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THE ZEROS OF FABER POLYNOMIALS 
GENERATED BY AN m-STAR 

ARNO B. J. KUIJLAARS 

ABSTRACT. It is shown that the zeros of the Faber polynomials generated by 
a regular m-star are located on the m-star. This proves a recent conjecture 
of J. Bartolomeo and M. He. The proof uses the connection between zeros of 
Faber polynomials and Chebyshev quadrature formulas. 

1. INTRODUCTION 

Let C denote the complex plane, C = C U {oo}, and let E be a compact set in 
the complex plane (not a single point) such that C \ E is simply connected. Let X 

denote the conformal mapping from C \ E onto IwI > p such that in a neighborhood 
of oo, 

O(z) =z+ao+?a, + 2+ 
z Z 

Here, p = PE is the logarithmic capacity of E. The polynomial part of q(z)' is 
called the Faber polynomial of degree n generated by E. 

Bartolomeo and He [1] studied the Faber polynomials generated by the regular 
m-star 

Sm:= {z E C I zm E [0,4]}, m = 2,3,. 

They obtained several properties of these Faber polynomials and they formulated 
a conjecture on their zeros. Here we will prove this conjecture. 

Theorem 1. Let m > 2, n > 1, and let Fn be the Faber polynomial of degree n 
generated by Sm. Then all the zeros of Fn are located on Sm 

The proof of Theorem 1 is based on the connection between zeros of Faber poly- 
nomials and quadrature formulas with equal weights (so-called Chebyshev quad- 
rature formulas), see Lemma 3 below. This connection was used before to obtain 
results on Chebyshev quadrature from properties of Faber polynomials, see [4, 5, 7]. 
Here we use this connection in the opposite direction. We will obtain Theorem 1 
from the following quadrature result. 
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Theorem 2. Let p E N and a C [O,l/(p + 1)]. Then there exist nodes t1,... tp 
in [0, 1] such that 

(1.1) jtf (t) dt = af (0) + p tZf 

for all polynomials f of degree < p. 

Note that for a = 0 the p-point Gauss formula with respect to dt/(rr t -t2) can 
be used in (1.1). This formula is exact for all polynomials up to degree 2p - 1. A 
quadrature formula (1.1) for some a > 0 in which all the nodes are distinct can be 
perturbed a little to give a quadrature formula for slightly larger a. So our main 
concern in proving Theorem 2 will be to show that for a < l/(p + 1) the nodes do 
not coincide. 

2. PROOF THAT THEOREM 2 IMPLIES THEOREM 1 

Let E be a compact set whose complement is simply connected with respect to 
the extended complex plane. Let p be the logarithmic capacity of E and b the 
conformal mapping from C \ E onto Iwl > p such that q(oo) = oc and q'(oo) = 1. 
We denote by HE the equilibrium measure on E. This is the unique probability 
measure on E satisfying 

f ( log PE quasi-everywhere on E, 
(2.1) J log Iz-(|dlE (( = llog Iq5(z) I on C \E. 

Lemma 3. Let n > 1, and let c1, .. .,, E C. Then c1, .. ., (n are the zeros of the 
Faber polynomial of degree n generated by E if and only if 

(2.2) dlk. E k = 1,... ,n. 

Proof. The function q(z)/z is analytic in C \ E (including oc), and from (2.1) it is 
easy to see that 

log (_)= J log (1--) d[ E(() =- (k-8{ Zk, 

Here we take the branch of the logarithm that vanishes at oo. Also, if Fn (z) 

rn (z - Z(j), then 

r1j=~~~~~~j1k= = log~~~~ 00 n())=;lg(-z)= E kE( 

It follows that (2.2) holds if and only if 

log (Fn(j)) = nlog (CO(z)) + O(z-n-1), z -oo, 

and this holds if and only if 

Fn(z) = qf(Z)n + 0(Z-1), Z -_ o, 

that is, Fn(z) is the Faber polynomial of degree n generated by E. D 
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Let Fn (z) be the Faber polynomial of degree n generated by Sm. Write nr 
pm + r with 0 < r < m. From the symmetry of Sm it easily follows that 

Fn(z) = ZrGp(zm/4), 

where Gp is a polynomial of degree p. The zeros of Fn are on Sm if and only if the 
zeros of Gp are in the interval [0,1]. 

Lemma 4. The zeros t1,... , tp of Gp satisfy 

(2.3) tk dt -Etm , k = 1, ... ,p. 
j=1 

Conversely, if tl,...,tp are such that (2.3) holds, then ti, . . . , tp are the zeros of 
Gp. 

Proof. Let t1,... ,tp be the zeros of Gp. Then (4tj)l/m exp(2iril/m), j = 1,. .. v Pi 
I = 1, .. ., m, are the zeros of Fn, together with an r-fold zero at the origin. Thus, 
if c.,... , n are the zeros of Fn, then for every k 

n P 

(2.4) 1 km 4km E tk 

j=1 j=1 

Then by Lemma 3, 
P 

(2.5) m =4- m (dsm k 1, ..., p. 
j=n 

The moments of ASm were computed in [1]: 

41m (m-2)/2 k 

(2.6) J mdUs (d)= jkm s ds=)jtk -dIt 

where we have put sm = 4t. Now (2.3) follows from (2.5) and (2.6). 
For the converse, suppose tl,... , tp satisfy (2.3). Let (1,... , (n be the zeros of 

Zr FIJP= (zm/4 - tj). Then it is easy to see that (2.4) holds. From (2.3), (2.4) and 
(2.6) it follows that 

k m =J(kmym =1..., 

j=1 

i.e., (2.2) holds if k < n is a multiple of m. By the symmetry of Sm and the points 
(1,... , (n both sides of (2.2) are zero if k is not a multiple of m. Hence, (2.2) holds 
and it follows from Lemma 3 that 1,... , (n are the zeros of Fn. Then t, .. ., tp 
are the zeros of Gp. I 

Corollary 5. Theorem 2 implies Theorem 1. 

Proof. Let m > 2, n > 1 and write n pm + r with 0 < r < m. Let Fn(z) 
ZrGp(zm/4) be the Faber polynomial of degree n generated by Sm. Let a := r/n < 
1/ (p + 1). By Theorem 2 there are nodes t1, ... , tp in [0, 1] such that (1.1) holds 
for polynomials of degree < p. Since (1 - a)/p = m/n, it follows that (2.3) holds 
and therefore, by Lemma 4, t1,:.. ,tp are the zeros of Gp. Thus, the zeros of Gp 
are in [0,1], and therefore the zeros of Fn are on Sm D 
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3. PROOF OF THEOREM 2 

We first discuss the maximal mass function Ap (t) with respect to the measure 

dt/lr(r t -t2) on [0, 1], cf. [3, ?IV.3]. 
Let p E N be fixed. Consider all quadrature formulas 

jft dt2 N 
f f(t) f Zcj f(tj) 

7r t2 j=1 

that are exact for polynomials f of degree < p and are such that 

cj > 0 tj E[0,1], j= 1,...,IN. 

We call cj the mass at tj. 

Definition 6. For t E [0,1], the number Ap(t) is defined as the maximal mass at t 
among all such quadrature formulas. 

We need the following result. 

Lemma 7. The following estimate holds 

(3.1) A (t< 21 t [0, 1]. 
p (t) -1' 

In addition we have 

(3.2) Ap(0) = Ap(l) = 

Proof. First, let p = 2q - 1. There exist two principal quadrature formulas (cf. [3]), 
namely the familiar q-point Gauss formula 

J1 dt 2 
q 

fo (t) f (t* ) 
IFV, - 2 p+ j=1 

and the Lobatto formula (or Bouzitat formula of second kind), cf. [2, pp. 106-108], 

1 dt 1 1 2 q-1 

f f(t) VtA~ r1_ fO) + +f (1) + + ,f (s,) 

The nodes t* are the zeros of Tq(2t - 1), where Tq is the Chebyshev polynomial 
of the first kind of degree q and the nodes S1 are the zeros of Uq-1(2t -1), where 
Uq-i is the Chebyshev polynomial of the second kind of degree q - 1. We note the 
separation property 

O<t* < S* < t* < < S* _1 < t* < 1. 

The Gauss and Lobatto formulas are exact for polynomials of degree < p and have 
maximal mass at all of their nodes, i.e., 

Ap(0) = Ap(-1) = p +1 

Ap=(tA) = Ap(t) = Ap(s*) Ap(s*-)) 2 

Next, by a result of Schoenberg and Szego [6], 

AP(t) 
= max{P(t), Q(t)}, 
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where P and Q are two polynomials of degree p. These polynomials have the 
common value (p+ 1)/2 in the points t*,... , t, s,... ., 1, and at the end points 
we have 

P(O) = p + 1, Q(0)=07 P(1) =0, Q(1) = p + 1. 

See [3] or [6] for the precise form of P and Q. 
It follows that P(t) > (p + 1)/2 on the intervals (0,t*) and (s>t?i), j = 

1,... , q- 1, while Q(t) > (p+1)/2 on the remaining intervals (t>, s*), j 1,... 

1,and (t, 1). Hence, for every t E [o, ], 
1 
(= max{P(t), Q(t)} > P 2 

AP (t) - 2 

This proves the lemma in case p is odd. 
For p = 2q one has to proceed in a similar way, but the details are slightly 

different. The two principal quadrature formulas are Radau formulas (or Bouzitat 
formulas of first kind), cf. [2, pp. 101-103], 

1 dt 1 2 q 

]f(t) f(O)+ + f(t*) 

and 
dt 1 2 q 

Iof(t) ft t f() + ?1,f(sp), 
,FV/t-~ 

"' 
t p + 1J=1 

with separation property 

< S* < t* < .. < Sq < tq < 1. 

The nodes t* and S? are the zeros of P/2'1/2)(2t - 1) and Pq412'172 (2t- 1), 
respectively, where Pq(G0) denotes a Jacobi polynomial. Again, these formulas are 
exact for polynomials of degree < p and have maximal mass at all of their nodes. 
Hence, 

Ap (0) p (-1) p +7 1~~~~ 

Ap(t*) =.. = Ap(t*) = Ap(s*) = = Ap(sq) = + 

The rest of the proof is the same as in the case of odd p. El 

Proof of Theorem 2. Let p e N. We observe first that for a = 0 the p-point Gauss 
formula gives a quadrature formula (1.1) with nodes in (0, 1). 

Next, we note that the statement that (1.1) holds for every polynomial of degree 
< p is equivalent to 

p 
k p 

I 
k dt 

(3.3) Zt> --ajtk~ ~ 2' k = l,...,Ip. 
j=1 

It is easy to see that the mapping (t,... ., tp) -* (s 1, . .. , sp), where Sk Ejp=1 tk7 
is locally surjective if the points t1,... ,tP are distinct. Since for a = 0 we have 
distinct nodes in (0, 1), it follows that for a > 0 sufficiently small, there exist nodes 
t1,... ,tp in (0,1) satisfying (3.3) and hence (1.1). In fact, we can continue this 
process until for some a, we find a solution of (1.1) in which either two nodes 
coincide or one of the nodes coincides with one of the end points. 
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Thus, we shall be finished if we can show that if the points t1,... , tp satisfy (1.1) 
with a < 1/ (p + 1) and 

(3.4) 0 < tI < t2 < < tp < 1, 

then we must have strict inequalities everywhere in (3.4). 
This follows, however, quite easily from Lemma 7. Indeed, suppose for example 

that tj = tj+,. Then the quadrature formula (1.1) has total mass 2(1 - a)/p at tj. 
Then (3.1) implies that 2(1 - a)/p < 2/(p + 1), which cannot hold if a < 1/(p + 1). 
Similarly, if we suppose that 0 = t1 or tp = 1, then we find a contradiction with 
(3.2). D 

Remark . From the proof of Theorem 2 we see that for a < 1/(p + 1) the nodes 
tl, . . ., tp are mutually distinct and distinct from the end points. This implies that 
the zeros of the Faber polynomial Fn generated by the m-star are also mutually 
distinct (except for the zero at the origin). 

FACULTEIT WISKUNDE EN INFORMATICA, UNIVERSITEIT VAN AMSTERDAM, PLANTAGE MUIDER- 

GRACHT 24, 1018 TV AMSTERDAM, THE NETHERLANDS 
E-mail address: arnoQfwi.uva.nl 

REFERENCES 

1. J. Bartolomeo and M. He, On Faber polynomials generated by an m-star, Math. Comp. 62 
(1994), 277-287. MR 94c:30006 

2. A. Ghizzetti and A. Ossicini, Quadrature formulae, Birkhauser, Basel, 1970. MR 42:4012 
3. S. Karlin and W. J. Studden, Tchebycheff systems: with applications in analysis and statistics, 

Interscience, New York, 1966. MR 34:4757 
4. A. B. J. Kuijlaars, Chebyshev type quadrature and zeros of Faber polynomials, J. Comput. 

Appl. Math. (to appear). 
5. F. Peherstorfer, Weight functions which admit Tchebycheff quadrature, Bull. Austral. Math. 

Soc. 26 (1982), 29-38. MR 84k:65025 
6. I. J. Schoenberg and G. Szeg6, An extremum problem for polynomials, Compositio Math. 14 

(1960), 260-268. MR 24:A380 
7. J. L. Ullman, A class of weight functions that admit Tchebycheff quadrature, Michigan Math. 

J. 13 (1966), 417-423. MR 34:5290 


