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ROUNDING ERRORS IN SOLVING BLOCK HESSENBERG 
SYSTEMS 

URS VON MATT AND G. W. STEWART 

ABSTRACT. A rounding error analysis is presented for a divide-and-conquer 
algorithm to solve linear systems with block Hessenberg matrices. Conditions 
are derived under which the algorithm computes a stable solution. The algo- 
rithm is shown to be stable for block diagonally dominant matrices and for 
M-matrices. 

1. INTRODUCTION 

In [91 a recursive algorithm was proposed for the solution of the linear system 

(1) AX = B, 

where A is a block Hessenberg matrix. Its development was motivated by the 
attempt to find the steady-state of certain Markov chains. In this paper we will 
present an error analysis to explain the accurate results obtained by the algorithm. 

Our analysis is a rounding error analysis in the style of Wilkinson [13, 14]. We 
will see that the computed matrix X can be regarded as the exact solution of a 
nearby linear system. In particular we will show that the computed X satisfies 

AX = B + /B. 

We call the matrix X a stable solution if 

/IIBI1 < rI1AII IIXII, 

where r1 denotes a small multiple of the unit roundoff e. This is an example of 
residual stability. Note that residual stability is the same as backward stability if 
the right hand side B is a vector (cf. [5]). 

A stable solution is not to be confused with an accurate solution. The accuracy 
of X is usually limited by the condition number i'(A) := IJAII 1 11. The relative 
error of X can be bounded by 

IX- A-'BIJ 7r1K(A) 
IIA-IBIJ 1 - ?r1(A)' 

provided that rp'(A) < 1. Thus, we can only compute an accurate solution X if we 
use a stable algorithm to solve a well-conditioned problem. 
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Our paper is organized as follows. In ?2 we give a concise description of the 
algorithm to be analyzed. This algorithm consists of a few basic building blocks for 
which we will cite error bounds in ?3. Since our algorithm calls itself recursively we 
have to make an assumption about the structure of the errors after each invocation. 
This is the purpose of ?4, where we also analyze the local errors in each stage. We 
combine these local errors to give a global error bound in ?5. The structure of 
this global error bound reveals a potential instability of our algorithm. This is 
discussed in ?6. In ??7 and 8 we identify two classes of matrices for which our 
algorithm computes a stable solution. We conclude our presentation with some 
numerical examples in ?9. 

Throughout our analysis we will use the 2-norm, except where otherwise noted. 
Its main advantage is that the norm of an orthogonal matrix is one. 

2. ALGORITHM 

We assume that the matrix A in (1) has the following block Hessenberg structure: 

All A12 .. Ain 

A21 

A ~ ~ ~ A. .. . ~An- 1,n 
An,n-1 Ann 

The diagonal blocks A2i are assumed to be square nonsingular matrices of order pi. 
The total size of A is given by 

n 
N := p. 

i=1 

If n > 1 we can select a tear index k with 1 < k < n and partition the matrix A 
as follows: 

A Anw Anel 
- Ase J 

The submatrix Anw contains the first k diagonal blocks of A, and Ase contains the 
last n - k diagonal blocks of A. Note that Ak+l,k is the only nonzero block in ASW 
This partitioning is also shown as Figure 1 (next page). The dimensions nnw and nse 
are given by 

k 

nnw ZPi, 
i=1 

n 
nse E Pi. 

i=k+1 

Let E be the last nse columns of the N-by-N identity matrix, and let F consist 
of the first nnw columns of the N-by-N identity matrix. Then we can also define 

A:= [Anw Ane] = A-EAswFT 
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nnw nse 

nnw Anw Ane 

i i Pk+ i 

nse Asw Ase 

FIGURE 1. Structure of A 

In order to solve the linear system (1) for X we first compute the solution Y oI 

AY = B. 

This step requires the solution of linear systems with the matrices Ase and A, 
which can be solved recursively by the same divide-and-conquer algorithm. After- 
wards we obtain X f1rom Y by means of an updating formula. The well-known 
Sherman-Morrison-Woodbury formula (cf. [4, p. 51]) would give us 

A-' (A + EAswFT)-1 = A- -A-1E(I + AswFTA-lE)-lAswFTA- 
= A- -A- EAsw(I + FTA-lEAsw)>lFTA-l. 

Unfortunately, this formula does not take advantage of the many zeros in ASW, 
requiring the solution of a large intermediate linear system. We can reduce the size 
of this linear system with the help of the URV-decomposition (cf. [10]) 

ASW =-URVT. 

Let r denote the rank of ASW as it is determined by the URV-decomposition. Then U 
will be an orthogonal nse-by-r matrix with Pk+, nonzero rows. Also R is a square 
r-by-r matrix, and V is an orthogonal nmw-by-r matrix with Pk nonzero rows. Now 
we can express the inverse of A by 

A- = A- - A-1EU(I + RVTFTA-lEU)>-RVTFTAl1. 

In order to -avoid the multiple evaluation of the same expressions, we introduce 
the following intermediate quantities: 

G A-1EU 
S ft VTFTC, 

T := I+ S, 

f := T-1RI 
P:= GR. 
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ALGORITHM 1. Solution of block Hessenberg systems 

function X = solve(A, B) 
if not at the bottom then 

Compute the orthogonal URV-decomposition A5, = URVT. 
Gs := solve(Ase, U) 

Gn := solve(A,, -AneGs) 
S:= RVTG, 

T:I + S 
Solve TR = R for R by Gaussian elimination. 

P := GR 
Ys := solve(Ase, Bs ) 

Yn := solve(Anw, Bn - AneYs) 
X= Y - PVTYn 

else 
Solve AX = B for X by Gaussian elimination. 

end 

Note that these matrices are independent of the right-hand side B. The overall 
recursive procedure to solve the linear system (1) is also presented as Algorithm 1. 

In [9] this algorithm is refined further by introducing the auxiliary procedures 
"patchgen" and "topsolve". These refinements are critical for the efficiency of the 
algorithm, but they are not necessary for the purpose of this error analysis. Further 
implementation details may be found in [11]. 

The solution of the linear system (1) can also be described by the tear tree of 
Figure 2. Each node represents a linear system to be solved. The node on the 
top level (k = 3) stands for the system (1), whereas the leaf nodes are the linear 
systems that are not divided any further but solved by Gaussian elimination. The 
number n of diagonal blocks in the matrix A, which is equal to the number of leaf 
nodes, and the height h of the tear tree are connected by the inequalities 

n < 2h, 

h > 10g2 n. 

These inequalities become equalities if the tear tree of Figure 2 is a complete 
binary tree. 

k 2 .. .. . . .. . . . . . 

h =3 

k O ... ... ... I . G 2. Tear tree 

FIGURE 2. Tear tree 
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3. BASIC OPEItATIONS 

Algorithm 1 is composed of a few basic building blocks. These are the addition 
and multiplication of matrices, the calculation of a URV-decomposition, and the 
solution of linear systems by Gaussian elimination. We will now state bounds for 
the errors associated with these operations. 

In the case of the addition of two matrices, we have 

fl(A + B) = A + B + E, 

where 

IBEJI < ? IIA + Bll. 

The quantity 7r, is on the order of the unit roundoff E and slowly increases with the 
size of the matrices A and B. See also [14, pp. 114-115 and p. 57]. 

If we multiply two matrices in floating point, we have 

fl(AB) = AB + E, 

where 

IJEAI < n211AII IIBII. 
Again, 72 is a small multiple of the unit roundoff and slowly grows with the size of 
the matrices A and B (cf. [14, pp. 115-116]). 

The size of the error in computing an orthogonal URV-decomposition depends 
on the specifics of the decomposition. One may choose a QR-decomposition [4, 
Chapter 5], a rank-revealing decomposition [2, 10], or the singular value decom- 
position [4, ?8.3]. All of these factorizations have in common that they can be 
expressed as a sequence of orthogonal transformations applied from the left and 
the right to the initial matrix. The orthogonal transformations are also accumu- 
lated to give the matrices U and V. Wilkinson shows in [14, pp. 160-161] that 
there are orthogonal matrices Uo and Vo and an r13 such that 

(2) IIR-UAVo 23TA, 

(3) IJU-UOI <?73, 

(4) IIV - VO0I < ?r73 

The quantity r3 is on the order of the unit roundoff and slowly grows with the size 
of the matrix A and the number of the orthogonal transformations applied to A. 
From (3) and (4) it immediately follows that 

UJI < 1 + 773, 

IVII < 1 + 1773. 

We can also show, by increasing r3 slightly as necessary, that 

URVT -All < 473 IIAI, 

I(UTU)-lUTII < 1 + 3773 

IIV(VTV) 11 < 1 + 373. 

We assume that small linear systems are solved by Gaussian elimination. In [13, 
p. 108] and [14, p. 252] Wilkinson shows that this process can be described by the 
equation 

(5) Ax = b + Ab, 
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where 

(6) I \bll < ?r77 AII llxll. 

The value of r4 is on the order of the unit roundoff and slowly increases with the 
size of A. It also depends on the pivoting strategy used. See [6] for a more recent 
survey. 

Note that the bound (6) is only applicable if the right-hand side of (5) is a vector. 
If we solve several linear systems with the same matrix A we get 

(7) AX=B+AB, 

where 

(8) 4R < rA X, 

and r denotes the number of columns in the matrix B. 
Let rmax be the maximum number of right-hand sides in a linear system that is 

solved by Gaussian elimination in Algorithm 1. If we define 

T4 T= T4frmax, 

then we can always bound the residual AB in (7) by 

IIABI? _< X411AII .XII. 

Thanks to this convention, our error bounds will become somewhat simpler. 

4. ANALYSIS OF ONE STAGE 

In the following we will give expressions for the rounding errors incurred at one 
stage of Algorithm 1. We assume that we are not at the bottom of the tear tree, 
and we use the assumptions of ?3 to bound the size of the rounding errors. 

In what follows the matrix A denotes the system matrix of an arbitrary interior 
node of the tear tree. In an attempt to keep the notation simple, we do not 
introduce an index to indicate the corresponding node. We also assume that the 
four submatrices Anw, Ane, ASW, and Ase are predefined by the tearing strategy. 

We make the inductive assumption that the solution X computed at level k 
satisfies 

(9) AX=B+AB, 

where the residual AB can be expressed by 

(10) AB = ALx + AMxX. 

We use the index X for the matrices ALX and AMX to indicate that they depend 
on the solution X. 

We assume that at level k we always have 

(11) IIALxll < ?k JID-1XII, 
(12) IIAMxDll < (k, 

for all matrices X. The quantity D denotes a nonsingular block diagonal matrix, 
which is partitioned commensurably with A. In particular, we always have Dne = 0 

and DSW = 0 for all the nodes in the tear tree. The matrix D will give us additional 
flexibility in bounding the norm of the residual AB. We will discuss this issue in 
more detail in ??7-9. 
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Since we solve the systems at the bottom level by Gaussian elimination, we define 

(o T: 4 I4|AII JIDII, 

(o :=0, 

The purpose of the next sections will be to compute (k and (k if (k-1 and (k-I are 
known. 

Throughout our analysis we will assume that the rounding errors remain small 
compared to the norm of the computed quantities. This means that the computed 
and the exact quantities will agree to at least a few digits. We will use a factor 
of 1.01 in (20,23,25,26,29,30,36,40,49,50,52,61,62) to simplify our bounds. 

4.1. Calculation of the URV-decomposition. The result of the initial URV- 
decomposition of Algorithm 1 can be described by 

(13) ASW = URVT + AAsw 

where 

(14) I/AAswll < 4r73 1Asw ll 

The matrices U and V are nearly orthogonal, and they satisfy 

(15) I|U|| <1+ 13, ll(UTU)>lUTII < I+ 3TI3, 

(16) ||VII <1+ 73, IIV(VTV) || < 1 + 3r73. 

The expression RVT, which we will also use later on, can be written as 

(17) RVT (UTU)-lUT(A - AAsw). 

Therefore, we have the bound 

(18) IIRVT ?1R < (I + 3T3) (1+ 4TI3) 1Ils 
Because of 

R - (UTU)IUT(ASW -/ASW)V(VTV)-1 
we can also bound the norm of R by 

(19) IIRII < (1 + 3rT3)2(1 + 4rT3) IAswll. 

4.2. Calculation of G. The calculation of the matrix G proceeds in three steps 
that can be described by the equations 

AseGs = U + AGs, 
Un = ~-AneGs + AUn 

AnwGn = Un + A\Gn 

The error matrix A Un is bounded by 

(20) IJAUnll _< 1721 Anell CIGsll < 1.0172 IlAnell IIA11 

The residuals AGS and AGn have the expansion 

AGS = ALGS+ AMGSGS, 
AGn = A -LGn +AMGnGn 

We can also-write these equations in matrix terms as 

(21) AG = EU + AG, 
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where 

(22) AG AGn = ALGS ] + [ 
G 

cG 
[ AGs? n [ALGc +ALn AMGs] C 

Since the matrix G can be written as 

G= A-1(EU + AG), 

we also have 

(23) j G(( < 1.01 IA-111. 

4.3. Calculation of S. We can express the matrix S by 

(24) S = RVTGn + AS, 

where 

hJASII < (2r2 + 72) lRhl RIVJ II hlGn l. 

This bound applies regardless of the sequence in which the two multiplications are 
performed. In view of (16,19,23) we can also bound h/ASHI by 

(25) IlASII < 1.01(272 2 + l3)A(I + 313f + 4l3)11AswIII IA- 

< 2 1.o12n2 hIIAswII IIA-1f. 

By means of the equations (13,21,24) we can derive the following more explicit 
expression for S: 

S = (UTU)-lUT(A wFTA lEU- AASWFTG + AWFTA-IAG) + AS. 

Obviously, the norm of S can be bounded by 

(26) hISHI < 1.011HAswFTA1. 

4.4. Calculation of T. The matrix T satisfies the equation 

(27) T = I +S+ AT, 

where 

lIATH1 < 7 III + Sll. 

By means of some straightforward manipulations, using (13,21,24), we can see that 

(28) 

EU(I + S) = AA-1EU - EAAsWFTG + EASWFTA l-AG + EUAS. 

Consequently, we can express I + S as 

I + S = (/TL)-lUTET(AA-lEU-EEAASWFTG + EAsWFTA-1\AG) + AS, 

and T is given by 

T = (UTU)lUTET(AA-lEU - EAASWFTG + EAswFTAlAG) + AS + AT. 

If \ASW, AG, and AS are sufficiently small, we have 

(29) IlATIH < 1.l077lAA-11H. 

Similarly, we also have 

(30) I1TIH < 1.0111AA-111. 
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4.5. Calculation of f. If we solve the linear system for Rf by Gaussian elimination, 
we get 

(31) Tt= R+ Af?, 

where 

(32) IlARfl l r<4llTfl lIl. 

In order to bound fl ARIl differently, we need an alternative expression for f. It is 
useful to consider the quantity I - GRVTFT first. By using (13,21,24,27,31) we 
have 

(33) 
A(I - GRVTFT) A + EAASWFT(I -GRVTFT) 

- AGRVTFT + EU((AS + AT)R - AR) VT FT 

which is equivalent to 

(34) 
I - GRV F -A'A + A-1EAAwFT(I - GRVTFT) 

- A AGRVTF T + A EU((AS + AT)R - AR) VT FT 

Consequently, we can represent R as 

fR = (UTU)-IUTET (A - AA-'A)FV(VTV)l 

-(UTTU)-IUTET (AA-1EAA,wFT (I - GRVTFT)FV(VTV)-l 

+ EASwFTA-lAGR + AA-1EU((AS + AT)R - AR)). 

Note that we can also write A-AA-1A as 

(35) A - AA-1A = EASwFT A-A = AA-'EASwFT. 

If we assume the rounding errors to be bounded we can show that 

(36) IRIl < i.Oi IIA - AA-'Al. 

By combining this result with (30,32) we can bound IIAfRHI by 

(37) fl/Rfl < 1.012I}4flAA-l 11 IIA-AAAlA. 

4.6. Calculation of P. The calculation of P can be described by the equation 

(38) P = GR + AP, 

where 

IlAPfl ?< n2flGII fll. 

By using (23,36) we can bound IIlAPII by 

(39) flAPHI < 1.012i2lApl <A-AAA1l01 

Because of (34) the following alternative expression for P applies: 

P 'EASWV(VTV)-1 - AEASWFT (I - GRVTFT)FV(VTV)< 

+ A-1AGR - A-1EU((AS + AT)R - AR) + AP. 



124 URS VON MATT AND G. W. STEWART 

Provided that the rounding errors remain bounded we certainly have 

(40) IIPII < 1.01 jA-1EASW1l 

4.7. Calculation of Y. The matrix Y is computed in three steps as follows: 

(41) AseYs=Bs+ AYs, 

(42) Bn = Bn-AneYs + ABn, 

-(43) Anwyn = Bn + Ayn- 

The error in computing Bn can be bounded by 

\ABnll <?7lllBn-Aneysll + (I +mql)r12 IAnell Ilysll 

<(4) <lBn1 B + (il + 2 + il2)|IAnell llYsll 

On the other hand, we can assume the following expressions for the residuals AYs 
and AYn: 

(45) AYs = ALyS + AMYSYs, 

(46) \Yn = ALyn + AMy Y 

The equations (41,42,43,45,46) can also be written in matrix terms as 

(47) AY = B + AY, 

where 

AY [Ayn + ABn1 AzLyn + ABn1 A y 
(48) AY [ Ys A L = Ly+ j + [ Y MyY. 

It will turn out to be useful to eliminate Bn from the right-hand side of (44). 
Observe that 

(49) ?IBnll < ?IBI < flAfl IIYtI + IlAYII < 1.011AI4 fIYly. 

Consequently, we can also bound IIABnll by 

(50) IIABnll < (2.0171? +72 +?172) jAll II YII < 1.01(217 +172) jjAl Y 

4.8. Calculation of X. The computed value of X satisfies 

(51) X=Y-PV Yn +AX, 

where 

||/\X|| ?1791||Y-PVTYnll + (1 +?71)(2 +? 2)12jjPjj |V IIYlnll- 

This bound can be processed further by using (16,40), and we get 

IIAXI < ('1?1.01(1?+3)('1l+(1+17l)(2?+ 2)12) IA-1EAswii) IIYI. 

A simpler bound is given by 

(52) IlAXII < (171 + 1.012(171 + 2172)|A-1EAswjj)jjYjj. 
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5. RESIDUAL ERROR 

We are now ready to give an expression for the residual AB in (9). By using the 
equations (33,38,47,51), we get 

AB =jEAASwFT (I - GRVTFT) - AGRVTFT 

(53) + EU((AS + AT)R - AR) VTFT - AAPVTFT)Y 

+ AY + AAX. 

The value of AB can be processed further. By combining (38) and (51) we get 

(54) (I - GRVTFT)Y = X + APVTFTY _ AX. 

If we use (9,13,21,34,35,47,53,54) we can also derive the following alternative ex- 
pression for RVTFTY: 

V FT Y = RVT FT X - ((AS + AT)R -AR)V FT Y 

+ RVT FTApVT FTy - RVTFTAX. 

Because of (22,48,54,55) we are led to the following expression for AB: 

(56) 
AB EAASwFTX 

ELGn +AUn RVTFTX [AMGn GRVTFTX 

ALGs JRV AMGsJ 

+ EU(AS + AT)RVTFTX -EUARVTFTY - AAPVTFTY 

+ E L +ABn + [AMyn 1 Y + AAX + 0(E2) ALy~ AMy YJ 

A key expression in (56) is GRVTFT. With the help of (13,21) we can transform 
this matrix into 

GRVTFT A-1EAswFT - A-1EAAswFT + A-lAGRVTFT 

Similarly, we use (9,47) to write Y as 

Y-A-1AX- A-'(AB - AY) 

(57) D(D-A-AD)D-X- A-1(AB - AY). 

Now it is straightforward to write the residual AB as 

AB = ALX + AMXX, 
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where 

(58) AiLx - [AL1 + n] 
A 

+ A\X + 0(E2), 

[ALG IAMx = EAAswFT -+ n RVTFT 

- AMG Ac. A1EAswF T 
(59) [ 

AMGs] 
S 

+ EU(AS + AT)RVTFT -EUARVTFTA1A 

AApVTFT A-'A + [LMYn M ] A-1A. 

Let us give bounds for the norms of ALx and AMXD. From (50,52,57) we have 

IIALxll < 1.01 (2(k-l + 1.01(27ui +72) IIAII IIDII 

(60) + (q, + 1.012(D1 + 2q2)flA-1EAswfl) flAfl fIDf) 

* D-1A-1ADHj HID-1XHl. 

In order to bound 1I1AMxDIl, we need to multiply (59) by D from the right: 

LXMXD= EAASWFTD - [ AL+ An] RVTFTD 

-[AM~n A\M0Dse]DAEA FT 

+ EU(AS + AT)RVTFTD - EUARVTFTDDlA 1AD 

- AAsPVTFTDDlAAD 

+ [AMY~Dnw AMysDse] D 

Because of (17) we can write the expression RVT FT D also as 

RVT FTD = (UTU)-lUT(ASw - AASW)FTD. 

Consequently, its norm is certainly bounded by 

(61) IIRVTFTDII < 1.011lAswDnwfl. 

If we use (11,12,14,15,16,18,20,25,29,37,39,61) we can bound IHAMxDHl as follows: 

(62) 

11,AMxDHl < 4n73HlAswlH I|Dnw| + 1.01'(iil + 3q72)HlAswDnwll JAiH HA-11 
? 1.013(r72 + I4)flAI IlA-11 IA - AA-AlAl IlDnwll llD-1A-1ADl 

+ 1.012 v2AswDnw I ||A-1 ll(k-l 

+ (llD--1A-1EAswDnwll + llD-1A-1ADfl)(k_l. 

The inequalities (60) and (62) contain the quantities (k-j and (k-1 which are used 
to bound the errors at the previous level of the tear tree. Consequently, we can 
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use (60) and (62) to give recurrence relationships for (k and 4k. Let us define the 
quantities 

(63) f :=max L.O0V11D'-A-1ADII, 

(64) f? := max IjD-1A-1EASwDHjWjH + HID-1A-1ADII, 

(65) g := max 1.012 2lA,wDj,wvl IIA-11l, 

c:= max 1.01 (1.01(2i7l + 712)11AII JIDII 

(66) + (q, + 1.012(rql + 2q2) jA-1EAswjj)jjAjj JIDI) 
* D-1A-1ADHj, 

c? max4q3 llA,,|l D,,11| 
+ 1.014(771 + 312) jAswDriwjj IJAII IIA- 

+ 1.01 3(q2 + '4) jAl 1IA-1 IIA - AA-A 

* HLDID1, flD-1A-IADiI, 

where the maximum is to be taken over all the nodes in the tear tree. The se- 
quences {(k} and {(k} thus satisfy the following recurrence relationships: 

(o = q4jjAjj JIDII, 

(k = fk1+ Ce, k > 1 

?k = fQ(k-I + 9(k-1 + C?, k> 1. 

Their explicit solutions are given by1 

(68) 
fk- 1 

(k = (Off+ Ce - 1' 

(69) 

(t=(9A A~ + C? fx 

cI(f-1)f 1 f (" 
+ C9g (( -l ) (f(- 1 ) + (fA - l) (f - f1)) (f4 - l)(f - M)' 

These explicit expressions for (k and (k are only valid if fe + 1, f? + 1, and ff + f?. 
It would be possible to give similar expressions for these special cases, too. However 
these formulas would not give us more insight than (68) and (69). 

At the top level of the tear tree the residual AB is given by 

A\B = ALx + Ai\IxX, 

where 

IIALxll < (,111D-'Xjj, 

IIAM/IxDII < (h- 

Consequently, zIIB can be bounded by 

'We used MINaple [3] to derive this result. 
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(70) 1A B I ((h + 4h) ID1XII. 

The expression IID-1X is nothing else than the size of the solution X expressed 
in another norm. 

6. STABILITY CRITERION 

Let us now analyze the conditions under which Algorithm 1 computes a stable 
solution. We assume that all the matrices A, A, and D in the tear tree are nonsingu- 
lar and only moderately ill-conditioned. Without this assumption the quantities cf 
and c( could become arbitrarily large, like in the case of the matrices 

A c 1[0c] 

with e 0. 
If cf and c~ are only small multiples of &IIAII, the norm of the residual AB 

in (70) will be on the order of &IIAII JjD-1Xjj for f, 1 and f~ 1. This condition 
is equivalent to the requirement that there exists a nonsingular block diagonal 
matrix D, partitioned commensurably with A, such that 

(71) JjD-1A-1ADjj 1 

for all the matrices in the tear tree. If this stability criterion is met, Algorithm 1 is 
guaranteed to compute a stable solution provided that all the matrices A, A, and D 
in the tear tree are only moderately ill-conditioned. 

It should be noted that (71) is a sufficient but not a necessary stability condition. 
Since we use the quantities (k and 4k to bound [ALx and AMxDt at each level 
in the tear tree, these bounds may grow even if ALx and AMxD remain bounded. 
On the positive side, we get a manageable error analysis and a simple stability 
criterion. 

In the next two sections we will identify two classes of matrices for which the 
criterion (71) is always satisfied. 

7. BLOCK DIAGONALLY DOMINANT MATRICES 

An important class of matrices, for which the condition (71) is always satisfied, 
is given by the set of nonsingular block diagonally dominant matrices. In order to 
see this, we need the following theorem. 

Theorem 7.1. Let A = (Aij) be an m-by-n block matrix with m < n. Furthermore 
let A be nonsingular and block diagonally dominant, i.e., A has square nonsingular 
diagonal blocks and 

n 

IIA-Il loo E IlAij Iloo < 1, i = 1, . .. X m. 
j=1 
j7si 

We partition A into 
A= [Al A2], 

where A1 is a square m-by-m block matrix, and A2 is an mr-by-(nr-rm) block matrix. 
We also assume that A1 is nonsingular. Under these assumptions the inequality 

IIAA21loo ? 1 

applies. 
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Proof. Let y = A11A2x, where x = (xi) and y = (yi) are partitioned commensu- 
rably with A2 and A1, respectively. Let 11yi1j., = IIYII From Aly A2x we 
deduce that 

m n 

E Aiyj = E Aijxj-m3 
j=1 j=m+1 

Consequently we can write yi as 
n m 

Y =At1( E AijXj-m -E AijYj) 
j=m+1 j=1 

j:hi 

Hence, 
n- m 

Ilylloo = yjjHo 1 <? IA'1HoO 1 IIAij; 1HIXII + 1Ao H00IIA 11 AEAij100IIYIy , 
j=m+1 j=1 

j:hi 

or 
n 

flAi-7l l,o E flAiji11 

|Y|loo < E lKxll 
I1- IIA-Itl 1 E ||Aij 11o 

j=1 

j#i 

which yields IIYII < flxflo, in view of the block diagonal dominance. O 

In [7] the proof of this theorem for a point diagonally dominant matrix will 
appear as an exercise. 

As a straightforward application of Theorem 7.1 we consider the norm of A-1A 
when A is block diagonally dominant. It is easily verified that 

A1A- [I- An-7AneAJe1Asw 0] 

The two matrices [Anw Ane] and [Ase ASW] satisfy the assumptions of Theo- 
rem 7.1, and we have 

fIAn-Anefloo < 1, 

IIA1As < 1. 

It is now easy to see that 

lAkAAloo < 2. 

This bound is tight. It is attained, for instance, by the matrices 

If a matrix A is block diagonally dominant, then so are all its submatrices in 
the tear tree. Consequently, if we set D = I, the condition (71) is satisfied, and 
Algorithm 1 will compute a stable solution of the linear system (1), provided that 
all the matrices A and A in the tear tree are only moderately ill-conditioned. 
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8. M-MATRICES 

A nonsingular n-by-n matrix A is called an M-matrix if aij < 0 for i 7 j and 
all the entries in A-1 are nonnegative. Many alternative characterizations of an 
M-matrix may be found in [1, Chapter 6] and [8, ?6.4]. For the purpose of this 
error analysis the following definition is the most useful: A nonsingular n-by-n 
matrix A is called an M-matrix if aij < 0 for i :& j, aii > 0, and there exists a 
positive diagonal matrix D such that AD is strictly diagonally dominant, i.e., 

aiidii > Zaijidjj, i 1,... ,n. 

Without loss of generality we may assume that flD f = 1. Note that this definition 
is equivalent to the condition (M35) in [1, p. 137]. 

In view of the preceding discussion in ?7 the stability criterion (71) is satisfied 
for this particular choice of the matrix D. Therefore, Algorithm 1 will compute a 
stable solution for linear systems with M-matrices. 

9. NUMERICAL RESULTS 

In this section we will present numerical results for three classes of test matrices 
to illustrate our error bounds. As our first example we choose the matrix 

1 

We will see in a moment that the condition (71) is not satisfied for this matrix. 
The basic building block of A is given by 

le[ 1] 

which is a well-conditioned matrix for 0 < e < 1/2. Specifically we have 

Ko(M) 
4 

On the other hand th-e matrix 

becomes increasingly ill-conditioned as e tends to zero: 

Consequently, if we parition the matrix A as indicated we can expect large values 
of teD-oA-hADrI for all nodes in the tear tree. 
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TABLE 1. Properties of the first class of test matrices 

N |IAII IIA-lAII | IIA-l IID-1A-1ADII ] IIA - AA-'l 

4 1.735 1.010 102 1.000 104 9.901 -10, 1.010.10-2 
6 1.906 1.021 .102 1.010 104 1.414. 102 1.010. 10-2 
8 1.954 1.031 102 1.021 104 1.744 102 1.010. 10-2 

10 1.974 1.041 102 1.031 104 2.026 102 1.010. 10-2 
12 1.984 1.052 102 1.042 104 2.278 102 1.010 10-2 
14 1.990 1.063. 102 1.053 104 2.509 102 1.010. 10-2 
16 1.994 1.074 102 1.064 104 2.724 102 1.010 10-2 
18 1.996 1.085. 102 1.074. 104 2.928 102 1.010 10-2 
20 1.998 1.096. 102 1.085. 104 3.122 102 1.010 10-2 
22 1.999 1.107. 102 1.097. 104 3.308 102 1.010 10-2 

In order to avoid large matrices we choose an unusual tearing strategy: If the 
size N of the matrix A is two we solve the linear system by Gaussian elimination, 
otherwise we set nnr = N - 2 and n'se = 2 (cf. Figure 1). This strategy leads to 
a degenerate tear tree with a height of h = N/2 - 1. The point of our example, 
however, does not depend on a particular tearing strategy. For any given strategy 
we can construct a matrix A that exhibits the same problems. 

For our numerical example we choose e = 0.01. If we set D = I the value of the 
quantity JID-1A-1ADII is on the order of 6-2 = 104. However, if we choose 

1 
c 

D~ c 
D := c1I 

1 c 

where c := = 0-4, this norm can be reduced to the order of e- - 102. 
In Table 1 we give the values of some key quantities from (63,64,65,66,67). For 

any A with N > 4 we obtain the corresponding A by setting aN-l,N-2 to zero. This 
is consistent with our special tearing strategy. We can see from the values of Table 1 
that all the subproblems in the tear tree are only moderately ill-conditioned. 

The entries of the right-hand side b are given by bi = i. We computed our results 
on a DECstation 3100 using a MATLAB [12] implementation of Algorithm 1. The 
unit roundoff is given by e = 2-52 2.2204 10-16. We used the singular value 
decomposition as our URV-decomposition. 

In Table 2 (next page) we present the absolute and relative residuals for increas- 
ing matrix sizes N. Owing to our special tearing strategy, the height h of the tear 
tree increases linearly with N. We also compare the residuals obtained from Algo- 
rithm 1 with those from Gaussian elimination (backslash operator in MATLAB). 
The reader should observe the exponential error growth of the residual IlAx - bll, 
which is due to the large value of JjD-1A-1ADjj. 
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TABLE 2. Residuals for the first class of test matrices 

IlAx-b 
IAx - bl 

eGaussian Gaussian 
N h Algorithm 1 elimination Algorithm 1 elimination 

4 1 3.634 1014 4.965. 10-16 1.042. 10-16 1.423 . 1018 
6 2 5.298 . 10-12 4.441. 10-16 9.169. 10-15 7.687 10-19 
8 3 1.523 .10-10 8.882. 10-16 1.918. 10-13 1.119. 10-18 

10 4 3.020 10-8 6.280 10-16 2.996 10-11 6.231 .10-19 
12 5 7.708 10-6 8.882. 10-16 6.307 10-9 7.268 10-19 
14 6 2.044 10-3 1.538. 10-15 1.422 10-6 1.070 .10-18 
16 7 9.639 10-2 2.176 10-15 5.754 10-5 1.315. 10-18 
18 8 6.382 100 1.776. 10-15 2.538 10-3 9.483 10-19 
20 9 1.462. 103 1.776. 10-15 4.403 10-3 8.483 .10-19 
22 10 2.708 105 1.986. 10-15 1.958 10-2 8.572 10-19 

TABLE 3. Properties of the class of diagonally dominant matrices 

N IJAII {IA-1All [ IA-1 [ID A-1ADI IIA -AA-'All 

4 1.990 7.143 101 1.611 100 1.407 5.024 101 
6 1.995 1.060 102 1.010. 102 1.572 6.677 101 
8 1.997 1.328 - 102 2.025 102 1.752 7.505 - 101 

10 1.998 1.554 102 3.458. 102 1.922 8.003. 101 
12 1.999 1.752 102 5.303. 102 2.081 8.335. 101 
14 1.999 1.931 102 7.558. 102 2.230 8.573. 101 
16 1.999 2.095 - 102 1.022 103 2.371 8.751 . 101 
18 1.999 2.248. 102 1.330. 103 2.503 8.889. 101 
20 2.000 2.391 . 102 1.678 . 103 2.630 9.000 101 
22 2.000 2.526. 102 2.067 103 2.751 9.091 . 101 

As our second test matrix we choose the diagonally dominant matrix 

la 
a 

t 
b 

b I aX 

A ~ TblIa 

b I a 
__ alb~~~ 

where we set a 0.01 and b := 0.99. All the subproblems in the tear tree are 
relatively well-conditioned. To illustrate this, we present in Table 3 the values of 
some key quantities in the tear tree. 
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TABLE 4. Residuals for the class of diagonally dominant matrices 

IlAx-bll T Ax- bi 

Gaussian Gaussian 
N h Algorithm 1 elimination Algorithm 1 elimination 

4 1 8.379 10-15 2.665 10-15 6.066 10-17 1.929. 10-17 
6 2 1.801 10-14 1.779. 10-14 4.593 10-17 4.535 10-17 
8 3 7.121 . 10-14 3.815. 10-14 8.786 10-17 4.708. 10-17 

10 4 8.175. 10-14 1.113. 10-13 5.759 10-17 7.842 . 10-17 
12 5 2.283 10-13 1.088. 10-13 1.018. 10-16 4.851 . 10-17 
14 6 2.863 10-13 1.632. 10-13 8.677 10-17 4.947 10-17 
16 7 4.768 10-13 1.835 10-13 1.034. 10-16 3.981 . 10-17 

18 8 5.265. 10-13 3.521. 10-13 8.504 10-17 5.687. 10-17 
20 9 1.019 10-12 5.198. 10-13 1.265 10-16 6.450 10-17 
22 10 8.965. 10-13 4.299. 10-13 8.763 10-17 4.201 10-17 

We use the same tearing strategy as in the first example. Again, the vector b is 
given by bi = i. The norms of the residuals for different matrix sizes are presented 
as Table 4. 

As our last example we choose the M-matrix 

l b 
a I a 

a I a 

where we set a:=--0.00049 and b :-490. The matrix AD is diagonally dominant 
for A: b= 1 b 

c~~~~~~ 

where c := 1000. The properties of A are listed as Table 5 (next page). We choose 
the same tearing strategy and the same right-hand side b as before, and the resulting 
residuals are presented as Table 6 (next page). 

For the second and third class of test problems the condition (71) always holds. 
For these cases, the results in Tables 4 and 6 confirm that Algorithm n can compute 
a solution with a residual whose norm is on the same order as the norm of the 
residual from Gaussian elimination. 
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TABLE 5. Properties of the class of M-matrices 

N J IAII J IIA-1A1 J IIA-I j IID A-1ADII IIA-AA-'All 

4 7.928. 102 1.158103 -7.547 -02 1.303 8.387.102 
6 8.830 102 1.445 103 2.167 103 1.349 9.549 102 
8 9.209 102 1.614. 03 4.028 i03 1.396 1.001 i03 

10 9.403 102 1.712. 103 6.077 103 1.431 1.021. 103 

12 9.515 102 1.768 103 8.130 103 1.453 1.029. 103 

14 9.586 102 1.799 103 1.007 104 1.466 1.033 103 
16 9.633 102 1.815 103 1.182 104 1.474 1.035 . 103 

18 9.666. 102 1.823 103 1.338 104 1.478 1.035. 103 

20 9.691 102 1.828 . 103 1.474 104 1.480 1.036 103 

22 9.709 102 1.830 103 1.591 . 104 1.481 1.036 103 

TABLE 6. Residuals for the class of M-matrices 

IIAx-bll Ax-b 

____________ I h~~~~~~~~IAil llxii 

Gaussian Gaussian 

h Algorithm 1 elimination Algorithm 1 elimination 
4 1 1.017 10-12 4.441 10-16 1.570T 10-9 6.859 .10-23 
6 2 4.547 10-12 9.095. 10-13 2.087 10-19 4.173 10-20 
8 3 5.457 10-12 1.819 . 10-12 1.100. 10-19 3.667 10-20 

10 4 7.500 10-12 1.819 . 10-12 8.214 10-20 1.992 10-20 
12 5 1.373. 10-11 8.702 10-15 9.347 10-20 5.923. 10-23 
14 6 1.925 . 10-11 3.638. 10-12 8.923 * 10-20 1.686. 10-20 
16 7 4.002 10-11 3.638 10-12 1.349 .10-19 1.226. 10-2 

18 8 4.426 10-11 5.087. 10-14 1.139 
. 
10-19 1.309. 10-22 

20 9 7.570. 10-11 7.276 . 10-12 1.544 * 10-19 1.484. 10-20 
22 10 8.678 10-1l 2.183. 10-11 1.444. 10-19 3.632 

. 
10-20 

10. CONCLUSIONS 

We have presented an error analysis for a divide-and-conquer algorithm to solve 
linear systems with block Hessenberg matrices. Our error analysis corresponds 
closely to the recursive nature of this algorithm. The key to our analysis is equa- 
tion (10) which gives a representation for the residuals A\B in the tear tree. Another 
important equation is (53) which shows the structure of the residuals in terms of 
local errors and errors from previous nodes in the tear tree. By combining (10) 
and (53) we can derive the linear recurrence relationships for (k and ck which lead 
to the final error bound (70). 

The precise value of the bound (70) is of minor importance. Rather we can show 
that Algorithm 1 computes a stable solution if the condition (71) is satisfied for all 
the matrices in the tear tree. This condition ensures that all the quantities in Algo- 
rithm 1 remain bounded. In particular equation (57) shows that the matrix D-1Y 
can never be much larger than D-1X. On the other hand, if JjD-1A-1ADjj is 
significantly larger than one for all the nodes in the tear tree, we may encounter 
very large matrices D1_Y during the execution of Algorithm 1, even if the final 
result D-1X is small. This is exactly what happens in our first test case in ?9, 
leading to a large residual A\B. 
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We have also shown that the condition (71) is always satisfied in the case of 
block diagonally dominant matrices and M-matrices. This explains the accurate 
results of the algorithm for this type of problems. 
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