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COMPOUND INVERSIVE CONGRUENTIAL 
PSEUDORANDOM NUMBERS: AN AVERAGE-CASE ANALYSIS 

JURGEN EICHENAUER-HERRMANN AND FRANK EMMERICH 

ABSTRACT. The present paper deals with the compound (or generalized) in- 
versive congruential method for generating uniform pseudorandom numbers, 
which has been introduced recently. Equidistribution and statistical indepen- 
dence properties of the generated sequences over parts of the period are studied 
based on the discrepancy of certain point sets. The main result is an upper 
bound for the average value of these discrepancies. The method of proof is 
based on estimates for exponential sums. 

1. INTRODUCTION 

Several nonlinear methods of generating uniform pseudorandom numbers in the 
interval [0,1) have been introduced and studied during the last years. The de- 
velopment of this attractive field of research is described in the survey articles 
[2, 5, 12, 13, 14] and in Niederreiter's excellent monograph [15]. A particularly 
promising approach is the inversive congruential method. The generated sequences 
of pseudorandom numbers have nice equidistribution and statistical independence 
properties (cf. [3, 10, 11]). Recently, a compound (or generalized) version of this 
method was introduced and analyzed (cf. [4, 8]), which shows some additional com- 
putational advantages. The present paper deals with the average behavior of these 
compound inversive congruential pseudorandom numbers and includes correspond- 
ing new results for the (ordinary) inversive congruential method. 

Let P1,.. ,Pr > 5 be distinct primes. For 1 < i < r identify Zpi {01,... 

Pi- 1} with the finite field of order pi. Let ai c i > zPi \ {0} and let (Zn))n>0 
be a sequence in Zpi with 

Zni) -ai(z$'))-1 + 1 (modpi), n > 0, 

where z-1 denotes the multiplicative inverse of z in Z2> and 0-1 = 0. Obviously, the 

sequence (zni) )n>O is always purely periodic and pi is the maximum possible period 
length. Let M be the set of all ai C 2>i which belong to sequences with period 
length Pi. The set MPi is always nonvoid and its elements can be characterized 
by properties of the polynomial x2 - x - ai c Pi [x] (cf. [7]). In the following, let 

ai E M and ci 2 Z>.. Let (Yni))n>O with yoi) ( ciz(') (modpi) and 

y(i) -aic(ycj))- + ci (modpi), n > 0, 
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be the corresponding (ordinary) inversive congruential sequence of elements of Zpi 
and let (x(i))n>o with 

) n y)/pi E [o, 1), n > O, 

be the corresponding stream of (ordinary) inversive congruential pseudorandom 
numbers. A short calculation shows that 

i) ciz() (modpi) 

for any n > 0. Now, a sequence (xn)n>o of compound inversive congruential pseu- 
dorandom numbers in the interval [0,1) is defined by 

Xn -x1+ n xn) (modl1), n > O. 

Since the primes P1, ,Pr are distinct, the sequence (xn)n>o is purely periodic 
with period length m = Pl Pr and xo,xl,...,xm_l runs through all rationals 
in [0,1) with denominator m. It should be observed that in the compound inver- 
sive congruential method a very large period length m can be obtained, although 
exact integer computations have to be performed only in ZP' ..' . ZPr Addition- 
ally, the compound approach is particularly suitable for parallelized computations, 
since the computation of the underlying sequences (x(i) )n>O of (ordinary) inversive 
congruential pseudorandom numbers can be allocated to r parallel processors. 

Equidistribution and statistical independence properties of the generated se- 
quences, which are very important for their usability in a stochastic simulation, can 
be analyzed based on the discrepancy of s-tuples of successive pseudorandom num- 
bers with s = 1 and s > 2, respectively. For N arbitrary points to,t1, ,tN_ E 

[0, 1)5 the discrepancy is defined by 

DN(to,t1,. ... tN-1) = SUp IFN(J) - V(J)I 
J 

where the supremum is extended over all subintervals J of [0, 1)s, FN(J) is N-1 
times the number of points among to, t1, .. ., tN-1 falling into J, and V(J) denotes 
the s-dimensional volume of J. In the following, nonoverlapping s-tuples 

Xn = (xsn,xsn+, ... ., xsn+s-1) E [0, 1)S, n > 0, 

of compound inversive congruential pseudorandom numbers are considered, and the 
abbreviation 

D(s) C DN(XO,X,. ... . XN-1) 

is used for 1 < N < m. The main result of the present paper is established in 
the third section, namely an upper bound for the average value of the discrepancy 
D(s) over the parameters C.l.. . , Cr. A detailed discussion of this result is 
given in the fourth section. The second section contains necessary auxiliary results. 

2. AUXILIARY RESULTS 

First, some further notation is necessary. For integers k > 1 and q > 2 let Ck (q) 
be the set of all nonzero lattice points (hi,... , hk) c 2k with -q/2 < hj < q/2 for 
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1 < j < k. Define 

) qsin(7rlhl/q) for h c Ci(q), 
r(h, q)= jxlfor h =0, 

and 
k 

r(h, q) - ]IJr(h3 q) 
j=l 

for h = (hi , hk) C Ck(q). For real t the abbreviation e(t) - e2,it is used, and 
u* v stands for the standard inner product of u, v c Rp k. Subsequently, three known 
general results are stated which follow from [15, Theorem 3.10 and Corollary 3.17] 
and [6, Lemma 3], respectively. 

Lemma 1. Let N > 1 and q > 2 be integers. Let tn = y,/q c [0, 1)k with yn C 

{0,1,.. ., q-1}Ik for0 < n < N. Then the discrepancy of the points to,ti,.. .,tN1 

satisfies 

DN(to,tl, .,tN1) < z + N _ : : e(hN tn) 
q N ~ r (h, q) Z(.n 
q h ECk (q) 0= 

Lemma 2. The discrepancy of N arbitrary points to, i. . , tN1 C [0, 1)k satisfies 

N-1 

DN(tO, tl, tN-1)-f +) ) >max(l, hjl) e (h n) 

for any nonzero lattice point h = (hl,... , hk) C Zk, where 1 denotes the number of 
nonzero coordinates of h. 

Lemma 3. Let q > 2 be an integer. Then 

E lh ) < d logq + ) 
hC-Ck(q) 

(,q 
h_O (mod d) 

for any divisor d of q with 1 < d < q. 

Subsequently, the s-tuples 

- (z j,ZW 
n(i sn sni i+1v . .. * sn+s-1) C ZSPi 

for 1 < i < r and n > 0 play a crucial role for the analysis of the discrepancy 
D(s) N;ci ..Cr- 

Lemma 4. Let 1 < i < r, I < s < pi, ho C 2, and h C ZS with h 0 O (modpi). 
Then 

#{0 ? n <p- Ih 4Zn) ho (modpj)} < 2s - 1. 

Proof. Let h = (h,,.. ., hs). Since the sequence (zni))n>o has period length pi, one 
obtains 
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#{O < n < pi|h z(i)-ho (modpi)} 

- < n < Pijhjzss) + *+ hz(i) _ ho (modpi)} 

= #{O < n < pilhiz(') + + hsz(i) ho (modpi)} 

< s-+ #{0 < n < pi|z( ) .. ZM s27 ) 

hl z(i) + .+ h5z() - ho (modpi) } n ~~n+s-1 
< 2s - 1, 

where the last inequality follows from [1, Theorem], [15, Theorem 8.6] which says 
that the hyperplane 

H-{(zlt Z' c Zs, IhEihzi + + hsz, - ho (modpi)l 

contains at most s of the points z n) with ns-2 0 and 
0 < n <pi. 

In the following, let mi-r ? fJpi for subsets I of {1,. . .,r}. 

Lemma 5. Let 1 < s < min{p,.. .,pr}, 1 < N < m, h e Cs(m), and J = 
{1 < i < rlh_ 0 (modpi)}. Then 

N-1 r \2 r 

S E) , e (Eci(h.z(i))/Pi) < Nm 21(2s(pi - 1) + 1). 
(cl, .C,)EZ*l x ..xz* n=0 \i=l i 

Proof. Straightforward calculations show that 

N-1 /r\ 2 

S 5 e E5c (h. z))/Pi) 
(Cl ,.,Cr)C)Zp x . x2 n=0 i=l 

= ~ ~~ flEe(ci(h.*z(i)-_h.*Zki)/pi) 

Pi 7* Pr 2 X X Pk,nO i1 

N- r r = E ~ ~ ~ ~~~ E |eci(h z(i) - h z())/pi) 
kc,,n=O Z* x ...c)Gp xZ kn=o ~i=l 

N-1 r 

- E II E e(c(h Zi) _ hh zkW)-/ h z 

k,n=O i=1 cCj.E 

Since 
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S e (c(h z(i)-_ h z(i)\\ fPi - I for h z(i) h z(i) mod pi), 

Zk)/Pi) -1 for h z(' h z(' (modlpi) 

for 1 < i < r and 0 < k, n < N, it follows that 

N-1 r.\ 2 

5 5 e (5cj(h.z('))/p) 
(Cl , ,Cr)C2P1 X .xZ n=O i=l 

N-1 r 

-E (_)r II (1-pi) 
k,n=Oi= 

h.z(')=h.z(z) (mod pi) 

N-1 r 

'< I (Pi-l 
k n=O i=l 

h z(i) =hz(i) (mod pi) 

N-1 

=~~~~~I , , (Pt 1 
IC{ r k,n=O iCI 

h z(S ) =z(i) (modpiJ),iiI 

h.z(i);th.4z() (modpi),iCI 

N-1 

< , ,l (Pt 1 
IC{l, ,r k,n=O ici 

h z(" =h z(") (modpi ) ,iGI 

N-1 

- S 5#{O<n <Nlh z$') h Zki) (modp.),icI} 
IC{..r} k=O 

*f(pi -1). 
iCI 

Now, the definition of the set J implies that 

#{0 < n < NTh z(i) _ h Zki) (modpi), i c I} 

#{0 < n < Nlh z() h Zki) (modpi), i c I \ J} 

< #{O < n < mnlh z(i) _h Zki) (mod pi), i c I \ J} 

#{O0 < n < mI\JIh z(i) h zki) (mod pi), i I \J} 
mI\ J 

- ml k #fo < n < Pilh z(i) h z(i) (modpi)} 

-[JiGI\J 

for 0 < k < N and I c {1,... ,r}, where in the last step the Chinese Remainder 
Theorem has been used. Since h 0 0 (mod pi) for i I {1,... , r} \ J, it follows from 
Lemma 4 that 

#{0 < n <pilh z(i)-h Zki) (modp.)} < 2s -1 
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for O < k < N and i c {1, ..., r} \ J. Therefore, 

N-1 /r 2 

(C.cp , Pr e Eci(h Zi))/Pi) 
(Cl ,...,c')C-Z* x .. xZ* n=O i=l 

<NTn E 
fl 2s - 

I11 p <Nm E - (pi-1) 
IC{1,...,r} \iPI\J PiCI 

= Nm , U (2s-l)(pj-l) U2 (pi-() 
IC{l.. r} iCI\J . .. iCIflJ 

rNmI (( Pi 1) + rI) 
i?J~~~~~~C i~j 
r 

= NmTn fJ(2s(pi - 1) + 1), 
i=l 
i?J 

which is the desired result. E 

Lemma 6. Let 1 < s < min{pj,. ,Pr} and 1 < N < 2-(r+1) ir=_(pi - 1). Then 

, ~ ~~~~~ Ci , e ( s/pi) > 
N 

(Pi 1) 
(Cl'...'Cr)c7Z*x X. x*- 

7 n=O i=1 2 = - 
Pi Pr 

Proof. Straightforward calculations show that 

N-1 r \ 2 

E YZe (Zciz /p)n 
(Ci ...,Cr)C74* X*-*X74 n=O i=I 

P ( ) # I e (zCi j /p) 2 

IC{l,.r} ciC7Zi,zCI n=O \iCI 
N-12 

S E ( 1)r#I 5 5 fJe(ci(z( -Z )/P/ ) 

IC{l r} ciCZpi ,II k,In=O zCI 

N-i 

- ~ (-1)~ Z-I 7J rII e (c(z Mj - - 
Z ) /pij) 

IC{l rr} k,n=O 'iI kEn=iCI 

N-1 

Z E ( 1)# 5E 
IC{lr} k,n=O 

z(i) =M ,G 

= , (-1) #' mI #{(k,n) C 
Z2|n k (mod mi)}, 

IC{1.r} 

where ZN {O, 1, . .. N -1}. Let NI Z ,m1 with NI N (mod mi) for subsets 
I of {1,. ,r} and observe that mI_[N/mi] = N-NI. Then 

mI* #{(k,n) c Z2|n k (mod mi)} 
- mi([N/mi] (N + NI) + NI) = (N - NI)(N + NI) + m1N1 
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for Ic{ ...,r}. Hence, 

, ~ E ,e( zsn/, 

(Cl .-,Cr)EZ* XX.. .xZ* n=O i=) 

- S ( 1)# (N 
_ 

N2 + mINI) 
IC{1, . ,r} 

= N2 E ( )r-#I + 5 (_)r#INI (mI -NI) 
IC{1 ,r} IC{I r} 

- S (1) r#I NI(mI - NI) 
IC{1I .....,r} 

- E (_1)r-#IN(mi -N) + 5 (I)r #INI(mI - NI) 
IC{l, .r} IC{l ...r} 

m1>N mj<N 

- S (_1)r-#IN(mI -N) 

IC{1 ,.-,r} 

+ 5 (1)r #I(NI(mi - NI) + N(N -mI)) 
IC{l, -r} 

mj<N 

r 

=Nfl(pj-1)+ E (-I) (NI(mI-N1)+N(N-mI)) 
i=l IC{l, ,r} 

mj<N 

r 

>NfJ(pi-1)- 5 (NI(mi-Ni)+N(N-mI)) 
i=l IC{l,- r} 

mI 

c I r 
mj?N 

r 2 

>N]7(pi1)- S (N- mI) 
i=r IC{ rr} 

m1?N 

> N11(pi 1) 2rN)[2 > 2 1(Pi-1 

i=f N)1 

3. PRINCIPAL RESULTS 

The main result of the present paper is Theorem 1, which provides an upper 
bound for the average value of the discrepancy of s-tuples in the compound in- 
versive congruential method over the parameters (Cl,... , Cr) E Z* X ... X Z. 
Theorem 2 is an immediate consequence of this result. A proof is added for the 
sake of completeness. In Theorem 3 a corresponding lower bound for the discrep- 
ancy of s-tuples is established. 

Theorem 1. Letl <s <min{pl,...,pr}, 1 ?N<m, andai CEMPi for <?i < 
r. Then the average value of the discrepancy D()Cl c of s-tuples in the compound 
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inversive congruential method over (C1j I I Cr) E Z* x ** x Z7/ satisfies 

1 S D~?C1 ,Cr(s) 

rr (pi- 1 N;cj, ,Cr) X 
1 i-1VP ( C ,r) GEP X X .. Z* 

Pi Pr 

< ( 2s ?.25+ 0.5)rN-1/2 ( log m + 7 

Proof. First, Lemma 1 is applied with k = s, q - m, and tn = xn for 0 < n < N. 
This yields 

D(s) Cr < + N h r(h, m) E e(h xn) 

N-i /r \ 

m+N C E r(hm) | e yci(h Zn)/Pi) 

for any (Cl,... ,Cr) E Z* x ... x ZPr where the s-tuple Zni) is defined as in the 

second section. Therefore, the average value of the discrepancy D(s)C C over 
(C1 .... Cr) c Z * X . P satisfies 

pr ( 1) E ~~~~~D(TV)1 < - + N E ( 

(i=lP (c1, . ,Cr)GEp x ..... xZ* n = O Ci= 1 5 1 1 
-1) (+ ,,C cm)r(h, m)r ,C?r? ~8()rhm 

1 ~ ~ ~ ~ ~~ - 

(P 1) E ~~~~~~~e ( ci (h zn () )/pi) 

-1i= 
I 

1 (cj,.,cr)C)lG x\xZ* n=O i=j 

S 1 1 
#J<r h_O (modPi ) PrG 

m N 
m) 

r(h, m) 

2 

N P1 Pr~~~~~~~~N - 

r e (ci(h zni)/i t 

/\ i-1 t~~( (Cl 1crEp Z * x ..xZ* n=O i=l 

where the penultime st(hw m) 
JCle u..... r} hECt(m) 

#J<r herO (modpj),iGJ 
h;tO (mod pj),i'~J 

H=1 (pi-1 (Ci,...,C,)CZ*x ..xZ Pr O1(i (.z1Pi 

where the penultimate step follows from Schwarz's inequality. Now, Lemma 5 can 
be used in order to obtain 
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tH 1 (Pi - 1 ) E ~~~~~~~N cl I . .. I C, 
Hi= (pi -1) (el--C,l E Cr-X 

Pi)EZ PrZ 

<S 1 1 
m N JC{.r} hEC(m) (hm) 

#J<r h=_O (mod pi) iEJ 
h$O (mod pi) ,i J 

r 

Nm_J7 (2s + (pi - 1)-i) fJ(P -1)-i 
2 i=l 'iEJ 
N 

~~~~~~r 
< S 1 S J7(2s9 + (p, ~111/ 2 

m N1/2 EJc{) 
JC{l1,-..,r} i=1 

#J<r "?j 

* (Pi 1) / m E r(h, m)' 
iEJ hEC,(m) 

h=-O (mod mj) 

where mj Ilicjpi for subsets J of {l,... ,r}. Hence, it follows from Lemma 3 
that 

1 E 
~~~~~D(s) 

=1(pi ) (ClN .Cr)xx 

r 

<- + 1/2 S J (2s + (pi -1<1)1/2 

Jc{1...r} i=1 
#J<r '?j 

L (i _l )- 1/2 (2 lgm+ 7) 

r 

< 1/N J7(2s + (pi -1<1)1/2 
JC{1,. r}i 

i~j 

* H Pi _1)-l2 (2 lgm+7 ) 

-N1/2 (( + (- 1<1)1/2 + (Pi-1) /2) lo + 7)5 

-Ni/2 ((2s + (p + O.5)r (2 logm + 7)S 

which is the desired result. 

Theorem 2. Letl <s<min{pl,...,pr}, < N<m, andai cMPi forl <i <r 
be fixed. Let 0 < a < 1. Then there exist more than (1 - a) fr1 (Pi - 1) values of 

(Ci I*** Cr) 
* x ... x Z* such that the discrepancy D(s) of s-tup8 in the ~Ci,.. ,r) 

CPi Pr D;lC 
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compound inversive congruential method satisfies 

D(s) 1 (2 s-+-0.2~5 + 05) rN12 (lgr+)S N;ci ,cl, ICr ( r-log m 

Proof. Subsequently, the abbreviation 

M = (vf2s + 0.25 + 0.5)rN-l/2 -log m + 

is used. Suppose that there exist at most (1- o) Hlj= (pi -1) values of (cl, . , cr) E 

Z x ...* x Z with Pr Ncl c < a-1M, i.e., there exist at least oa7fi(pi - 1) 

values of (cl, , . . . cr) c 1X* ...* x Z with DE(s)C > o-'M. Hence, one obtains 
r 

S N;C1 ,CD(s) r > M r(pi -1), 
(Cl.,Cr)E1 X XP i=l 

which contradicts Theorem 1. L 

Theorem 3. Let 1 < s < min{pj,...,Pr}, 1 < N < 2-(r+l) H_(pi - 1), and 
at E MPi for 1 < i < r be fixed. Then there exist parameters (c1,..., Cr) C 

Z* x ... x Z such that the discrepancy D(s) of s-tuples in the compound P1 Pr diceac N;cl...Cr 
inversive congruential method satisfies 

D(s)l > 7V-1/2. N; cl C 2V2'- 

Proof. First, Lemma 2 is applied with k = s, tn xr, for 0 < n < N, and 
h = (1, 0, . . . , 0) (E ES. This yields 

N?cj1I...cr - 2N e (, szn) 

Now, the desired result follows at once from Lemma 6. LI 

4. DiscuSSION 

First, it should be observed that the main results apply for the full period 
(N -m) as well as for parts of the period (N < m), for equidistribution properties 
(s = 1) as well as for statistical independence properties (s > 2), and for the or- 
dinary inversive congruential method (r 1) as well as for the compound method 
(r > 2). In the following, let the number r of prime factors of m be fixed. Then 
Theorem 1 shows that for any parameters a, E MPi. ... , ar E MPr in the compound 
inversive congruential method and any dimension s the discrepancy D(s)Cl cr on 
the average over the parameters cl,...,Cr, has an order of magnitude at most 
N-1/2 (log M)s. It should be observed that this upper bound is independent of the 
specific choice of the parameters al, .. a, ar. This result is basically in accordance 
with the law of the iterated logarithm for the discrepancy of N true random points 
from [0, 1)s, which is almost always of an order of magnitude N-/2 (log log N)1/2 
(cf. [9]). Theorem 2 provides even more information, since it implies that for any 
parameters al,.. . ., ar and any dimension s only an arbitrarily small percentage of 
the parameters cl,..., cr may lead to a discrepancy DNCl ,cr 

with an order of 

magnitude greater than N-1/2(logM)S. On the other hand, Theorem 3 shows that 
for any parameters a., . . ., ar and any dimension s there exist parameters cl, . . ., Cr 
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such that the discrepancy D(')?l. is of an order of magnitude at least N-12, 
provided N is not too large. 

FACHBEREICH MATHEMATIK, TECHNISCHE HOCHSCHULE DARMSTADT, SCHLOSSGARTEN- 
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