
MATHEMATICS OF COMPUTATION
Volume 65, Number 213
January 1996, Pages 203-213

MAXIMALLY EQUIDISTRIBUTED
COMBINED TAUSWORTHE GENERATORS

PIERRE L'ECUYER

ABSTRACT. Tausworthe random number generators based on a primitive tri-
nomial allow an easy and fast implementation when their parameters obey
certain restrictions. However, such generators, with those restrictions, have
bad statistical properties unless we combine them. A generator is called max-
imally equidistributed if its vectors of successive values have the best possible
equidistribution in all dimensions. This paper shows how to find maximally
equidistributed combinations in an efficient manner, and gives a list of gener-
ators with that property. Such generators have a strong theoretical support
and lend themselves to very fast software implementations.

1. INTRODUCTION

Theoretical and empirical investigations suggest that random number genera-
tors based on a too simple linear recurrence, such as simple linear congruential
generators or trinomial-based Tausworthe or GFSR generators, should be avoided,
and that combined generators should be used instead [1, 5, 7, 13]. In this paper,
we examine a class of combined Tausworthe generators first introduced by Tezuka
[10] and propose specific instances which have the best possible equidistribution
properties (relative to their period length) in all dimensions.

More specifically, suppose that we partition the t-dimensional unit hypercube
into 2t1 cubic cells of equal sizes, and place into these cells the t-dimensional points
(vectors of successive values) produced by the generator over its entire period. The
largest value of f for which each cell contains the same number of points is called the
resolution in dimension t, and is denoted by et. The generator is called maximally
equidistributed (ME) if ?t reaches its largest possible value in all dimensions, that
is, ?t = min(L, Lk/ti) for t = 1,... , k, where L is a constant that represents the
number of bits of resolution -that are retained on the target computer. A ME
generator is also called collision-free (CF) if it has the additional property that for
L > f > ?t and all t, none of the 2tt cells contains more than a single point. (All
of this is explained in further details in the next section.) The values of ?t can
be computed as explained in [2, 10] by exploiting the fact that they are related to
the lengths of the shortest vectors in certain lattices. However, the computations
described in [2] provide more information than just ?t, and the aim of this paper is
to describe a much more efficient algorithm for computing the resolution ft for all
t and checking for maximal equidistribution.

?1996 American Mathematical Society

203

Received by the editor October 18, 1994.
1991 Mathematics Subject Classification. Primary 65C10.
Key words and phrases. Random number generation, equidistribution, combined generators.

204 PIERRE L'ECUYER

In ?2, we give some background on simple and combined Tausworthe generators
and their implementation. We explain the notions of (t, ?)-equidistribution, resolu-
tion, and ME and CF sequences. In ?3, we show how to compute ?t, and how to
check if a generator is ME or ME-CF, in an efficient manner. In ?4, we give the
results of a computer search for near-ME, ME, and ME-CF combined Tausworthe
generators, within certain classes of parameters that give rise to a fast implemen-
tation. A search for combined generators of that sort had already been performed
within a small subclass of two-component combinations [11] with period length of
approximately 260. A value of L = 60 was used (implicitly). No ME generator
was found in that subclass, but three "almost-ME" generators were reported and
proposed, after passing successfully a battery of empirical statistical tests. Soft-
ware implementations of those combined generators are slightly faster than those of
combined linear congruential generators of comparable period lengths. It appears
that a period length of 260 is rather short, in the sense that it imposes rather small
upper bounds on ?t for moderate values of t. Arguments based on the order of
the discrepancy bounds for Tausworthe generators [8] also suggest that one should
never use more than a negligible fraction of the period of linear-type generators,
which implies that practical general-purpose generators should have huge period
lengths. Combinations with three components or more should then be considered,
and we provide a list of ME combinations of that kind. We used L = 32, having in
mind 32-bit computers.

2. TAUSWORTHE GENERATORS AND (t, ?)-EQUIDISTRIBUTION

2.1. Definition and implementation. Tausworthe generators [6, 8, 9, 11] pro-
duce pseudorandom numbers by generating a sequence of bits from a linear recur-
rence modulo 2, and forming fractional numbers by taking blocks of successive bits.
More precisely, let F2 denote the finite field with two elements (say, 0 and 1). Let
P(Z) = zk _ alzk-l ak be a polynomial with coefficients in F2, and consider
the recurrence

(1) Xn. = alxn-1 + + akxn-k,

whose characteristic polynomial is P(z). It should be understood that in (1) and
all along the paper, all computations are performed in F2 (this can be identified
with working in integer arithmetic modulo 2, and we will omit writing "mod 2"
explicitly). Suppose that so = (X,.. ., xk1) C {0, I}k is fixed and define

L

(2) Un = Zxns+i2 i,
i=l1

where s and L are positive integers. If P is primitive, so =A 0, and p = 2k _ 1 is
coprime to s, then the sequences (1) and (2) are both purely periodic with period
P.

In principle, computing un from un-1 involves performing s steps of the recur-
rence (1), which could be really slow in general. However, fast software imple-
mentations are available for certain special cases, and one such case is when the
following condition is satisfied.

Condition 1. Suppose that P(z) is a primitive trinomial of the form P(z) =

Zk _ Zq-_, with 0 < 2q < k, O < s < k-q < k < L, gcd(s,2k_1) - 1,

and L is equal to the computer's word size.

COMBINED TAUSWORTHE GENERATORS 205

We now describe an algorithm which, under that condition, quickly computes
sn = (xns,... i,xns+L1) from sn-1 = (X(n_1)s. . .,x(n1)?+L-). This is a slight
generalization of the algorithm given in [11], where L = k was implicitly assumed.
The vectors sn are maintained as unsigned (L-bit) integers, which are then mul-
tiplied by the normalization constant 2-L to produce un. That algorithm is fast
and easy to program in any computer language which supports shifting and bitwise
logical operations.

Define r = k - q. Let A, B, and C be bit vectors of size L and suppose that A
initially contains sn-1, while C is a "mask" comprised of k ones followed by L - k
zeros. The symbols & and ED denote the logical (bitwise) "and" and "exclusive-or"
operators, respectively. After step 6, A contains

- . To describe the behavior of
the algorithm, take n= 1. Initially, A contains so= (XO,... ,XL1). After step 2,
B contains Xk, . . ., Xr+L-1 (because Xk+i = Xi (Xi+q), followed by XL-q, -* ,XL-1

(the latter q bits unused afterwards). After step 5, A contains x8,... ,Xk1 followed
by s + L - k zeros, while B contains k - s zeros followed by Xk,. . ,Xs+L-1. Then,
after step 6, A contains s1.

Algorithm QuickTaus.
1. B <- q-bit left-shift of A;

2. B <- A B;

3. B <- (k - s)-bit right-shift of B;

4. A < A&C;

5. A <- s-bit left-shift of A;

6. A- A EDB.

For this algorithm to work properly, A must be initialized correctly with a
valid initial go; that is, which agrees with the recurrence. The first k bits, so =
(xO,... ,xk1), can be chosen arbitrarily (with so 78 0); but when L > k, the other
bits, Xk,.. . ,XL1, are uniquely determined by so and the recurrence (1). The fol-
lowing procedure initializes A properly, assuming that k + r > L (which covers most
cases of practical interest): set the first k bits of A to an arbitrary initial state so,
followed by L - k zeros, then do:

1. B <- q-bit left-shift of A;

2. B <- AEB;

3. B <- k-bit right-shift of B;

4. A <- A B.

After step 4, A contains go. This can also be expanded to a more general initializa-
tion procedure (not given here but implemented in our programs) which does not
require that k + r > L. If the additional condition L - k < r - s is satisfied, then it

206 PIERRE L'ECUYER

can be easily verified that after the first pass through the six steps of QuickTaus, A
will necessarily contain a valid state, even if the initial state go was not valid. In that
case, the above initialization procedure is not necessary for running the generator;
just skip the first value. On the other hand, the initialization procedure is needed
for constructing the binary matrices required for the equidistribution analysis, as
we shall discuss in ?3.

2.2. Combined generators. Unfortunately, Tausworthe generators based on
polynomials of the above special form are unacceptable for two major reasons.
First, recurrences based on polynomials with too few nonzero coefficients are known
to have important statistical defects [1, 7]. Secondly, for a b-bit computer, the pe-
riod length of the generator cannot exceed 2b, which is much too short for many
applications on current 32-bit computers.

One way to address those drawbacks without slowing down the generator too
much, suggested by Tezuka [10] and Wang and Compagner [13], is to combine two
or more trinomial-based generators of the special form, as follows. For j = 1,... , J,
consider a Tausworthe generator with primitive characteristic trinomial Pj of degree
kj, with s -S such that gcd(sj, 2kj - 1) -1, whose corresponding sequence is de-
noted by xj>, and whose output at step n is u - = l12-. Define the
output un of the combined generator as the bitwise exclusive-or of u1,, .n. , UJ,n.

If the polynomials Pj (z) are pairwise relatively prime, then the period of the com-
bined generator is p = lcm(2k1 -1, . .. , 2kJ - 1) = (2k -1) x... x (2kg -1). Further,
as shown in [11], the combined generator is equivalent to a Tausworthe generator
with (reducible) characteristic polynomial P(z) = PI (z) ... Pi (z) and s such that

J

(3) ZJsrhj(z)(P(z)/Pj(z)) (mod P(z)),
j=1

where r%(z) is the inverse of P(z)/Pj(z) modulo Pj(z). See [6, 11, 13] for further
details. The main interest of that kind of combination is that not only large periods
can be achieved, but also P(z) typically has many nonzero coefficients even when
the individual Pj(z) are all trinomials. In other words, this combination approach
is just an efficient way of implementing a Tausworthe generator with a "good"
(reducible) characteristic polynomial.

2.3. Equidistribution and resolution. Consider the set Pt of all t-dimensional
vectors (or points) formed by successive values of (2), from all possible initial states
so:

Pt = {un = (unm ... i Un+t-1) I n > 0,so C {0, l}k}.

We are interested in knowing whether those points are well distributed in the unit
hypercube It = [0, I)t. In the following analysis, we must assume that f < L.
Suppose we partition It into 2tt cubic cells of equal size. We say that Pt (and
the sequence {tu}) is (t, ?)-equidistributted if all the cells contain exactly the same
number of points, namely 2k-t points each. Of course, this is possible only if
t1 < k, because the cardinality of Pt is at most 2k. The largest value of f < L
for which the sequence is (t, ?)-equidistributed is called the resolution in dimension
t, and denoted by ?t. A dual set of numbers are tt, 1 < f < L, where te is the
largest value of t for which the sequence is (t, ?)-equidistributed. One has the upper

COMBINED TAUSWORTHE GENERATORS 207

bounds

ft < ?* - min(L, Lk/ti)
for each t and

tf < ke- lf/j

def~~~~~~~e for each f < L. We denote the reso1;ution galp in dimension t by At =- ftt*

and the dimension gap for resolution f by Ai def te-t. A generator is said to
have maximal resolution in dimension t if At = 0, and maximal dimension for
resolution ? if At = 0. Adopting a definition similar to [12] (in [12], L > k was
implicitly assumed), we call the sequence maximally equidistributed (ME) if At = 0
for t 1, ... , k or, equivalently, if A\ = 0 for f = 1, . . . , L. The equivalence is easily
seen by observing that lit < ? * for some t implies that Ae > 0, whereas te < tj
implies At* > 0. These definitions apply not only to generators based on irreducible
polynomials, but also to generators based on reducible polynomials, i.e., combined
generators.

Suppose now that we have a ME sequence. For the values of t that divide k,
each of the 2k cells in dimension t and resolution it = k/t < L contains exactly one
point of Pt. But when t does not divide k and t < L, each cell in dimension t and
resolution ?t contains exactly 26t points, where &t k - tfit. Now, if ?t + 1 < L and
if we partition It into 2t(et+1) cubic cells, then some of the cells will be empty while
others will contain one or more points. If all nonempty cells contain exactly one
point, we say that the ME sequence is colliszon-free in dimension t, or CF(t). If
that holds in all dimensions t such that lt < L, we just call it collision-free (CF). A
ME-CF sequence is one for which the points Pt are as evenly distributed as possible
in all dimensions, in terms of a partition of It into cubic cells as described above.

3. COMPUTING THE RESOLUTION AND FINDING ME AND ME-CF GENERATORS

3.1. General results. We will now examine how the resolution ?t can be com-
puted, and how one can check whether a sequence is maximally equidistributed
and collision-free. For a given Tausworthe generator, consider the tl-dimensional
(row) vector of bits

st.f's =(XO) Xf-1:X5: . *)Xs+f-1, * *XX(t-l)s1 .. * X(t- lEs+ - 1)

F'rom (1), each x, can be expressed as a linear combination of xo.... I, xk-1, say

k-I

(4) Xn = Ebn,iXi
i=O

for some binary coefficients bn,z. Therefore, st,f,, can be expressed as

(5) st,f,s = soBt,f,s,

where Bt,e,s is a k x tl binary matrix which can be written as follows: if xn denotes
the jth element of st.f,s, then the jth column of the matrix is (bno,... , bnkk-1)
The next proposition gives a necessary and sufficient condition for equidistribution
and for the sequence to be CF(t), in terms of the matrices Bt,... Next, we will
explain efficient ways of computing the bn.i's, and then give a different variant of
Proposition 1 for the case of combined generators.

208 PIERRE L'ECUYER

Proposition 1. The sequence is (t, ?)-equidistributed if and only if the matrix Bt,e,8
has (full) rank tf. If f t = Lk/tj < k/t < L, then the sequence is also CF(t) if and
only if the matrix Bt,f,+?,8 has rank k.

Proof. The matrix Bt,e,, in the linear system (5) induces a linear mapping 9oi
Fk - Ftf. The dimension of the kernel of pi is k - k', where k' is the number of
linearly independent rows in Bt,e,,. Therefore, each element of Ftf is the image of
either 0 or 2k-k' distinct elements of Fk. Then, the sequence is (t, ?)-equidistributed
if and only if each element of Ftf is the image of 2k-k distinct elements of F , which
occurs if and only if 2t' - 2k, i.e., k' = tU. Similarly, the matrix Bt,f,+?,,
induces a linear mapping 02: Fk - Ft(f?+?) and the sequence is CF(t) if and only 2 2
if P2 is one-to-one, which occurs if and only if the matrix Bt,f,+?,8 has rank k. Z

To see how to compute the b,,i's efficiently, even when n is large, we can use
a polynomial representation of Zk . Define Gn(z) = zn mod P(z), for all n > 0.
This polynomial can be computed by a standard divide-to-conquer algorithm (see
[3]).

Proposition 2. The polynomial Gn(z) can be written (uniquely) as
k-1

(6) Gn (Z) =Ebn, Z' Z

i=O

where the coefficients bn,i are the same as in (4).

Proof. Suppose that Gn (z) is given by (6). For any given initial state so =
(XO,... , xk1), define the linear mapping fb such that for any polynomial P(z) =
>kji cizi, one has +(P) = Ek>j cixi. Then, if we define Yn= 4(Gn)

Ek=0 bn,iXi, it is easily seen that Yn = Xn for n < k, that {Yn n > 0} follows
the recurrence (1) for all n > k, and so xn = Yn for all n > 0. M

So, the coefficients of the polynomials Go (z), .. . , Ge -I(z), Gs (z),... , G,+f-I (z),
* , G(tl) (Z), G(t-),+e1(z) are precisely the columns of the matrix Bt,f,,

These polynomials are easy to compute, especially when s is small, which is typically
the case for single-component Tausworthe generators.

In fact, it turns out that when s is small, there is an even easier way to compute
the bn,?'S) which was pointed out to the author by Raymond Couture. Suppose that
the initial state is so = ei, the ith unit vector in dimension k; then equation (4)
simplifies to x= bn,-. But when s is small, computing all the elements of st,f,s
for a given so can be done easily just by using the algorithm that implements the
generator. Typically (e.g., with the algorithm QuickTaus that we gave previously),
those elements are produced L at a time. In that case, for any T, by performing
T - 1 steps of the recurrence with so = ei, for 1 < i < k, one readily obtains all the
elements of all the matrices Bt,e,s, for 1 < t < T and 1 < f < k. This information
can be stored and each matrix Bt,e,s can then be constructed as needed from these
elements.

3.2. Building the binary matrix for combined generators. For combined
generators, the value of s is not small in general. Fortunately, it is not necessary
to compute that value: one can replace z5 by the right-hand side of (3) in the
definition of Gn(z). Denote by Hs(z) that right-hand side, reduced modulo P(z).
Then, one has, for example, G(t_1)s+?-1(z) = z-1(Hs(z))t-l mod P(z).

COMBINED TAUSWORTHE GENERATORS 209

There is, however, a still more efficient way of testing equidistribution in the
case of combined generators, by decomposition, as we now explain. Consider the
component j of the combined generator. By applying the previous discussion to
that component, it follows that one can express Xj,n as

kj-1

(7) Xj,= n E b3,n,iXj,
i=O

for some binary coefficients b',n, and the vector of bits

Sj, t,,sj = (xi,o, * * , Xj,- Xi, sj . Xj,sJ 1, ... * Xj,(t-l)s, v .* * xj,(t-l)sj+f-l)

can be expressed as

(8) s3,t,f Si = si,oBj,t,f,Sj

where Bj,t,e,8 is a kj x tf binary matrix whose elements can be computed easily
using the techniques that we discussed for the case of simple generators. The
coefficients bj, n, in (7) are precisely the coefficients of the polynomial Gj,n(z) =

zn mod Pj(z), and can be efficiently computed, when sj is small, by using the
recurrence for component j. In particular, if each component satisfies the conditions
of the algorithm of ?2.1, then all the required bits can be quickly obtained using
that algorithm.

Now, observe that

j kj-1

Xn = Xl,n + + XJ,n = E E bj ,n,iXji

j=1 i=O

for each n. The definitions of Un and Uj,n imply that

J

(9) Xns+i-1 = EXj,nsj?+i-1

j=

It follows from these observations that
J J

(10) St,I,s = Sjt,f,sj = Sj,o E Bj3t Si
j=1 j=

This can be rewritten as

(11) st,e,s _obt8 f S,

where Bt,e,s is the k x ti matrix defined as the vertical juxtaposition of Bl,t,81,. .,
Bj,t,e,s8, while go is the k-dimensional row vector obtained by juxtaposing si,o,
sJ,o horizontally. This leads to the following proposition.

Proposition 3. The sequence is (t, ?) -equidistributed if and only if the matrix Bt,f,s
has (full) rank ti. If t= Lkjtj < klt < L, then the sequence is also CF(t) if and
only if the matrix Bt,f,+,,s has rank k.

Proof. The proof is similar to that of Proposition 1, with B replaced by B. D1

The advantage of using Bt,e,s instead of Bt,e,s is that the former can be con-
structed by working with the individual components of the generator separately.
On the other hand, checking whether the matrix has full rank requires essentially

210 PIERRE L'ECUYER

the same amount of work for both Bt,e.s and Bt,ef,. This can be achieved by triangu-
lating the matrix (by Gaussian elimination) using exclusive-or operations between
the rows or columns.

3.3. Sufficient conditions for ME and for ME-CF. To verify whether a se-
quence is ME, one can compute ft for t = 1, . . . , k, or te for e = 1, ... , L, using
Proposition 1 or 3. However, it is not necessary to compute ft for each of those k
values of t, or te for all L values of X, because (t,)-equidistribution implies (t', f')-
equidistribution for all t' < t and ?' < T. Thus, if ?t, = ?t for t' < t and maximal
resolution is reached in dimension t, then it is also reached in dimension t'. Like-
wise, if t', = te for ?' < f and the generator has maximal dimension for resolution
X, then it also has maximal dimension for resolution ?'. Moreover, (1, min(k, L))-
equidistribution always holds by definition of Pt. This leads to the next proposition,
which tells us for which values of t we need to compute ?t, or for which values of
f we need to compute te. For simplicity, assume L > Vk -, which should always
be the case in practice. Define

44>1 _ {max(2, Lk/Lj]), LLkj},

(D2 = t = Lklf] i f 1, .., LVk },T
'I' - {1,..,~ kj},

XF2 = f = Lklt] I t-=max(2, [klL]),. L. ., L2 .

Proposition 4. A maximal period sequence is ME if and only if At = 0 for all
t C 1?l U 4?2. It is also ME if and only if Af = 0 for all f C 'I' U W2

Proof. Assume that ?tt =f for all t C 4bl U 4D2. Now, it suffices to show that ?t = t

for all t < k. Note that for t L k/Lj, one has t < k/L, and therefore t = L. Then,
for 1 < t < Lk/L], one also has ?t = L, which implies that if resolution ?t = L is
achieved in dimension t L k/Lj, it must also be achieved in all smaller dimensions.
So, those smaller dimensions need not be included in 4?1. Now, we examine the
dimensions t > k. Let t be an integer such that vk/ < t < k and t , (2. Then,
?t < Lk/tj < Vk, so ft < uk-i < L. Let t' L Ik/ltj. Then t' C (2 and one
has t' < k/lt, which implies that ?t < k/t', and so ?t < ?c. Also, tft < k, which
implies that t < k/lt, so t < Lk/lti = t' and then ?t > t,. Therefore, Lt = t'.
Then, since we have (t', L)-equidistribution because of our initial assumption, we
also have (t, L)-equidistribution and this completes the proof of the first part. The
proof of the second part is similar. LI

The next proposition tells us for which values of t we need to check CF(t) to
make sure that a given ME sequence is also CF. Define

4?3 = {t 1 2 < t < k; Lt = Lk/t] < k/t < L},
4?4 = {t C (3 k mod (Lt + 1) > 0; Lt-I > Lt}

Proposition 5. An ME sequence is also CF if and only if it is CF(t) for all t C 4?4.

Proof. The condition is clearly necessary; it remains to show that if CF(t) holds
for all t c 4?, then CF(t) also holds for all t C 4?3. Let t E 4b3 \ 4. If k
mod (Lt + 1) = 0, it means that Lt + 1 = k/t' = Lt, for some t' < t. Then, since
the sequence is ME, we must have (t', ft + 1)-equidistribution, which implies that
both matrices Bt,.et+?.s and Bt,ft+i., have rank k, and therefore the sequence is
CF(t). Otherwise (if Lt + 1 does not divide k), let t' = min{t" Itu = Lt}. Then,

COMBINED TAUSWORTHE GENERATORS 211

t' < t < Lk/lti = Lk/lt,] and lt' + 1 = lt + 1 does not divide k. Therefore, t' C 4)4,

and so we have CF(t'), that is, Btl et+,?. has rank k. This implies that Bt.ft+,,i
also has rank k, that is, CF(t). D

4. SEEKING MAXIMALLY EQUIDISTRIBUTED GENERATORS

We have written a computer program that seeks ME or near-ME combined se-
quences for a specified value of J, specified degrees kl, . . , ki of primitive trinomials
Pi(z), ... , PJ(z), with kj < 32 for each j, and L = 32. The program examines all
combinations of values of qj and sj within specified ranges, among those that sat-
isfy Condition 1, looking for ME or near-ME combined generators, and checking
whether the ME ones are also CF, by using Propositions 3-5. When seeking near-
ME generators, the user may specify upper bounds on the dimension gap A/ for
each l and on the sum A = EL A/. The values of these bounds have a strong
impact on the computational times, because a generator is rejected by the program
as soon as A or one of the A/'s exceeds its upper bound.

We now give examples of results obtained from this program. The program is
written in C and is available from the author. The timings reported here are on a
SUN SPARCstation 20 and the programs were compiled with "full optimization".
Let us recall all the pairs (k, q) such that 25 < k < 32, 0 < 2q < k, and P(z) =
Zk _ Z q- 1 is a primitive trinomial. They are [14]: (31,3), (31,6), (31,7), (31,13),
(29,2), (28,3), (28,9), (28,13), (25,3), (25,7).

Example 1. Let J = 2, k1 = 31, and k2 = 29. We performed an exhaustive
search for ME generators (A = 0) among all combined generators of that formn
with values of qj and sj satisfying Condition 1. A total of 2565 combinations
were examined, which took approximately 17 seconds of cpu time, and no ME
combination was found. We then performed another search with A < 3 and A/ < 1
for each li. That took 25 seconds and we found a single combination, namely:
(ql, q2, Si, S2) = (3,2,22,19), for which A/ = 1 for f = 6, 15 and 20, and A/ = 0 for
all other values of l. The three generators proposed in [11] turn out to have A > 4.

Example 2. We made a similar search for the case J = 2, k1 = 29, k2 = 28,
and with the constraint A = 0. Here, 864 combinations were examined (this
took 6.5 seconds) and the following ME-CF generator was found: (qi X q2, sl X S2) =

(2,9,18,14).

Example 3. This search was for three-component combinations: J = 3, k1 = 31,
k2 = 29, and k3 = 28. The program performed an exhaustive search for ME gener-
ators (A = 0) among the 82080 possible combinations with components that satisfy
Condition 1. This took approximately 31 minutes of cpu. A total of 19 ME genera-
tors were found, among which the following three are ME-CF: (ql, q2, q3, Si, S2, S3) =

(13,2,3,12,4,17), (7,2,9, 24,7, 11), and (3,2,13,20,16,7). These generators have
period lengths (231-1)(229_1)(228_1) - 288. All their components satisfy the addi-
tional condition L-kj < rj -sj, except for the first component of the second genera-
tor. The characteristic polynomial of each combined generator has the form P(z) =

k=0 ciz where k = 88. Let I1 = {i I ci = 1} denote the set of indices of the non-
zero coefficients. Then, for the three ME-CF combinations that we found, one has
A1 = {0,2,3,5,13,15,16,18,28,29,30,31,32,33,34,36,41,42,43,45,57,59,60,61,
63,70,88}, I1 = {0,2,7,11,16,18,28,29,30,31,33,35,36,37,38,40,42,45,57,59,
60,61,64,69,88}, and A1 = {0,2,3,5,13,15,16,18,28,29,30,32,42,44,45,46,57,

212 PIERRE L'ECUYER

59,61,73,88}, respectively. The corresponding recurrences have 26, 24, and 20
nonzero coefficients (out of 88), respectively.

Example 4. The next search was for J = 4, k1 = 31, k2 = 29, k3 = 28, k4 = 25,
and ME generators only. There are exactly 3283200 combinations that satisfy
Condition 1 in this case. We performed an exhaustive search among those combi-
nations and found 26195 ME generators, 4744 of them being ME-CF. That took
approximately 56 hours of cpu time. A list of those ME-CF generators is available
from the author.

Figure 1 gives a portable computer code in the language C for the first ME-
CF generator of Example 3, with period length 21. This code implements the
algorithm QuickTaus of ?2.1 for each component and generates a U(0, 1) random
number. Before calling taus88 for the first time, the integers sl, s2, and s3 must
be initialized to any nonzero values. On a SUN SPARCstation 20, it took ap-
proximately 0.9 seconds to generate one million random numbers with this code,
compared with 4.8 seconds for the widely used 32-bit combined generator proposed
in [4] (also implemented in C). -On a PC-486 (33 MHz), with a different compiler,
generating the same one million random numbers took 3.2 seconds for taus88 and
7.6 seconds for the combined generator of [4]. Four-component ME-CF combined
generators similar to that of Figure 1, with period 2113, are also easy to imple-
ment.

unsigned long sl, s2, s3, b;

double taus88 0)
{ /* Generates numbers between 0 and 1. */
b = (((sl << 13) - sl) >> 19);
si = (((sl & 4294967294) << 12) b);
b = (((s2 << 2) ^ s2) >> 25);
s2 = (((s2 & 4294967288) << 4) b);
b = (((s3 << 3) ^ s3) >> 11);
s3 = (((s3 & 4294967280) << 17) ^ b);
return ((sl ^ s2 ^ s3) * 2.3283064365e-10);
}

FIGURE 1. An implementation of a three-component generator in C

5. CONCLUSION

We showed how to find efficiently combined Tausworthe generators with optimal
equidistribution properties in all dimensions. Our method is simple and faster than
those previously available (e.g., much faster than the method described in [2]). It
permits one to perform exhaustive searches for optimal parameters with a mod-
est computing effort. ME and ME-CF combined generators (with trinomial-based
components) turn out to be much easier to find when the number of components
increases, because the number of possible combinations is then much higher, and
also because the characteristic polynomials of the recurrences tend to have more
non-zero coefficients when there are more components. Three combined Tausworthe

COMBINED TAUSWORTHE GENERATORS 213

generators with two components and period lengths 260 were proposed in [11]. The
three- and four-component ME-CF combinations that we found offer better alter-
natives, with longer period lengths and significantly better resolution. In terms of
speed, these generators are also highly competitive compared to those which are
currently available from software libraries.

ACKNOWLEDGMENTS

This work has been supported by NSERC-Canada grant # OGPO110050 and
FCAR-Quebec grant # 93ER1654. I wish to thank Luc De Bellefeuille, who wrote
the computer programs to perform the search, and Raymond Couture who sug-
aested several improvements.

DEPARTEMENT D'INFORMATIQUE ET DE RECHERCHE OPERATIONNELLE, UNIVERSITE DE

MONTREAL, C.P. 6128, SucC. CENTRE-VILLE, MONTREAL, H3C 3J7, CANADA

E-mail address: lecuyer@iro .umontreal. ca

REFERENCES

1. A. Compagner, The hierarchy of correlations irn random binary sequences, J. Statist. Phys.
63 (1991), 883-896. MR 93c:65012

2. R. Couture, P. L'Ecuyer, and S. Tezuka, On the distribution of k-dimensional vectors for
simple and combined Tausworthe sequences, Math. Comp. 60 (1993), 749-761 and S11-S16.
MR 93h:11085

3. D. E. Knuth, The art of computer programming: Semirnumerical algorithms, Vol. 2, 2nd ed.,
Addison-Wesley, Reading, MA, 1981. MR 83i:68003

4. P. L'Ecuyer, Efficient and portable combined random number generators, Comm. ACM 31
(1988), 742-749 and 754. See also the correspondence in the same journal, 32 (1989), 1019-
1024. MR 89d:65005

5. , Testing random number generators, Proc. 1992 Winter Simulation Conference, IEEE
Press, Pistacaway, NJ, 1992, pp. 305-313.

6. , Uniform random number generation, Ann. Oper. Res. 53 (1994), 77-120. CMP 95:06
7. J. H. Lindholm, An analysis of the pseudo-randomness properties of subsequences of long

m-sequences, IEEE Trans. Inform. Theory IT-14 (1968), 569-576.
8. H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM CBMS-

NSF Regional Conf. Series in Appl. Math., vol. 63, SIAM, Philadelphia, PA, 1992. MR
93h:65008

9. R. C. Tausworthe, Random numbers generated by linear recurrence modulo two, Math. Comp.
19 (1965), 201-209. MR 32:1878

10. S. Tezuka, Random number generation based on polynomial arithmetic rnodulo two, IBM TRL
Research Report, RT-0017, 1989.

11. S. Tezuka and P. L'Ecuyer, Efficient and portable combined Tausworthe random number
generators, ACM Trans. Model. Comput. Simulation 1 (1991), 99-112.

12. J. P. R. Tootill, W. D. Robinson, and D. J. Eagle, An asymptotically random Tausworthe
sequence, J. Assoc. Comput. Mach. 20 (1973), 469-481.

13. D. Wang and A. Compagner, On the use of reducible polynomials as random number gener-
ators, Math. Comp. 60 (1993), 363-374. MR 93e:65012

14. N. Zierler and J. Brillhart, On primitive trinomials (Mod 2), Inform. and Control 13 (1968),
541-554, and 14 (1969), 566-569. MR 39:5521

