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ROUNDING ERRORS IN SOLVING BLOCK HESSENBERG
SYSTEMS

URS VON MATT AND G. W. STEWART

ABSTRACT. A rounding error analysis is presented for a divide-and-conquer
algorithm to solve linear systems with block Hessenberg matrices. Conditions
are derived under which the algorithm computes a stable solution. The algo-
rithm is shown to be stable for block diagonally dominant matrices and for
M-matrices.

1. INTRODUCTION

In [9] a recursive algorithm was proposed for the solution of the linear system
(1) AX = B,

where A is a block Hessenberg matrix. Its development was motivated by the
attempt to find the steady-state of certain Markov chains. In this paper we will
present an error analysis to explain the accurate results obtained by the algorithm.
Our analysis is a rounding error analysis in the style of Wilkinson [13, 14]. We
will see that the computed matrix X can be regarded as the exact solution of a
nearby linear system. In particular we will show that the computed X satisfies

AX = B+ AB.
We call the matrix X a stable solution if
[AB]| < nll Al IX1],

where 1 denotes a small multiple of the unit roundoff e. This is an example of
residual stability. Note that residual stability is the same as backward stability if
the right hand side B is a vector (cf. [5]).

A stable solution is not to be confused with an accurate solution. The accuracy
of X is usually limited by the condition number k(A) := ||A|| ||A7!||. The relative
error of X can be bounded by

|X — A'B| _ _us(4)
[AB] = T—ns(4)’

provided that nk(A) < 1. Thus, we can only compute an accurate solution X if we
use a stable algorithm to solve a well-conditioned problem.
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Our paper is organized as follows. In §2 we give a concise description of the
algorithm to be analyzed. This algorithm consists of a few basic building blocks for
which we will cite error bounds in §3. Since our algorithm calls itself recursively we
have to make an assumption about the structure of the errors after each invocation.
This is the purpose of §4, where we also analyze the local errors in each stage. We
combine these local errors to give a global error bound in §5. The structure of
this global error bound reveals a potential instability of our algorithm. This is
discussed in §6. In §§7 and 8 we identify two classes of matrices for which our
algorithm computes a stable solution. We conclude our presentation with some
numerical examples in §9.

Throughout our analysis we will use the 2-norm, except where otherwise noted.
Its main advantage is that the norm of an orthogonal matrix is one.

2. ALGORITHM

We assume that the matrix A in (1) has the following block Hessenberg structure:

_All A12 Aln b
A ;
A=
. An—-l,n
L An,n—l Ann i

The diagonal blocks A;; are assumed to be square nonsingular matrices of order p;.
The total size of A is given by

n
N = Zpl
i=1

If n > 1 we can select a tear index k with 1 < k < n and partition the matrix A

as follows:
Anw Ane
A - {ASW Ase:l )

The submatrix A, contains the first & diagonal blocks of A, and Ag. contains the
last n — k diagonal blocks of A. Note that Aj; i is the only nonzero block in Agy.
This partitioning is also shown as Figure 1 (next page). The dimensions ny,y, and g
are given by

k
Nnw = § Pi,
i=1
n
Nge = E Di.

i=k+1

Let F be the last ng columns of the N-by-N identity matrix, and let F' consist
of the first n,,, columns of the N-by-N identity matrix. Then we can also define

A Anw Ane _ T
A= [ 0 Ase] =A—-FEAF~.
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Nnw TNse

FIGURE 1. Structure of 4

In order to solve the linear system (1) for X we first compute the solution Y of
Ay = B.

This step requires the solution of linear systems with the matrices Ay and A,
which can be solved recursively by the same divide-and-conquer algorithm. After-
wards we obtain X from Y by means of an updating formula. The well-known
Sherman-Morrison-Woodbury formula (cf. [4, p. 51]) would give us

A—l — (A+EASWFT)—1 — A—l _ A_IE(I+ASWFTA_1E)_1ASwFTA_1
= A1 - AT'EA I+ FTA'EA,,) 'FTAL.

Unfortunately, this formula does not take advantage of the many zeros in Ay,
requiring the solution of a large intermediate linear system. We can reduce the size
of this linear system with the help of the URV-decomposition (cf. [10])

Ay = URVT.

Let  denote the rank of Ay, as it is determined by the URV-decomposition. Then U
will be an orthogonal nge-by-r matrix with pi;1 nonzero rows. Also R is a square
r-by-r matrix, and V is an orthogonal n,y-by-r matrix with p; nonzero rows. Now
we can express the inverse of A by

A = A7 AT'EU(I + RVTFTA'EU) 'RVTFTA!,

In order to avoid the multiple evaluation of the same expressions, we introduce
the following intermediate quantities:

G:=A"'EU,
S:=RVTFTG,
T:=1+S85,
R:=T7 'R,

P :=GR.
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ALGORITHM 1. Solution of block Hessenberg systems

function X = solve(A, B)
if not at the bottom then
Compute the orthogonal URV-decomposition Asw = U RVT.
Gs = solve(Ase, U)
Gn = solve(Anw, —AneGs)
S:=RVTG,
T:=1+S8
Solve TR = R for R by Gaussian elimination.
P:=GR
Ys 1= solve(Ase, Bs)
Yh 1= solve(Anw, Bn — AneYs)
X:=Y-PVTy,
else
Solve AX = B for X by Gaussian elimination.
end

Note that these matrices are independent of the right-hand side B. The overall
recursive procedure to solve the linear system (1) is also presented as Algorithm 1.

In [9] this algorithm is refined further by introducing the auxiliary procedures
“patchgen” and “topsolve”. These refinements are critical for the efficiency of the
algorithm, but they are not necessary for the purpose of this error analysis. Further
implementation details may be found in [11].

The solution of the linear system (1) can also be described by the tear tree of
Figure 2. Each node represents a linear system to be solved. The node on the
top level (k = 3) stands for the system (1), whereas the leaf nodes are the linear
systems that are not divided any further but solved by Gaussian elimination. The
number n of diagonal blocks in the matrix A, which is equal to the number of leaf
nodes, and the height h of the tear tree are connected by the inequalities

n < 2h,
h > logy n.

These inequalities become equalities if the tear tree of Figure 2 is a complete
binary tree.

FIGURE 2. Tear tree
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3. BASIC OPERATIONS

Algorithm 1 is composed of a few basic building blocks. These are the addition
and multiplication of matrices, the calculation of a URV-decomposition, and the
solution of linear systems by Gaussian elimination. We will now state bounds for
the errors associated with these operations.

In the case of the addition of two matrices, we have

fllA+B)=A+ B+ E,
where
IE] <mllA+ Bl

The quantity 7; is on the order of the unit roundoff € and slowly increases with the
size of the matrices A and B. See also [14, pp. 114-115 and p. 57].
If we multiply two matrices in floating point, we have

fi(AB) = AB+ E,
where
IEIl < n2ll Al B

Again, 719 is a small multiple of the unit roundoff and slowly grows with the size of
the matrices A and B (cf. [14, pp. 115-116]).

The size of the error in computing an orthogonal URV-decomposition depends
on the specifics of the decomposition. One may choose a QR-decomposition (4,
Chapter 5], a rank-revealing decomposition [2, 10], or the singular value decom-
position [4, §8.3]. All of these factorizations have in common that they can be
expressed as a sequence of orthogonal transformations applied from the left and
the right to the initial matrix. The orthogonal transformations are also accumu-
lated to give the matrices U and V. Wilkinson shows in [14, pp. 160-161] that
there are orthogonal matrices Uy and Vj and an 73 such that

(2) |R - U AV|l < 2n3)|All,
(3) U = Usl| < ns,
(4) |V = Vol < 3.

The quantity 73 is on the order of the unit roundoff and slowly grows with the size
of the matrix A and the number of the orthogonal transformations applied to A.
From (3) and (4) it immediately follows that

Ul <1 +ms,
VI <1+ 7s.
We can also show, by increasing n3 slightly as necessary, that
I[URVT — A|| < 4ns||A],
[(UTU) " UT| < 1+ 3ms,
IV(VTV)=Y < 1+ 3ns.

We assume that small linear systems are solved by Gaussian elimination. In [13,
p. 108] and [14, p. 252] Wilkinson shows that this process can be described by the
equation

(5) Ax = b + Ab,
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where
(6) | Abl| < nil|All lIx]|-

The value of n} is on the order of the unit roundoff and slowly increases with the
size of A. It also depends on the pivoting strategy used. See [6] for a more recent
survey.

Note that the bound (6) is only applicable if the right-hand side of (5) is a vector.
If we solve several linear systems with the same matrix A we get

(7) AX = B+ AB,
where
(8) IAB| < ny/rll Al IX],

and r denotes the number of columns in the matrix B.
Let 7pax be the maximum number of right-hand sides in a linear system that is
solved by Gaussian elimination in Algorithm 1. If we define

N4 = Ny\/ Tmaxs

then we can always bound the residual AB in (7) by
IAB]| < nal| Al X]]-

Thanks to this convention, our error bounds will become somewhat simpler.

4. ANALYSIS OF ONE STAGE

In the following we will give expressions for the rounding errors incurred at one
stage of Algorithm 1. We assume that we are not at the bottom of the tear tree,
and we use the assumptions of §3 to bound the size of the rounding errors.

In what follows the matrix A denotes the system matrix of an arbitrary interior
node of the tear tree. In an attempt to keep the notation simple, we do not
introduce an index to indicate the corresponding node. We also assume that the
four submatrices Any, Ape, Asw, and Ag. are predefined by the tearing strategy.

We make the inductive assumption that the solution X computed at level k
satisfies

9) AX = B+ AB,
where the residual AB can be expressed by
(10) AB=ALx +AMxX.

We use the index X for the matrices ALx and AMx to indicate that they depend
on the solution X.
We assume that at level k we always have

(11) |ALx| < &[ID7X],

(12) IAMxD|| < ¢,

for all matrices X. The quantity D denotes a nonsingular block diagonal matrix,
which is partitioned commensurably with A. In particular, we always have D, =0
and Dg,, = 0 for all the nodes in the tear tree. The matrix D will give us additional

flexibility in bounding the norm of the residual AB. We will discuss this issue in
more detail in §§7-9.
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Since we solve the systems at the bottom level by Gaussian elimination, we define

&o == nallAll | DI,
CO = 07
The purpose of the next sections will be to compute & and (i if £x—1 and (1 are
known.
Throughout our analysis we will assume that the rounding errors remain small
compared to the norm of the computed quantities. This means that the computed

and the exact quantities will agree to at least a few digits. We will use a factor
of 1.01 in (20,23,25,26,29,30,36,40,49,50,52,61,62) to simplify our bounds.

4.1. Calculation of the URV-decomposition. The result of the initial URV-
decomposition of Algorithm 1 can be described by

(13) A =URVT + AA,,,

where

(14) |AAsw | < 4ns | Aswll-

The matrices U and V are nearly orthogonal, and they satisfy
(15) IO < 1+ms,  UTO)TUTI < 14 3,
(16) VIl <1+ mns, IVVEV)TH < 1+ 3.
The expression RVT, which we will also use later on, can be written as
(17) RVT = (UTU)'UT (Asw — AAgy).
Therefore, we have the bound

(18) IRV < (14 303)(1 + 4n3) | Asw -
Because of

R=(UTU) WU (Asw — AAL)V(VTV) L
we can also bound the norm of R by _
(19) [IRII < (1+3n3)2(1 + 4m3) || Aswl].

4.2. Calculation of GG. The calculation of the matrix G proceeds in three steps
that can be described by the equations

AseGs = U + AGs,
Uy = - AneGs + AU,

AnwGn = Uy + AG,.
The error matrix AU, is bounded by
(20) AU < mall Anell IG5l < 1.01ma]| Anell AL -
The residuals AGs and AG,, have the expansion

AGs = ALg, + AMg Gk,

AG, = ALg, + AMg, G,.
We can also write these equations in matrix terms as

(21) AG = EU + AG,
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where

(22)  AG= [AGHAUn} _ [ALG,,+AUH} . [AMGn

AGq - ALg,
Since the matrix G can be written as

G = A"Y(EU + AG),

AMGS] G.

we also have

(23) G| < Lo A7

4.3. Calculation of S. We can express the matrix S by
(24) S =RVTG, + AS,

where

IAS| < (202 +m) I RINVIIGall.

This bound applies regardless of the sequence in which the two multiplications are
performed. In view of (16,19,23) we can also bound ||AS|| by

|AS|| < 1.01(2n2 +n3) (1 +n3)(1 + 3n3)* (1 + 4n3) || Asw || | 472
< 2-1.01%n || Aswl | A7

By means of the equations (13,21,24) we can derive the following more explicit
expression for S:

S =UTU) U (A FTAT'EU — AALFTG + A FTATIAG) + AS.
Obviously, the norm of S can be bounded by

(25)

(26) IS]| < 1.01)| A FTATY|.
4.4. Calculation of T. The matrix T satisfies the equation
(27) T=1+S+AT,
where
AT < mllI+ S|

By means of some straightforward manipulations, using (13,21,24), we can see that
(28)
EU(I+8)=AA™'EU — EAA.WFTG + EAq FTA™'AG + EUAS.
Consequently, we can express I + S as
I+8=(UTU)"'UTET(AA™'EU — EAAWFTG + EAs FTAT'AG) + AS,
and T is given by
T = (UTU)"'UTET(AA~'EU — EAAWFTG 4+ EA FTA7IAG) + AS + AT.
If AAsw, AG, and AS are sufficiently small, we have
(29) AT < 1.01m[|AA™Y.
Similarly, we also have

(30) |T|| < 1.01[|AAY.
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4.5. Calculation of R. If we solve the linear system for R by Gaussian elimination,
we get

(31) TR =R+ AR,
where
(32) AR < nal| T | Rl

In order to bound ||AR| differently, we need an alternative expression for R. It is

useful to consider the quantity I — GRVTFT first. By using (13,21,24,27,31) we
have

33
o A(I - GRVTFT) = A+ EAA FT(I - GRVTFT)
~ AGRVTFT + EU((AS + AT)R— AR)VTFT,
which is equivalent to
(34)
I—GRVTFT = A'A+ A" EAA FT(I - GRVTFT)
— A"'AGRVTFT + AT'EU((AS + AT)R - AR)VTFT.
Consequently, we can represent R as
R=(UTU)'UTET(A - AATA)FV(VTV)~!
— (UTU)"'UTET <AA‘1EAASWFT(I — GRVTFY)FV(VTV)!
+ EAWFTAT AGR + AAT'EU((AS + AT)R - AR)).

Note that we can also write A — AA=1A as

(35) A—AA'A=FEALFTA A= AA'EAFT.

If we assume the rounding errors to be bounded we can show that

(36) I|IR|| <1.01|A - AA~TA.

By combining this result with (30,32) we can bound [|AR|| by

(37) IARI| < 101, AA" | A - AAA].

4.6. Calculation of P. The calculation of P can be described by the equation
(38) P=GR+ AP,

where

IAP| < mal|GIl | R]I-
By using (23,36) we can bound ||AP|| by
(39) |AP| < 1.01%nz | A7 | A - AAT 4.
Because of (34) the following alternative expression for P applies:
P=A"'EAqV(VTV) ! = AT'EAAWFT(I - GRVTFT)FV(VTV)~!
+AT'AGR - AT'EU((AS + AT)R — AR) + AP.
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Provided that the rounding errors remain bounded we certainly have

(40) I[Pl < 1.01| A EAs .

4.7. Calculation of Y. The matrix Y is computed in three steps as follows:

(41) AseYs = Bs + A)/S’
(42) Bn = By — AyeYs + AB,,
(43) AnwYa = By + AY,,.

The error in computing 1§n can be bounded by

(44) ”ABn“ < nllan - Ane}/s“ + (1 + 771)772||Ane” ”Ys”
< ml[Bull + (m1 4 n2 + mm2) || Ane|l [|Y5]]-

On the other hand, we can assume the following expressions for the residuals AY;
and AY;:

(45) AY, = ALy, + AMy.Y;,
(46) AY, = ALyn + AMYHYH.

The equations (41,42,43,45,46) can also be written in matrix terms as

(47) AY = B+ AY,
where
_ [AY.+AB.] _ [ALy, + AB,] | [AMy,
(48) AY._[ N ]_[ 15 ]% AMYS]Y'

It will turn out to be useful to eliminate B, from the right-hand side of (44).
Observe that

(49) I1Ball < 1Bl < JAY ||+ |AY [ < TOL[ A Y.
Consequently, we can also bound ||A§n|| by
(50)  [|ABu| < (2.01m1 + 72 + mm) | A Y]] < 1.01(2m + o) | Al Y]]
4.8. Calculation of X. The computed value of X satisfies
(51) X =Y - PVTY, + AX,
where
JAX]| S mllY = PVTYall + (1 +n01) (@2 +n2)n2 | PIHIVI [ Yall-

This bound can be processed further by using (16,40), and we get

JAXI < (m 4+ L1+ ms) (m + (14 m0)(2 + 72 )me) | AT EA ) Y]
A simpler bound is given by

(52) JAX] < (m +1.01%(m + 2n2) | AT EA ) 1Y ]
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5. RESIDUAL ERROR

We are now ready to give an expression for the residual AB in (9). By using the
equations (33,38,47,51), we get

AB =(EAASWFT (I - GRVTFT) — AGRVTFT

(53) + BU((AS + AT)R — AR)VTFT - AAPVFT)Y
+AY + AAX.

The value of AB can be processed further. By combining (38) and (51) we get
(54) (I-GRVTFTY = X + APVTFTY — AX.

If we use (9,13,21,34,35,47,53,54) we can also derive the following alternative ex-
pression for RVIFTY:

RVTFTY = RVTFTX — ((AS+ AT)R— AR)VTF"Y

55
(55) +RVTFTAPVTFTY - RVTFTAX.

Because of (22,48,54,55) we are led to the following expression for AB:

(56)
AB = EAAFTX

_ ALGn -+ AUn
ALg, AMq,

+ EU(AS + AT)RVTFTX — EUARVTFTY — AAPVTFTY

ALy, + AB,] | [AMy,
" [ ALy, ] - [

] RVTFTX — [AMGﬂ ] GRVTFTX

AMYS] Y + AAX + O(?).

A key expression in (56) is GRVTFT. With the help of (13,21) we can transform
this matrix into

GRVTFT = A 'EAFT — A 'EAAFT + A 'AGRVTFT.

Similarly, we use (9,47) to write Y as

Y =A7'AX - A"1(AB - AY)

57 . "
(&%) (D7'A"'AD)D7'X — A"Y(AB — AY).

Now it is straightforward to write the residual AB as

AB = ALx + AMx X,
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where
(58) ALy = [AL?& ;YABH] + AAX +0(e?),
AMy = EAA,, FT — [AL(X LJFGAU“] RVTFT
AMg, i-1 T

- _ [ R ng A EALF

+ EU(AS + AT)RVTFT — EUARVTFTA™' A

T T 4-1 AMy, Fo1
— AAPVTFTA A+[ Ay, | AT

Let us give bounds for the norms of ALx and AMx D. From (50,52,57) we have
AL < 1.01 (V281 + 1.01(2m +ne) |4 D]

(60) + (m + 10120y + 22) | A7 EA ) 141 |1DY))
|IDTPATTAD| | DX,
In order to bound ||[AMxD||, we need to multiply (59) by D from the right:

AMxD = EAAL FTD — [AL‘Z‘ + AU“] RVTFTD
Le,
A-Z\4G',1an -1 4-1 T
_ [ AMe, DSJ D1A-'EA.FTD

+ EU(AS +AT)RVTFT™D — EUARVTFTDD-1A-'AD
— AAPVTFTDD 'A™'AD

AMynan -1 4-1
+ ‘: AMYSDse:| D™ AT AD.

Because of (17) we can write the expression RVTFTD also as
RVTFTD = (UTU)'UT (Asw — AAs)FTD.
Consequently, its norm is certainly bounded by
(61) |IRVTFT DI < 1.01]| Asy Dy l-
If we use (11,12,14,15,16,18,20,25,29,37,39,61) we can bound ||[AMx D|| as follows:
(62)
IAMxD|| < 493l Asw || | Dissl| + 1.01* (1 + 3n2) | Asww Do | [|A]| [ A7
+1.00%(nz + ) | Al |A7H|[ |4 — AA™ Al || Duwe|| | DT AT AD|
+ 1.01°V2]| Asw Dl | A7 €1
+ (1D A7 EAsw Dol + | D7 A7 AD )1

The inequalities (60) and (62) contain the quantities £,—; and (x—; which are used
to bound the errors at the previous level of the tear tree. Consequently, we can
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use (60) and (62) to give recurrence relationships for & and (;. Let us define the
quantities
(63) fe == max1.01v2|| D 'A"'AD|,

(64) fe :=max D' AT EAw Dyl + | DT ATTAD),

(65) g ‘= max 1'012\/§||Astnw|| “1[1—1”’
e = max 1.01(1.01(2n, + ma) | A][ | D|
(66) + (m + 1.01%(n, + 2n2)||A_1EAsw||)||A|| ||D||)
|D~'AT'ADJ,

c¢ := max 4ng || Asw | || D]
+1.01%(m + 3m2)|| Asw Dse [l [ AJl | A7
+1.01%(my + na) A |ATH||A — AATHA]|
|| Duw || ID™F AT ADY],

where the maximum is to be taken over all the nodes in the tear tree. The se-
quences {&;} and {(x} thus satisfy the following recurrence relationships:

(67)

& = mallAll || DI,
& = febr—1 +ce, k>1,
¢ =0,

Gk = chk—1 + g€k—1 + ¢, k> 1.

Their explicit solutions are given by!

(68)
6 = foff + e
k=g e
(69)
oot s
Ck—ﬁogfs_f( +Ccf<_1

1
e R O
These explicit expressions for £ and ¢ are only valid if f¢ # 1, fc # 1, and f¢ # f..
It would be possible to give similar expressions for these special cases, too. However
these formulas would not give us more insight than (68) and (69).
At the top level of the tear tree the residual AB is given by

AB=ALx +AMxX,

fE ft
¢ ¢ ))‘

where
[ALx|| < &lID7X],
IAMxD|| < G-
Consequently, ||AB|| can be bounded by

"We used Maple (3] to derive this result.
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(70) IAB| < (& + ¢R)IDTH X

The expression ||D~1X]|| is nothing else than the size of the solution X expressed
in another norm.

6. STABILITY CRITERION

Let us now analyze the conditions under which Algorithm 1 computes a stable
solution. We assume that all the matrices A, A, and D in the tear tree are nonsingu-
lar and only moderately ill-conditioned. Without this assumption the quantities c¢
and c¢ could become arbitrarily large, like in the case of the matrices

e 1 a € 1
A= [1 6]’ A= [0 e]’
with € | 0.

If c¢ and c¢ are only small multiples of €||A||, the norm of the residual AB
in (70) will be on the order of ¢||A|| || D~ X]|| for f¢ ~ 1 and f; ~ 1. This condition
is equivalent to the requirement that there exists a nonsingular block diagonal
matrix D, partitioned commensurably with A, such that

(71) |ID7'A'AD|| ~ 1

for all the matrices in the tear tree. If this stability criterion is met, Algorithm 1 is
guaranteed to compute a stable solution provided that all the matrices A, /1, and D
in the tear tree are only moderately ill-conditioned.

It should be noted that (71) is a sufficient but not a necessary stability condition.
Since we use the quantities £ and ¢ to bound |ALx|| and |AMxD|| at each level
in the tear tree, these bounds may grow even if ALx and AMx D remain bounded.
On the positive side, we get a manageable error analysis and a simple stability
criterion. :

In the next two sections we will identify two classes of matrices for which the
criterion (71) is always satisfied.

7. BLOCK DIAGONALLY DOMINANT MATRICES

An important class of matrices, for which the condition (71) is always satisfied,
is given by the set of nonsingular block diagonally dominant matrices. In order to
see this, we need the following theorem.

Theorem 7.1. Let A = (A;;) be an m-by-n block matriz with m < n. Furthermore
let A be nonsingular and block diagonally dominant, i.e., A has square nonsingular
diagonal blocks and

n
145 oo D 1Aillee €1, i=1,...,m.

=1

J#i
We partition A into

A=[4 4],

where Ay is a square m-by-m block matriz, and Az is an m-by-(n—m) block matriz.
We also assume that Ay is nonsingular. Under these assumptions the inequality

14T Azloo < 1
applies.
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Proof. Let y = A7 Apx, where x = (x;) and y = (y;) are partitioned commensu-
rably with Ao and A;, respectively. Let ||yilloo = [|¥]lco- From A;y = Asx we

deduce that
ZAijy_j"—: z A,;jx_j_m.
7=1

j=m+1
Consequently we can write y; as

yi = A;l( i AiiXj_m — iAijy]‘)
j=1

J=m+1
J#i

Hence,

n-

m
I¥lloo = I¥illoo < 147 oo D Aislloolxlloo + 145 oo D I1Asi oo ¥l oo,

j=m+1 j=1
i
or
n
145 oo D Asslloo
j=m+1
ylleo < — l1x[lco,
L= 147 o S 1 Ass o
j=1
J#i
which yields ||y|lcc < ||X[|oo in view of the block diagonal dominance. 0O

In [7] the proof of this theorem for a point diagonally dominant matrix will
appear as an exercise.

As a straightforward application of Theorem 7.1 we consider the norm of A~14
when A is block diagonally dominant. It is easily verified that

I—Ajl AN AL Agw O

i1
AT A= A4, Il

The two matrices [Anw Ane] and [As,e ASW] satisfy the assumptions of Theo-
rem 7.1, and we have

[ A Anelloo <1,

145 Aswlloo < 1.
It is now easy to see that
A7 Ao < 2.

This bound is tight. It is attained, for instance, by the matrices

1 1 P 11
A‘[—1 1]’ A= {0 1}‘
If a matrix A is block diagonally dominant, then so are all its submatrices in
the tear tree. Consequently, if we set D = I, the condition (71) is satisfied, and

Algorithm 1 will compute a stable solution of the linear system (1), provided that
all the matrices A and A in the tear tree are only moderately ill-conditioned.
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8. M-MATRICES

A nonsingular n-by-n matrix A is called an M-matrix if a;; <0 for ¢ # j and
all the entries in A~! are nonnegative. Many alternative characterizations of an
M-matrix may be found in [1, Chapter 6] and [8, §6.4]. For the purpose of this
error analysis the following definition is the most useful: A nonsingular n-by-n
matrix A is called an M-matrix if a;; <0 for 7 # j, a; >0, and there exists a
positive diagonal matrix D such that AD is strictly diagonally dominant, i.e.,

au‘dii >Z|ai]‘|d]‘j, t=1,...,n.
J#i
Without loss of generality we may assume that || D|| = 1. Note that this definition
is equivalent to the condition (Mss) in [1, p. 137].
In view of the preceding discussion in §7 the stability criterion (71) is satisfied
for this particular choice of the matrix D. Therefore, Algorithm 1 will compute a
stable solution for linear systems with M-matrices.

9. NUMERICAL RESULTS

In this section we will present numerical results for three classes of test matrices
to illustrate our error bounds. As our first example we choose the matrix

€ 1
111
1|e¢ 1
1
A= 1le 1
1
1

1

L -

We will see in a moment that the condition (71) is not satisfied for this matrix.
The basic building block of A is given by

11
M'_[l 6]’

which is a well-conditioned matrix for 0 < e < 1/2. Specifically we have

4
1—¢€

~ 1 1
M= [0 e]

becomes increasingly ill-conditioned as € tends to zero:

- 14€
Koo(M) =2 p

Koo(M) =

On the other hand the matrix

Consequqntly, if we partition the matrix A as indicated we can expect large values
of |[D7YA~1AD|| for all nodes in the tear tree.
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TABLE 1. Properties of the first class of test matrices

N | Al | lATEA] A=l |ID-YA-AD| | ||A - AAT4]
411.735 [ 1.010 - 102 | 1.000 - 10% 9.901 - 10T 1.010 - 10—2
6 | 1.906 | 1.021-10% | 1.010- 104 1.414 - 102 1.010 - 102
8 | 1.954 | 1.031-102 | 1.021 - 104 1.744 - 102 1.010- 102

10 | 1.974 | 1.041 102 | 1.031 - 10% 2.026 - 102 1.010- 102

12 | 1.984 | 1.052 102 | 1.042-10% 2.278 - 102 1.010- 102

14 | 1.990 | 1.063 - 102 | 1.053 - 104 2.509 - 102 1.010 - 1072

16 | 1.994 | 1.074 - 102 | 1.064 - 10* 2.724 - 102 1.010 - 10—2

18 | 1.996 | 1.085 102 | 1.074 - 104 2.928 - 102 1.010 - 102

20 | 1.998 | 1.096 - 102 | 1.085 - 10* 3.122 - 102 1.010-1072

22 | 1.999 | 1.107 - 10% | 1.097 - 104 3.308 - 102 1.010- 102

In order to avoid large matrices we choose an unusual tearing strategy: If the
size N of the matrix A is two we solve the linear system by Gaussian elimination,
otherwise we set nny = N — 2 and nge = 2 (cf. Figure 1). This strategy leads to
a degenerate tear tree with a height of h = N/2 — 1. The point of our example,
however, does not depend on a particular tearing strategy. For any given strategy
we can construct a matrix A that exhibits the same problems.

For our numerical example we choose € = 0.01. If we set D = I the value of the
quantity |[D~YA~1AD| is on the order of e~2 = 10%. However, if we choose

F -

i c |

where ¢ := €2 = 10™4, this norm can be reduced to the order of e~! = 102,

In Table 1 we give the values of some key quantities from (63,64,65,66,67). For
any A with N > 4 we obtain the corresponding A by setting any—1,n-2 to zero. This
is consistent with our special tearing strategy. We can see from the values of Table 1
that all the subproblems in the tear tree are only moderately ill-conditioned.

The entries of the right-hand side b are given by b; = ¢. We computed our results
on a DECstation 3100 using a MATLAB [12] implementation of Algorithm 1. The
unit roundoff is given by ¢ = 2752 ~ 2.2204 - 10716, We used the singular value
decomposition as our URV-decomposition.

In Table 2 (next page) we present the absolute and relative residuals for increas-
ing matrix sizes N. Owing to our special tearing strategy, the height h of the tear
tree increases linearly with N. We also compare the residuals obtained from Algo-
rithm 1 with those from Gaussian elimination (backslash operator in MATLAB).
The reader should observe the exponential error growth of the residual ||Ax — b||,
which is due to the large value of | D~1A~1AD]||.
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TABLE 2. Residuals for the first class of test matrices

4 — b IAx= Bl
LA 1|
Gaussian Gaussian
N | h | Algorithm 1 elimination | Algorithm 1 elimination
4] 1]3634-1071%14965-10"16 [ 1.042-10-16 [ 1.423-10"18
6] 2529810712 | 4.441-10716 | 9.169-10"15 | 7.687 -10~19
8| 3]1.523.-10710 | 8.882-10-16 | 1.918-10~13 | 1.119-10~18
10| 4{3.020-10"8 | 6.280-10"16 | 2.996-10~11 | 6.231-10~1°
12| 5| 7.708-10~% | 8.882.10"16 | 6.307-1079 | 7.268-10"1°
14 | 6]2.044-107% | 1.538.10715 | 1.422.10"6 | 1.070-10"18
16| 7]9639-1072 | 2.176-10"%° | 5.754-10~% | 1.315-10"18
18 | 81 6.382-10° 1.776 - 10715 | 2,538 - 1073 | 9.483-10"1°
20| 9 1.462-103 1.776 - 1015 | 4.403-1073 | 8.483-10~1°
22 | 10 | 2.708 - 105 1.986-10715 | 1.958 102 | 8.572-10"1°

TABLE 3. Properties of the class of diagonally dominant matrices

N A] lA=LA] A=Yl [D~A=1AD| | |[A— AATLA|
411990 [ 7.143-10% | 1.611 - 10° 1.407 5.024 - 10!
6 | 1.995 | 1.060-102 | 1.010 - 102 1.572 6.677 - 101
8 | 1.997 | 1.328 - 102 | 2.025 - 102 1.752 7.505 - 101

10 | 1.998 | 1.554 - 102 | 3.458 - 102 1.922 8.003 - 10t

12 | 1.999 | 1.752 - 102 | 5.303 - 102 2.081 8.335 - 101

14 | 1.999 | 1.931-102% | 7.558 - 102 2.230 8.573 - 10!

16 | 1.999 | 2.095 - 102 | 1.022-103 2.371 8.751 - 10!

18 | 1.999 | 2.248 - 102 | 1.330 - 103 2.503 8.889 - 10!

20 | 2.000 | 2.391-102 | 1.678 - 103 2.630 9.000 - 10!

22 | 2.000 | 2.526 - 102 | 2.067 - 103 2.751 9.091 - 10?

As our second test matrix we choose the diagonally dominant matrix

Q =
o= Q
Q o

SN = Q
Q o

S| = Q

Q | o
- Q

where we set a :=0.01 and b:=0.99. All the subproblems in the tear tree are
relatively well-conditioned. To illustrate this, we present'in Table 3 the values of
some key quantities in the tear tree.
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TABLE 4. Residuals for the class of diagonally dominant matrices

||Ax — b|| M
1Al {]x]]
Gaussian Gaussian
N | h | Algorithm 1 elimination | Algorithm 1 elimination
4] 118379.-10715[2.665-10-15 [ 6.066 - 1017 | 1.929 - 1017
6| 211.801-10714 [ 1.779-10"14 | 459310717 | 4.535-10"17
8| 3|7.121-1071* | 3.815-10714 | 8.786 - 1017 | 4.708 - 10~ 17
10| 418175-10~™ | 1.113-10713 | 5.759-10~17 | 7.842-10~17
12| 51(2283-10"13 | 1.088-1013 | 1.018-10~16 | 4.851 -10—17
14| 6| 2.863-10"13 | 1.632-10713 | 8.677-10~17 | 4.947-1017
16 | 7] 4.768-10~13 | 1.835-10~13 | 1.034 .10 16 | 3.981 .10~
18 | 8] 5.265-1071% | 3.521-10~13 | 8.504-10~17 | 5.687-10~17
20| 911.019-10712 | 5.198-10~13 | 1.265-10~16 | 6.450 - 10—17
22 | 10 | 8.965-10~13 | 4.299.10~13 | 8.763-10~17 | 4.201 - 1017

We use the same tearing strategy as in the first example. Again, the vector b is

given by b; = i. The norms of the residuals for different matrix sizes are presented
as Table 4.

As our last example we choose the M-matrix

!
a

SIS
ISEN e BN

(Sl e~
Q e

SUNES
Q e

b
I 1]

where we set a := —0.00049 and b := —490. The matrix AD is diagonally dominant
for

L 1

where ¢ := 1000. The properties of A are listed as Table 5 (next page). We choose
the same tearing strategy and the same right-hand side b as before, and the resulting
residuals are presented as Table 6 (next page).

For the second and third class of test problems the condition (71) always holds.
For these cases, the results in Tables 4 and 6 confirm that Algorithm 1 can compute
a solution with a residual whose norm is on the same order as the norm of the
residual from Gaussian elimination.
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TABLE 5. Properties of the class of M-matrices

N 1Al A A A=) |D-*A-1AD|| | [|A— AA—1 4]
4] 7.928.10% [ 1.158 - 10° [ 7.547 - 102 1.303 8.387 - 102
6 | 8.830-10% | 1.445-10% | 2.167 - 103 1.349 9.549 - 102
81 9.209-10% | 1.614-10% | 4.028 - 103 1.396 1.001 - 103

10 | 9.403-102 | 1.712-103 | 6.077 - 108 1.431 1.021 - 103

12 | 9.515-10% | 1.768 - 10% | 8.130 - 103 1.453 1.029 - 103

14 | 9.586 - 102 | 1.799 - 103 | 1.007 - 104 1.466 1.033 - 103

16 | 9.633-102 | 1.815-103 | 1.182-104 1.474 1.0385 - 103

18 | 9.666 - 102 | 1.823-103 | 1.338 - 104 1.478 1.035 - 108

20 | 9.691 102 | 1.828 -103 | 1.474 - 104 1.480 1.036 - 103

22 | 9.709 102 | 1.830-10% | 1.591 - 10* 1.481 1.036 - 103

TABLE 6. Residuals for the class of M-matrices

Il Ax — b
| 4 = Bl AT ]
Gaussian Gaussian
N | h | Algorithm 1 | elimination | Algorithm 1 | elimination
4] 1[1.017-10-12[4.441-10-18 [ 1.570-10-19 | 6.859 - 10~ 23 |

6| 2| 4.547-10712 | 9.095-10~13 | 2.087-10"19 | 4.173.10~20
8| 3545710712 | 1.819-10~12 | 1.100-10~1° | 3.667 - 10—20
10 | 4| 7.500-10"12 | 1.819-10—12 | 8.214-10~20 | 1,992 -10~20
12| 51 1.373.10711 | 8.702-10"1% | 9.347.10"20 | 5.923.10~23
14 | 6| 1.925.10~11 | 3.638.10~12 | 8.923.10~20 | 1.686 1020
16 | 7| 4.002-10"1! | 3.638-.10"12 | 1.349 -10~1° | 1,226 -10~20
18 | 8| 4.426.10"11 | 5.087-10~14 | 1.139.10~1° | 1.309 - 10~22
20| 9| 7.570-10"11 | 7.276-10~12 | 1.544 -10~19 | 1.484.1020
22 |10 | 8.678-10~11 | 2.183.10~11 | 1.444.-10-19 | 3.632.1020

10. CONCLUSIONS

We have presented an error analysis for a divide-and-conquer algorithm to solve
linear systems with block Hessenberg matrices. Our error analysis corresponds
closely to the recursive nature of this algorithm. The key to our analysis is equa-
tion (10) which gives a representation for the residuals AB in the tear tree. Another
important equation is (53) which shows the structure of the residuals in terms of
local errors and errors from previous nodes in the tear tree. By combining (10)
and (53) we can derive the linear recurrence relationships for £ and {x which lead
to the final error bound (70).

The precise value of the bound (70) is of minor importance. Rather we can show
that Algorithm 1 computes a stable solution if the condition (71) is satisfied for all
the matrices in the tear tree. This condition ensures that all the quantities in Algo-
rithm 1 remain bounded. In particular equation (57) shows that the matrix D~1Y
can never be much larger than D~'X. On the other hand, if |[D"'A~1AD| is
significantly larger than one for all the nodes in the tear tree, we may encounter
very large matrices D~'Y during the execution of Algorithm 1, even if the final
result D71X is small. This is exactly what happens in our first test case in §9,
leading to a large residual AB.
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We have also shown that the condition (71) is always satisfied in the case of

block diagonally dominant matrices and M-matrices. This explains the accurate
results of the algorithm for this type of problems.
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