordinates bg from b as follows: 
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, . ~b3 u , * 

FIGURE 5. The determining set (points *) of D2 U D~ 

(i) For every nonsingular even-degree interior vertex u, which is not a vertex of 
any Clough-Tocher triangle, according to our choice of ec in (7), the edge ec is 
nondegenerate with respect to u. By Lemma 2, we can determine the bg-values on 
all the domain points in D2 from the given values on P. 

(ii) Each remaining nonsingular even-degree interior vertex u is also a vertex of 
some Clough-Tocher triangle Tu. According to our choice of ec in (7), the edge ec 
is an interior edge of Tu and so it is nondegenerate with respect to u. Note that all 
the bR-values on U eEU2 n e are either given, or else, are determined in (i). Thus, 
by Lemma 2, the b9-values on all the domain points in D2 are determined. 

(iii) The remaining vertices are now in VG, which contains all the vertices in 

V\V. 
From (i), (ii), and the choice of Y2, we see that all the middle points of the 

edges have been uniquely determined. Figure 5 illustrates the case of the centroid 
U^ C VG of a Clough-Tocher triangle, which is connected to an even-degree vertex 
u. Therefore, by Lemma 2, it is clear that the bg-values are uniquely determined 
on all the domain points in Du. 

We see that bg satisfies a C1-smoothness condition on D2. Since (#P) = 

dimSI(A), it is also clear that such an extension is unique. This completes the 
proof of the theorem. D 

Theorem 1 implies that P is a minimally determining set of S(/(A). Let 

d := dim S (/\), 

and write 

P{= {Xl, ,Xd} CX. 
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Also, let {bi,.. ., bd} c RX be the "dual" of X, defined by the following: (i) bi (xj) = 
5ij, i,j = 1, , d, and (ii) for each x c X\P, bi(x) is uniquely determined by the 
smoothness condition (4) and the procedure described in the proof of Theorem 1. 
Let si E S4(A), with B-net representation bi, i = 1,... Id. Then {s1,... ,sd} is a 
basis of S4(A). 

We denote by St(u) the closed star of the vertex u in a triangulation. A [5, p.135]; 
i.e., the cell formed by all the triangles in A with u as the common vertex, and 
call it the 1-star St1 (u) of u. For m > 1, the m-star Sttm (u) of u is then defined to 
be the union of all the triangles in A which have at least one common vertex with 
the (m - 1)-star Stml (u). Similar to the definition of vertex splines, a spline is 
called a m-star vertex spline if its support is no larger than St (u) for some vertex 
u E A. We have the following result. 

Theorem 2. The basis {SI, ... , Sd } of S4 (A) defined as above is a locally supported 
basis. Furthermore, for each i = 1, . . . , d, there is some ui E V such that 

supp(si) c St3 (ui). 

Proof. Following the procedure described in the proof of Theorem 1, we can see 
that the bi-values of si are uniquely determined on X. We divide our discussion 
into three cases. 

(i) For xi E P n D , it is clear that supp(si) c St(u), since bi = 0 outside of 
St (u) . 

Now we assume xi c P n R2. 
(ii) Suppose xi E Du and u C VG. If xi is not the midpoint of an edge, then 

supp(si) c St(u). On the other hand, if xi is the midpoint of some edge [u, v] and 
v is an even-degree nonsingular interior vertex, and if an edge [v, w] is chosen to be 
ec as in (7) for the vertex v, then 

supp(si) c St(u) USt(v) USt(w) c St2() 

Otherwise, we have v C VG and 

supp (si) c St (u) USt (v) c St 2(u). 

(iii) Now, suppose u is an even-degree nonsingular interior vertex. If xi is not 
the midpoint of an edge in E, then supp(si) c St(u). If xi is the midpoint of some 
edge [u, u'] where u' E VG, then similar to (ii), there is an edge [u, v] chosen to be 
ec as in (7) for the vertex u, and 

supp(si) c St(u) U St(v) U St(u') c St2(u). 

Otherwise, by the choice of the determining set in P, there are edges [u, v] and 
[u', v'] defined to be ec as in (7) for the vertices u and u', respectively, such that v 

and v' are vertices in VG and 

supp(s.) c St(u) U St(u') U St(v) USt(v') c St3(u). 
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In summary, for any xi C XP, its corresponding si E S4 (A) has support sUpp(si) c 

St (u) for some vertex u E V. This completes the proof of the theorem. D 

From the proof of Theorem 2, we can actually see that S4 (A) has basis functions 
whose support is no larger than 

supp(si) c St(u) U St(u') U St(v) U St(v') 

for four consecutive vertices v, u, u' and v'. 

4. INTERPOLATION SCHEME AND ITS APPROXIMATION POWER 

In this section, we construct an explicit interpolation scheme to prove that the 
space S1 (A) achieves its optimal approximation order. Since the minimally deter- 
mining set P contains the domain points in X , n = 0,1 for each u c V and some 
triangle T attached to u, the interpolation scheme can be chosen to interpolate the 
function values as well as gradient values of a given f E C1(Q) at each sample 
point, as follows. 

Interpolation Scheme. 

Step 1. For each vertex u c V, let T = [u, v, w] be the corresponding triangle 
associated with Yu, n = 0,1, and Pu the Hermite polynomial that interpolates f 
at the vertex u on T; that is, 

{ Pu (u) = f (u), 
lDipu (u) =Di f(u), i= 1,2, 

where D1 and D2 denote the directional derivatives along the directions e1 v - u 
and e2 = w- u. Consider the B-net representation 

Pu E bpu(Xcy<r)Bacyr, 

Ic*l=k 

and set 

bg-(x)= bpu (x), xYu, n=0,1. 

Step 2. Choosing bg (x) = bpu (x), x C Yu2, in the order as described in the proof 
of Theorem 1, we determine the remaining bg-values on X \ 7P by applying the 
smoothness condition (4). 

Denote by T the linear operator obtained by the Interpolation Scheme: 

(11) T: f H-g, f E C1(A). 

It is clear from the construction and the choice of the determining set 7) that T is 
well defined. 

Let a denote the smallest angle among all the triangles in A, and let Ca denote 
a constant depending only on a, which may be different from situation to situation. 
For a triangle T E A with vertex u, v and w, we define a neighborhood of T as 

(12) we haSv the Sfolow Sin 

Then we have the following. 
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Lemma 3. The linear operator T defined in (11) satisfies 
(i) Tp = p for any polynomial p C 7F4, and 

(ii) ||Tf IT|l|oc < CallfIQ(T)f11 c. 

Proof. The first part of the lemma is obvious by the construction of the operator 
T. The supports of the basis functions {s8}il= of S4j (A) satisfy 

supp(si) C Q(r) for some TE CA, 

from the proof of Theorem 2. Let g(x) = Tf(x) Z=cisi(x), x C 1-, T A. 
According to Theorem 2, we have si(x) + 0 only if the corresponding domain 
point xi lies in Q(T). Therefore, the number of nonzero values of the ci's is 
bounded from above by Ca. Moreover, by Lemma 1 and Theorem 2, we have 
IsiII < CamaxycQ(T-)nI bsi(y)I = Ca From the definition of si, we also have 

ci = bg(xi), xi C P. 

Thus, it follows from Lemma 1 that 

ITf (x) I < Ca max |bg(X)| <? CaII9(X)IQ(i-)II < Callf r)Hoc,X E T C A. 
xEQ(-T)nf 

The last inequality holds because g I is a Hermite interpolation polynomial on each 
triangle r E A, and that from the B-net representation the operator (on T) so 
defined is bounded by a constant independent of the shape of r. This completes 
the proof of the lemma. Ii 

We are now in a position to prove the following main result of this paper. 

Theorem 3. The linear operator T defined in (11) has the optimal (fifth) order 
of approximation; that is, 

jTf- fi ? < Ca II f (5)II 1j1A5 f E C5(A) 

Consequently, 

dist(f, S4(A)) ? Oajjf(5)jj jj5, ) C 

where IAI is the meshsize of A. 

Proof. Fix any r E A and any x E T. Let f C C5 (A) and consider a polynomial 
p E 714 that interpolates f at point x, namely, 

(13) p(x) = f(x), 

and 

(14) |f(y) -p(y)I < Cllf (5)i / y C Q( ) 

where C is an absolute constant. By appying (13), Lemma 3, and (14) consecutively, 
it follows that 

If(x) - Tf(x)I = IT(f -p)(x)l < Call(f -P)IQ(T)ii ? Ca'lf5 A5 
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Since this inequality holds for any x E A, we have 

IT- < Ca Ilf (5) 1 1t 1'15. JITf -fi ?1 Caif5 A 

This completes the proof of the theorem. O 

If the original triangulation A satisfies the condition that for each vertex v E VI 
deg(v) is an odd number, or v is a singular vertex, then we see from the LCTR 
Algorithm that A = A. Also, we have A = A for the four-direction mesh ('). In 
both cases, we can choose the minimally determining set P to contain midpoints 
of all the edges in E. 

Corollary 1. (a) If a triangulation A contains only odd-degree interior vertices 
or singular vertices, then there is a Hermite interpolation scheme to achieve the 
optimal approximation order of the space S4 (A). 

(b) If A is a four-direction mesh A('), then the space S1 (A(2)) has fifth order 
of approximation, and there is a Hermite interpolation scheme that achieves this 
optimal approximation order. 

CENTER FOR APPROXIMATION THEORY, TEXAS A&M UNIVERSITY, COLLEGE STATION, TEXAS 
77843 

E-mail address: cchuiItamu. edu 

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF TEXAS AT AUSTIN, AUSTIN, TEXAS 78712 
E-mail address: dhongImath.utexas. edu 

BIBLIOGRAPHY 

1. P. Alfeld, B. Piper, and L. L. Schumaker, An explicit basis for C' quartic bivariate splines, 
SIAM J. Numer. Anal. 24 (1987), 891-911. MR 88i:41014 

2. C. de Boor and R. Q. Jia, A sharp upper bound on the approximation order of smooth bivariate 
pp functions, J. Approx. Theory 72 (1993), 24-33. MR 94e:41012 

3. C. K. Chui, Multivariate splines, CBMS Series in Applied Mathematics, vol. 54, SIAM, Phila- 
delphia, PA, 1988. MR 92e:41009 

4. Z.R. Guo and R.Q. Jia, A B-net approach to study of multivariate splines, Adv. Math. 19 
(1990), 189-198. MR 91c:41024 

5. J.J. Rotman, An introduction to algebraic topology,Graduate Texts in Math., vol. 119,Springer- 
Verlag, New York, 1988. MR 90e:55001 


