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A CAPITULATION PROBLEM AND GREENBERG'S 
CONJECTURE ON REAL QUADRATIC FIELDS 

T. FUKUDA AND K. KOMATSU 

ABSTRACT. We give a sufficient condition in order that an ideal of a real 
quadratic field F capitulates in the cyclotomic Z3-extension of F by using a 
unit of an intermediate field. Moreover, we give new examples of F's for which 
Greenberg's conjecture holds by calculating units of fields of degree 6, 18, 54 
and 162. 

1. INTRODUCTION 

Let p be a prime number, F a totally real number field, FCX the cyclotomic Zp- 
extension of F and Fn the nth layer of FoG/F. Let An be the p-part of the ideal 
class group of Fn. In [1], Greenberg showed the following: 

Proposition . Assume that only one prime of F lies over p and that this prime is 
totally ramified in FO,G/F. Then the following two statements are equivalent. 

(1) Every ideal class of Ao becomes trivial in An for some n. 
(2) The order of An is bounded as n - oo. 

In this paper, we treat the case that F is a real quadratic field and p = 3. In ?2 
we give a sufficient condition for (1) by using a unit in Fn. In ?3 we give a method 
of finding the above unit. 

2. THEOREM 

We put (3ut = e2x -1/3 for a positive integer n. Our main purpose of this 
section is to prove the following theorem which plays a fundamental role in the 
next section. 

Theorem . Let F be a real quadratic field. Let Fn = F((3n+0) n R, G(Fn/Q) = 
(a) the Galois group Fn over Q, ? a fundamental unit of F and An the 3-part of 
the ideal class group of Fn. We assume that 3 divides the class number hF of F 
and that 3 does not split in F/Q. If there exists a unit r of Fn such that ql+i is a 
cube of an element of Fn and that neither r nor ye6 nor 7E 2 is a cube of an element 
of Fn, then the natural mapping of Ao to An is not injective. 

Let Fn* = F((3n+?1) and F' be the imaginary quadratic field contained in FO 
such that F' n Q( /=-3) Q Q. Let M be the maximal abelian 3-extension of Fo 
unramified outside 3, X = G(MI/F) and p the complex conjugation. We put 
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X+ = I{x E X I p-1xp = x}. Let M- be the intermediate field between FJ* 
and M corresponding to X+. For a real number a, we denote by a the real 
number whose cube is a. Even though the following Lemma 2.1 is well known, for 
completeness we give a proof. 

Lemma 2.1. Let a be an element of F. If F0*(Ca) c M, then F0*(Ca) c M-. 

Proof. Let a be an element of X+ with a = a(, where ( is a cubic root of 

unity. Then we have Cap'p (3a)P1 = a(`' = C = a(. Hence we 
have ( 1. This shows Ca E M-. I 

For an ideal Qt of F, we denote by 2% the ideal class of F which contains A. Let 
1X-- ,2r be a basis of {a c Ao I a3 1}, - (ai) and k the intermediate 
field between FJ* and M corresponding to X3 { x3 x C X }. Then under the 
assumption that 3 does not split in F/Q we have by Lemma 2.1 the following result. 

Lemma 2.2 (cf. [1, p. 281]). Let k- be the field k n M-. Then we have k- 
Fo* ( X)3 , , * * *j, Fa,). 

The following is well known (cf. [1, p. 280]): 

Lemma 2.3. Let a be a generator of the Galois group G(F,*IF') and a be a non- 
zero element of F,* such that there exists an element 3 with a' = a-133. Then 
Fn (a) is an abelian extension of F'. 

Proof of the Theorem. Since 71_a2 = (771?+)1-, there exists an element 7 of Fn 
with 1 13-c = .3. Hence we have NFn/F(33) = 1, which means NFn /Fo() =1. 

Hence there exists an element -y of Fn with ,3 - -y', which shows q-y 
- 

Fo. 
This shows Fn*( C ) - Fn( iy) Fn*Fo*( X=ri-). Since Fn*(C?7) is an abelian 
3-extension of F7* unramified outside 3 by Lemma 2.3 and since ryy-3 e Fo*, we 
have Fo*( )rry-) C k- =F( 33, : c, ar,... , ~ ar) by Lemmas 2.1 and 2.2. 
Hence there exist integers n1, n2, ... , n, n and an element 6 of Fo with = 

an ... anrcFln3 by Lemma 2.2. This shows by the assumption on r that 2nQ ...n- 

is not principal in Fo but principal in Fn. Li 

3. METHOD OF FINDING 7 

In this section, we explain how to compute and find a unit i1 in the theorem. 
Let En be the unit group of Fn and r = 2 . 3 n _ 1. If a basis {c1En4, ..r. ,E } 

of En/En is obtained, without loss of generality, 7 can be written in the form 
,q 

- E'. gr, with 0 < ei < 2. Therefore, we can decide whether or not such an r1 
exists by examirling all the combinations of {ei,... , er}. If n = 1, we can obtain 
fundamental units of F1 (cf. [3]) and can use this direct algorithm. But it is hard 
to obtain a basis of En/E3 for n > 2. So we proceed as follows. 

For an element ( of Fn, we denote (5 by (i. Let Cn be the cyclotomic unit 
group of Fn. First we assume that there exists an element ( C Cn such that Cn = 

(-1, O,-... ir-l)- Moreover, we assume that the 3-Sylow subgroup (En/Cn)3 of 
En/Cn is cyclic of order 3n. Under these assumptions, we determine the form of 
a C En which satisfies (En/Cn)3 = (aCn) and a l?+ c En. From the assumption 
Ao =& 1, there exists .y C Eo such that 

3n _ I 

-y3= fI 42i. 

i=O 
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Assume that (En/Cn)3 = (oaCn) and a' - /3 for some a e En. Since the order 
of (En/Cn)3 is 3n, we see that a3 =-yu, a = oev for some u,v O Cn and e C N. 
Then 

3frl - 1 

1+C- ?( 3n-1)l+C+ ? 3n/n = ?a _ n 
(^n)3e 171 

r e3 -3e (mod Cn4). 

i=:o 

We write u = .. (r-1 with ei c Z and substitute this in both sides of the above 
congruence relation. Since ?r ? (o ... *r- 1) we obtain the following system of 
simultaneous equations: 

e e + 3eei if i is even, 
*e-i-i + ei -er-l-S 

13eei if i is odd. 

Here the congruence is modulo 3n and e4I = 0. This equation is easily solved. In 
fact, if we put x = erl, and y = e, then we can represent all ei by x and y. Now, 
we fix x to be 0 and vary y from 0 to 3n _ 1. If we find that ayu is contained in 
En7 for some y, then we put r = (-yu)1/3 n. It is easy to check whether 71, rE or 
77E2 is a cube in En. 

A Galois generator ( of Cn is hard to find. But we know the cyclotomic unit of 
Hasse (cf. [2]) which generates a fairly large subgroup of Cn. So, we execute the 
above procedure by letting ( to be Hasse's unit. We will be able to find r by this 
method with some luck. 

4. EXAMPLES 

Let F = Q(/ m) where m is a positive square-free integer congruent to 2 mod- 
ulo 3. There are 207 m's less than 10000 which satisfy IAo0 = 3. We denote 
Ker(Ao ) An) by Hn. We used a computer to implement the above method for 
these F's and fortunately found r1 and conclude that Hn :h 1 for many F's. We 
show the results of our computation in Table 1 (next page). The proposition in ?1 
implies that if m 2(mod 3), Ao0 = 3, and Hn zh 1 for some n > 1, then the order 
of An is bounded, namely, Greenberg's conjecture is valid for F, and the Iwasawa 
invariant A3 (F) is zero. A question mark in the table means that we do not know 
the value. For example, we got IH1I 1 when m = 899 (cf. the remark below). 
So we searched r1 C F2 with the method of ?3 but could not find it. We cannot 
conclude whether IH21 is 1 or 3. Next we pursued a calculation in F3 and found 
rq c F3. Therefore IH31 = 3 and A3(F) = 0. 

Remark . Since IH1i = (Eo : NF1 /FO (E1)), we can obtain the exact value of IH1i 
by computing E1 (cf. [3]). We note that IH1 I = 1 for all m's in Table 1 for which 
we could not find r1 C E1. 
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TABLE 1. All m's satisfying m - 2 (mod 3) and lAol = 3 (m < 10000) 

rn I1H IH21 H31 IH41 A3(F) m IHI lH21 IH31 IH41 A3(F) 
254 1 ? ? ? ? 3221 3 3 3 3 0 
257 3 3 3 3 0 3281 3 3 3 3 0 
326 3 3 3 3 0 3287 3 3 3 3 0 
359 3 3 3 3 0 3305 1 ? ? ? ? 
443 1 3 3 3 0 3419 3 3 3 3 0 
473 1 ? ? ? ? 3422 1 3 3 3 0 
506 3 3 3 3 0 3482 3 3 3 3 0 
659 3 3 3 3 0 3569 1 ? 3 3 0 
761 3 3 3 3 0 3590 3 3 3 3 0 
785 1 ? 3 3 0 3602 3 3 3 3 0 
839 3 3 3 3 0 3803 3 3 3 3 0 
842 3 3 3 3 0 3941 3 3 3 3 0 
899 1 ? 3 3 0 3962 3 3 3 3 0 

1091 3 3 3 3 0 4001 3 3 3 3 0 
1211 3 3 3 3 0 4094 3 3 3 3 0 
1223 3 3 3 3 0 4106 3 3 3 3 0 
1229 3 3 3 3 0 4151 3 3 3 3 0 
1367 3 3 3 3 0 4193 3 3 3 3 0 
1373 3 3 3 3 0 4238 1 3 3 3 0 
1406 3 3 3 3 0 4283 3 3 3 3 0 
1478 3 3 3 3 0 4286 1 ? 3 3 0 
1523 3 3 3 3 0 4355 3 3 3 3 0 
1646 1 ? ? ? ? 4367 3 3 3 3 0 
1787 3 3 3 3 0 4481 1 3 3 3 0 
1811 1 3 3 3 0 4493 3 3 3 3 0 
1847 3 3 3 3 0 4511 1 3 3 3 0 
1901 3 3 3 3 0 4649 3 3 3 3 0 
1907 3 3 3 3 0 4670 3 3 3 3 0 
1937 1 ? ? ? ? 4706 3 3 3 3 0 
2021 1 ? 3 3 0 4778 3 3 3 3 0 
2099 1 3 3 3 0 4841 3 3 3 3 0 
2177 3 3 3 3 0 4853 3 3 3 3 0 
2207 3 3 3 3 0 4886 3 3 3 3 0 
2213 3 3 3 3 0 4907 1 3 3 3 0 
2429 1 ? 3 3 0 4910 3 3 3 3 0 
2459 3 3 3 3 0 4934 3 3 3 3 0 
2495 3 3 3 3 0 4970 3 3 3 3 0 
2510 1 ? 3 3 0 4982 3 3 3 3 0 
2543 3 3 3 3 0 4994 3 3 3 3 0 
2666 1 ? ? 3 0 5042 3 3 3 3 0 
2678 1 3 3 3 0 5063 1 ? ? ? ? 
2711 3 3 3 3 0 5081 1 ? ? 3 0 
2726 3 3 3 3 0 5099 3 3 3 3 0 
2777 1 3 3 3 0 5102 3 3 3 3 0 
2831 3 3 3 3 0 5255 3 3 3 3 0 
2894 3 3 3 3 0 5261 3 3 3 3 0 
2918 1 ? 3 3 0 5297 1 ? ? 3 0 
2981 3 3 3 3 0 5303 3 3 3 3 0 
2993 3 3 3 3 0 5327 3 3 3 3 0 
3023 3 3 3 3 0 5333 3 3 3 3 0 
3035 3 3 3 3 0 5369 3 3 3 3 0 
3047 1 ? ? 3 0 5477 3 3 3 3 0 
3062 3 3 3 3 0 5621 3 3 3 3 0 
3071 3 3 3 3 0 5738 3 3 3 3 0 
3158 1 ? 3 3 0 5741 3 3 3 3 0 
3173 3 3 3 3 0 5798 3 3 3 3 0 
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TABLE 1 (continued) 

m I HI I |H2 I |H3j I I H41 A|3(F) m I H1 jH21 IjH3j I jH|j A:3(F) 
5903 3 3 3 3 0 8282 1 ? 3 3 0 
5918 3 3 3 3 0 8285 3 3 3 3 0 
5930 3 3 3 3 0 8306 3 3 3 3 0 
5954 1 ? 3 3 0 8339 1 ? ? 3 0 
6026 3 3 3 3 0 8363 1 3 3 3 0 
6053 3 3 3 3 0 8399 3 3 3 3 0 
6185 3 3 3 3 0 8426 3 3 3 3 0 
6209 3 3 3 3 0 8438 3 3 3 3 0 
6311 3 3 3 3 0 8447 3 3 3 3 0 
6401 3 3 3 3 0 8519 3 3 3 3 0 
6515 3 3 3 3 0 8543 3 3 3 3 0 
6557 3 3 3 3 0 8597 3 3 3 3 0 
6623 3 3 3 3 0 8603 3 3 3 3 0 
6686 3 3 3 3 0 8711 1 ? ? ? ? 
6770 3 3 3 3 0 8735 3 3 3 3 0 
6782 3 3 3 3 0 8789 3 3 3 3 0 
6791 1 3 3 3 0 8837 1 3 3 3 0 
6806 1 ? ? ? ? 8909 3 3 3 3 0 
6887 3 3 3 3 0 8930 3 3 3 3 0 
6995 1 ? ? ? ? 8999 3 3 3 3 0 
7019 3 3 3 3 0 9062 3 3 3 3 0 
7055 3 3 3 3 0 9086 3 3 3 3 0 
7058 3 3 3 3 0 9149 3 3 3 3 0 
7235 3 3 3 3 0 9155 3 3 3 3 0 
7259 3 3 3 3 0 9215 3 3 3 3 0 
7262 3 3 3 3 0 9218 3 3 3 3 0 
7310 3 3 3 3 0 9278 3 3 3 3 0 
7319 3 3 3 3 0 9281 3 3 3 3 0 
7415 3 3 3 3 0 9293 3 3 3 3 0 
7481 3 3 3 3 0 9323 3 3 3 3 0 
7598 1 ? 3 3 0 9413 3 3 3 3 0 
7601 1 ? 3 3 0 9419 3 3 3 3 0 
7643 1 3 3 3 0 9467 3 3 3 3 0 
7655 3 3 3 3 0 9479 3 3 3 3 0 
7658 1 ? ? 3 0 9551 3 3 3 3 0 
7673 3 3 3 3 0 9578 1 3 3 3 0 
7694 3 3 3 3 0 9590 1 ? ? 3 0 
7709 1 3 3 3 0 9659 1 3 3 3 0 
7721 3 3 3 3 0 9710 3 3 3 3 0 
7745 3 3 3 3 0 9749 3 3 3 3 0 
7883 1 3 3 3 0 9830 3 3 3 3 0 
7994 3 3 3 3 0 9833 3 3 3 3 0 
8051 3 3 3 3 0 9869 3 3 3 3 0 
8057 3 3 3 3 0 9902 3 3 3 3 0 
8069 1 3 3 3 0 9905 3 3 3 3 0 
8255 3 3 3 3 0 9926 1 ? ? 3 0 
8267 3 3 3 3 0 9995 1 ? 3 3 0 
8279 1 3 3 3 0 . 
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