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A CAPITULATION PROBLEM AND GREENBERG’S
CONJECTURE ON REAL QUADRATIC FIELDS

T. FUKUDA AND K. KOMATSU

ABSTRACT. We give a sufficient condition in order that an ideal of a real
quadratic field F' capitulates in the cyclotomic Zs-extension of F' by using a
unit of an intermediate field. Moreover, we give new examples of F’s for which
Greenberg’s conjecture holds by calculating units of fields of degree 6, 18, 54
and 162.

1. INTRODUCTION

Let p be a prime number, F' a totally real number field, Fi, the cyclotomic Z,-
extension of F' and F), the nth layer of Fi.,/F. Let A, be the p-part of the ideal
class group of F,,. In [1], Greenberg showed the following:

Proposition . Assume that only one prime of F' lies over p and that this prime is
totally ramified in Fy /F. Then the following two statements are equivalent.

(1) Fuery ideal class of Ay becomes trivial in A, for some n.
(2) The order of A, is bounded as n — oo.

In this paper, we treat the case that F' is a real quadratic field and p = 3. In §2
we give a sufficient condition for (1) by using a unit in F,. In §3 we give a method
of finding the above unit.

2. THEOREM

We put Csn = €2™V=1/3" for a positive integer n. Our main purpose of this
section is to prove the following theorem which plays a fundamental role in th
next section. :

Theorem . Let F' be a real quadratic field. Let F,, = F((3n+1) "R, G(F,/Q) =
(o) the Galois group F, over Q, ¢ a fundamental unit of F and A, the 3-part of
the ideal class group of F,,. We assume that 3 divides the class number hp of F'
and that 3 does not split in F/Q. If there exists a unit n of Fy, such that ' is a
cube of an element of F,, and that neither n nor ne nor ne? is a cube of an element
of F, then the natural mapping of Ag to A, 1s not injective.

Let F} = F((3n+1) and F” be the imaginary quadratic field contained in F
such that F' N Q(v/—3) = Q. Let M be the maximal abelian 3-extension of F{
unramified outside 3, X = G(M/F’) and p the complex conjugation. We put
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Xt ={ze X |plzp==x} Let M~ be the intermediate field between Fy
and M corresponding to X . For a real number o, we denote by ¢/« the real
number whose cube is a. Even though the following Lemma 2.1 is well known, for
completeness we give a proof.

Lemma 2.1. Let o be an element of F. If Fi(/a) C M, then Fj(¥a) C M~.
Proof. Let o be an element of X with /o’ = /a(, where ¢ is a cubic root of

unity. Then we have \3/5'00”_1 = (Ya¢)r " = Ya¢' = ¥a’ = Yal. Hence we
have ¢ = 1. This shows Yo € M~. O

_ For an ideal 2 of F', we denote by 2 the ideal class of F' which contains 2. Let
2Ai,...,2U be a basis of {a € 4p | a® = 1}, A = (q;) and k the intermediate
field between Fj and M corresponding to X® = {2® | z € X }. Then under the
assumption that 3 does not split in F//Q we have by Lemma 2.1 the following result.
Lemma 2.2 (cf. [1, p. 281]). Let k= be the field k N M~. Then we have k= =
Fy(V/3, ¢, aq, ..., Yar).

The following is well known (cf. [1, p. 280]):
Lemma 2.3. Let ¢ be a generator of the Galois group G(F}/F') and « be a non-

zero element of F) such that there exists an element 3 with o = o133, Then
Fx(Ya) is an abelian extension of F'.

Proof of the Theorem. Since n'~°" = (n'+7)1=7 there exists an element 3 of F,,
with n1=°" = 3. Hence we have N, r,(8%) = 1, which means Ng_ /5 (8) = 1.

Hence there exists an element v of F,, with § = 71_"2, which shows ny™2 € F.
This shows Fy; (¢/n) = F;(/ny=3) = Fy Fy(3/ny~2). Since F;({/7) is an abelian

3-extension of F{J unramified outside 3 by Lemma 2.3 and since ny~=3 € Ff, we

have Fg(3/my=3) C k= = Fg(V/3, ¥, ¢ai,...,¥/a;) by Lemmas 2.1 and 2.2.

Hence there exist integers ni,ng, ... ,n.,n and an element § of Fy with ny=3 =
at -+ aem6® by Lemma 2.2. This shows by the assumption on 7 that AT A
is not principal in Fy but principal in Fj,. O

3. METHOD OF FINDING 7

In this section, we explain how to compute and find a unit 7 in the theorem.
Let E,, be the unit group of F,, and r = 23" — 1. If a basis {leﬁ, ,erf;}
of E,/E2 is obtained, without loss of generality, n can be written in the form
n =¢S5 e with 0 < e; < 2. Therefore, we can decide whether or not such an n
exists by examining all the combinations of {e1,...,e.}. If n = 1, we can obtain
fundamental units of F; (cf. [3]) and can use this direct algorithm. But it is hard
to obtain a basis of E,/E2 for n > 2. So we proceed as follows.

For an element ¢ of F,, we denote £° by &. Let C, be the cyclotomic unit
group of F,,. First we assume that there exists an element £ € C,, such that C,, =
(=1,&0,...,&—1). Moreover, we assume that the 3-Sylow subgroup (E,/C,)s of
E,/C, is cyclic of order 3". Under these assumptions, we determine the form of
a € E,, which satisfies (E, /C,)s = (aC,) and o7 € E2. From the assumption
Ag # 1, there exists v € Ey such that
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Assume that (E,/Cy)3 = (aC,) and !t = 33 for some 8 € E,,. Since the order
of (E,/Cy)s is 3", we see that P - ~yu, 8 = afv for some u,v € Cp, and e € N.
Then
3n—1
)T =487 = 400 = (yu)* = ] &u* (mod CF).
i=0

3n—1

u't = +(a

We write u = £5° ---£.77" with e; € Z and substitute this in both sides of the above
congruence relation. Since &, = £(& -+ -&-_1) 7!, we obtain the following system of
simultaneous equations:

. e+ 3ee; if 7 is even,
€i—1 T € —€r_1= e
3ee; if 7 is odd.

Here the congruence is modulo 3™ and e_; = 0. This equation is easily solved. In
fact, if we put x = e,._; and y = e, then we can represent all e; by  and y. Now,
we fix  to be 0 and vary y from 0 to 3" — 1. If we find that vyu is contained in
E3""" for some y, then we put n = (yu)*/3" . It is easy to check whether 7, ne or
ne? is a cube in E,,.

A Galois generator £ of C,, is hard to find. But we know the cyclotomic unit of
Hasse (cf. [2]) which generates a fairly large subgroup of C,,. So, we execute the
above procedure by letting £ to be Hasse’s unit. We will be able to find 7 by this
method with some luck.

4. EXAMPLES

Let F = Q(y/m) where m is a positive square-free integer congruent to 2 mod-
ulo 3. There are 207 m’s less than 10000 which satisfy [Ag] = 3. We denote
Ker(4y — A,,) by H,. We used a computer to implement the above method for
these F’s and fortunately found n and conclude that H, # 1 for many F’s. We
show the results of our computation in Table 1 (next page). The proposition in §1
implies that if m = 2(mod 3), |4o| = 3, and H,, # 1 for some n > 1, then the order
of A, is bounded, namely, Greenberg’s conjecture is valid for F', and the Iwasawa
invariant Ag(F') is zero. A question mark in the table means that we do not know
the value. For example, we got |[H1| = 1 when m = 899 (cf. the remark below).
So we searched 1 € F» with the method of §3 but could not find it. We cannot
conclude whether |Hs| is 1 or 3. Next we pursued a calculation in F3 and found
n € F3. Therefore |[H3| = 3 and A\3(F') = 0.

Remark . Since |H1| = (Eo : Np,/r,(E1)), we can obtain the exact value of |H|
by computing E; (cf. [3]). We note that [H;| =1 for all m’s in Table 1 for which
we could not find n € E;.
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=2 (mod 3) and |Ap| = 3 (m < 10000)

TABLE 1. All m’s satisfying m

)
M00070000OOOOOOOOOOOOOOOOOOOOOOOOO0000000?000000000000000
<
m333?333333333333333333333333333333333333?333333333333333
m3337333333333333333333333333333333333333??3333?333333333
%333?333?333333333333?3333333333333333333??3333?333333333
m33313131333333333313133131333333313333331133331333333333
HAS D DO N AN N — O O~ DWRMNOIDI= AN A DNOOR DO O O LN M DL — D 0D b= DD I~ — 00 — 00
B AR RSN ORI OO RO R AN PR VNN IFEOEFIRO O TNENNIONIORORIADDE DI P
NANASF T IO DD ND DDA A A AN IO ORREN N DD DNRNOD AN D MMM I © I~ =
Cn G G OO 0 O O 0D 0D OB OB D O TH SF < < < SH S SH < S H SH <R SH SR <H S S SH SF S S S D 1D 15 10 10 10 10 10 10 16 16 1 15 15 16 16 16
&
|~ CC 000000000 000000000 00000 000000000000 000000000000000
P
m?3333?3333333333333333?33333?333333333333333333333333333
%?3333?3333333333333333?33333?3333333333?33333333333?3333
m?3333?333?33?333333333?33333?73333?33?3?333333?3333?33?3
m13331133313313333333331313331113331331311331331333313313
FI- O DO N ODHID D AN D — NS = 0O 00 O bbb A DI~ D D DD O €O 00 —i O = — H 00 i 0D N 1D I O — 00
R R R I DI O R ORI NI IANOEOE A FOASIOONANIE O IND R IO AN DI AOAAID IO B
NN A F PO RN BORNSNNNPAF IO DODDI DN TNANL I AN OCONIENNDDIINODD DS — —
A A A A e A e e = AN AN AN AN ANANANANANNANANANANNANANNMNMmMmMmMMMM
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TABLE 1 (continued)

m | |Hy| [ |He| | |Hs| | [Hal| As(F) || m | |Hi| |[|H2| | |Hs| | |Ha|| As3(F)
5903 3 3 3 3 0 8282 1 ? 3 3 0
5918 3 3 3 3 0 8285 3 3 3 3 0
5930 3 3 3 3 0 8306 3 3 3 3 0
5954 1 ? 3 3 0 8339 1 ? ? 3 0
6026 3 3 3 3 0 8363 1 3 3 3 0
6053 3 3 3 3 0 8399 3 3 3 3 0
6185 3 3 3 3 0 8426 3 3 3 3 0
6209 3 3 3 3 0 8438 3 3 3 3 0
6311 3 3 3 3 0 8447 3 3 3 3 0
6401 3 3 3 3 0 8519 3 3 3 3 0
6515 3 3 3 3 0 8543 3 3 3 3 0
6557 3 3 3 3 0 8597 3 3 3 3 0
6623 3 3 3 3 0 8603 3 3 3 3 0
6686 3 3 3 3 0 8711 1 ? ? ? ?
6770 3 3 3 3 0 8735 3 3 3 3 0
6782 3 3 3 3 0 8789 3 3 3 3 0
6791 1 3 3 3 0 8837 1 3 3 3 0
6806 1 ? ? ? ? 8909 3 3 3 3 0
6887 3 3 3 3 0 8930 3 3 3 3 0
6995 1 ? ? ? ? 8999 3 3 3 3 0
7019 3 3 3 3 0 9062 3 3 3 3 0
7055 3 3 3 3 0 9086 3 3 3 3 0
7058 3 3 3 3 0 9149 3 3 3 3 0
7235 3 3 3 3 0 9155 3 3 3 3 0
7259 3 3 3 3 0 9215 3 3 3 3 0
7262 3 3 3 3 0 9218 3 3 3 3 0
7310 3 3 3 3 0 9278 3 3 3 3 0
7319 3 3 3 3 0 9281 3 3 3 3 0
7415 3 3 3 3 0 9293 3 3 3 3 0
7481 3 3 3 3 0 9323 3 3 3 3 0
7598 1 ? 3 3 0 9413 3 3 3 3 0
7601 1 ? 3 3 0 9419 3 3 3 3 0
7643 1 3 3 3 0 9467 3 3 3 3 0
7655 3 3 3 3 0 9479 3 3 3 3 0
7658 1 ? ? 3 0 9551 3 3 3 3 0
7673 3 3 3 3 0 9578 1 3 3 3 0
7694 3 3 3 3 0 9590 1 ? ? 3 0
7709 1 3 3 3 0 9659 1 3 3 3 0
7721 3 3 3 3 0 9710 3 3 3 3 0
7745 3 3 3 3 0 9749 3 3 3 3 0
7883 1 3 3 3 0 9830 3 3 3 3 0
7994 3 3 3 3 0 9833 3 3 3 3 0
8051 3 3 3 3 0 9869 3 3 3 3 0
8057 3 3 3 3 0 9902 3 3 3 3 0
8069 1 3 3 3 0 9905 3 3 3 3 0
8255 3 3 3 3 0 9926 1 ? ? 3 0
8267 3 3 3 3 0 9995 1 ? 3 3 0

1 3 3 3 0

8279
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