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ON INTEGRAL BASES IN RELATIVE QUADRATIC 
EXTENSIONS 

MI. DABERKOWNN AND NI. POHST 

ABSTRACrT. Let F be an algebraic number field and S a quadratic extension 
with S _- F(V/77). \N'e describe a minimal set of elements for generating the 
integral elements o? of V as an or module. A consequence of this theoretical 
result is an algorithm for constructing such a set. The construction yields 
a simple procedure for computing an integral basis of S as well. In the last 
section, we present examples of relative integral bases which were computed 
with the new algorithm and also give some running times. 

1. PRELIMINARIES 

The computation of integral bases of algebraic number fields is one of the basic 
tasks in computational algebraic number theory. Nonetheless, the existing algo- 
rithms for this problem tend to be very slow for fields of higher degree. In this 
paper, we therefore outline a new algorithm for the computation of an integral 
basis for those fields S which contain a subfield F of index 2. 

Quadratic extensions have been extensively studied in the past [8, 6] and the main 
result of this paper is a generalization of a result of Sommer [10], who investigated 
biquadratic extensions. 

In the sequel we consider number fields F with [F: QD] = n and ? subject to 

S F(= ) 

with an integral nonsquare element ,u of F. It is well known that the ring of integers 
o? of S is not a free oF module, in general. The following theorem gives a necessary 
and sufficient criterion for the existence of a relative integral basis [1]. 

Theorem 1.1. (i) Let f(t) = t2 -_ F[t] be the minimal polynomial of V/4i 
with polynomial discriminant d(f), and let D?I. be the relative discriminant 
of S/F. A relative integral basis of S/F exists if and only if the ideal 1D 
satisfying 

.C 2= d(f)D?/1 

is principal. We call the ideal 4> the index of oF[VJj] in o. 
(ii) There are always elements 61, 42, 43 E o0 such that 

OS = 1 F + 42 OF + 43OT- 
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This criterion for the existence of a relative integral basis is easy to apply once we 
know the relative discriminant '/I.. Thus, our first task is a complete description 
of D?/T 

We cite the following theorem, which can be found in [7, Ch. 39], [6, Ch. 11]. 

Theorem 1.2. Let p be a prime ideal in Oy with a :- v, ([L) (i.e., ,u C pa \ Pa+1) 
and e := v, (2). 

(i) If e = 0 and a--b mod 2 for b E {O, 1}, then 

(ii) For e #& 0 

PIDE/T X V_ e on: _2 X 8 mod .2+a. 

If p E PTs (where WT denotes the set of all prime ideals in oF) divides DclT, we 
additionally have [6]: 

Theorem 1.3. Let a - v, (i') and e = v,, (2). 

(i) If a=0, then 

9+ 110 I 

for 

v :=2e-max{il 0 < i < 2e-1 and 3 oEi _ o mod pU}. 

(ii) If a 1, then 
0 2e+a 1? 

If IJ(,) E {0, 1} holds for all prime ideals mentioned above, Theorems 1.2 
and 1.3 yield an easy algorithm for the computation of DFIT. The assumption 
V, (it) E {0, 1 } for all prime ideals above 2 is easily satisfied: 

Proposition 1.4. Let LI C PW with FJ11 < o0. Then there is an element p* e oT 
satisfying 

TWA =F() (= S) 

and 

VP E : V ) e {,l} 

Proof. The proof is by an application of the Chinese Remainder Theorem. We set 

subject to 
* wTp C p\A2 and r q Vq E \{} 
* a; 2k, if v. ([) = 2k + i with iZ e{0, 1} 
* e a. and &. X b for a,, (=r)ga1 and b := EH g. 

Then one can easily verify that [u* is a solution with the required properties. O 

Consequently, we assume that if p E WE and p 1 2, then v. ([u) E {0, 1} in the 
sequel. Before investigating quadratic extensions 5/F more intensively, we state 
the following lemma, which will be very important later on. It is an immediate 
consequence of the Chinese Remainder Theorem. 
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Lemma 1.5. Let al, . . , am be comaximal (prime) ideals in os, and let ca, 1, ... 
am be elements of oQy with 

a - ai2 mod ai (I < i < m). 

Then there exists,3 o Qy such that 
m 

ae _ ,32 mod flai 
i=l1 

Theorem 1.2 and Theorem 1.3 provide a method for computing Zf/j. As already 
mentioned, 

d(t2-u) = 

where 4J is an ideal in ojz. Since the index 4J is not prime to the ideal ptoj in 
general, we set 

4 2 :=gcd(2oy, D), 

Hence, we have 

(1.1) 4) = 4>2 AI 

This decomposition will play a key role in our subsequent considerations. We note 
that by construction 

(1.2) 4D 2 1 2, 4D2l 

and since the generator ,u satisfies 

v([u) E {0,1} I VEIP: p 1 2, 

we have gcd(4D2, 4I2) oj. As a direct consequence of Theorem 1.3, Lemma 1.5 
and (1.2), we obtain the following proposition: 

Proposition 1.6. (i) There is a v E oQy such that 

(1.3) =,it mod 42. 

(ii) There is a v E oQ solving the congruence V u2 _ mod 2 with 

(1.4) voF = 4D a., 

hence (v2 -Aloj = 2a. 

2. MAIN THEOREM 

Theorem 2.1. Let b = !301z + !20o1 - Z> S37 C o0 be a nonzero integral ideal 
such that there exists y E oy, with 

(aY) = q 

For any element v E oy, satisfying Proposition 1.6, the following holds: 

(i) For all a Ebwe have 3? 1EO? 

(ii) With j := l y " (i 1,2) we have os =Oy- + 4IOF + '2OF 

(iii) If WI . .. Wn is an integral basis of oy, and we set r1i := A ly for 1< i < n, 
then the elements w1 I . .. , Wn r,l . . ., ln- are an integral basis of os. 
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The proof of this theorem is a bit lengthy. The first statement is easy to verify: 
For 3 := 3+ and 3o)= b , we have 

TrE/ITW)oT ( _)o 

= 20o*y b * . * av * ((I *) 

2oT 6a C Oy 

2 

NE I-(() o.,r7= (d y2 8)?T 

= (b. )2 . 4)2 a ( 4). b)-2 C O. 

Since the norm and the trace are both integral, ( is integral, too. Thus, we have 
proved that mj (1 < i < n) and 41, 42 are integral. 

Next, we prove the last statement of the theorem, from which statement (ii) will 
follow easily. 

We begin the proof with a lemma. 

Lemma 2.2. oT[fiui] is contained in oQ + ',io + 420T 

Proof. Because -y E , there exist a1, a2 e o0 with a= a131 + a2/32. Hence, 

( =~-v + Cel1l + a242 ? 

In the following we show that for all p e IP the set 

{Wli,... ,w n X, * i... * n I7n} 

is a 2(p) := {x E Ql lxlp < 1} basis for o0 (p) := {x E El lxl 1 for all 
v ePg : TIpoE }. In other words, we need to describe all semilocal extensions 
o0 (p) /0oy(p) for p e IP. 

For prime ideals p e PWy there are three different cases possible: 

(i) POE = l *2, 
(ii) pgo = -21 

(iii) POE = -31 

with 1 # q2 E IP. WVe treat these three cases of prime ideals in two steps. In the 
first step, we look at prime ideals p E PW which decompose into two different prime 
ideals Tl, P2 e Pl'. In the second step, we consider prime ideals P E Wy which 
do not completely split, e.g. the ideal p0o does not decompose into two different 
prime ideals of 0?. In each step we develop a description of o0 ()) as a free o0(p) 

module. 
For the first case the following lemma of [2, Lemma 3.3, p. 171] is crucial. 

Lemma 2.3. Let IC, M be number fields with M = C(6), where 8 is a zero of a 
monic polynomial f(t) C oj(P) for p e Pk. Moreover, let 

V- 
.. - 3 

p,!J 

be the decomposition of p in o.v". If 

for 1 < i < g, then 1b,8,... , 6 KlV -l is an ok(gp) basis of o, (p). 
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Using this lemma, we are now able to prove the following statements, which 
completely solves the problem of an oE(K) basis for o? (p) for prime ideals p E P- 

which split completely. 

Lemma 2.4. Let p be a prime ideal in O.F which splits completely in o0, i.e. 

with 9T31 # T2 E PE. Let a = vA (4), e = vp (2) and 7 Ka p \2. Then an on(p) 
basis of o? (p) is given by 1, 6 with: 

(i) 6= - 1/2 ftif a>O ande=O; 
(ii) 6 = + if a=Oande>O; 

(iii) 6= /1 if a = O and e = O. 

Proof. Statements (i) and (iii) are straightforward, so we will only prove (ii). Ob- 
viously, ? = F(6), and 6 is a zero of the polynomial 

f (t) t2 2t + 2e- 
7.e W2r 

Since v satisfies equation (1.3) and 1r l 12, f (t) E o( 
We now look at If'(6) 13i (i = 1, 2). Since e = vp (2), there is a unit a E o.;7 

with 2 = u7rK. Thus, f'(6) = aoV/- and If '(6)7 =1/,7 , = cQW * i 

1 = 1, and we apply Lemma 2.3 O 

Remark 2.5. By the definition of v, we have (v) = 4 al, in o-F. In the case a > 0 
and e 0 O, we have v = 7ra/2a in oF(K). Thus the elements 1, 1j,@ form an ox( 
basis of os (p), too. 

Lemma 2.6. Let p be a prime ideal in o.F which splits completely in o8 and let 
1, 6 be an oyF(p) basis of oE (p) with an element 6 as in Lemma 2.4. Then there 
are a(, a1, a2 E OF( p) such that 

6 a( + ai i + a242 

Proof. Without loss of generality let 6 be of the form 6 = 1j with r= 121 or 
r = and wr C p \ 2. Since p splits completely, p { DEI z7 and (-y) -4b = -I4?b. 

Hence the following decomposition holds in oF: 
S 

a~~~~~ = pi *pi a(') - (i) 

with s e M,p() E p , a(i) E 4 and 3(i) e b (1 < i < 1 < j < r). 
In oF(p) we have the decomposition-y = 7rr * A and the existence of u(i) E o 

with p(i) * 
(i) it'r r ( for 1 K i < s. Consequently, 

s s 

7rrA 
M ..( (i) a (i) . ; 3(0 = 7r . a(') .3at). 

Since d(i) E b, there are /I,l K2 E oF such that a(i) 3W(=) - (')Ol + Kc2i)32 

(1 < i < s). Setting A(.') := -i('),<) E oF(g) (j = 1,2; 1 < i < s), we rewrite A as 

A = ZAE )/3i ?Al + 32 

i=l 
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and obtain 
s s v+V- 

EA(')(i + EA(')42= + - 
___ ~~~2 7-rr 
t=1 t~=1 

Next we describe o8 (p) as an onz(p) module for prime ideals which do not 
completely split. For such prime ideals we study the local extension ST /.F8 
where X3 is the only prime ideal in o? above p. From local theory we know that 

ST= .F(I), and we will apply the following theorem, due to Fr6hlich [5], [9, 
Theorem 5.6, p. 221]. 

Theorem 2.7. Let .Fp be the p-adic completion of .F with respect to g, and let r 
be in 9= {x E F x ? < 1} with r =# a2 for all a E c F, and - X M2, where 
mp := {x E F.1 lxl, < 1} is the maximal ideal of 9i. Moreover, let r be an 
arbitrary element in m, \ m&29. Then in the field L Fo (V?) the ring 

S= {x ExI Ll l < 1} 

is a free 91 module. A basis is given by: 

(i) S= [1,)/iT]l if rrt 2T; 
(ii) S = [1, / if 7rlW; 

(iii) If 7rr2 and 7r t{ r, let I be the largest number with 

1rl 12 and /3 E 9 z- mod i21 

Then we have 

S= [1, jrj lgi. 

Using this theorem, we can prove the following lemma, which is the second step 
in the description of o? (p) as a free on(p) module. 

Lemma 2.8. Let p be a prime ideal in oF which does not completely split in o0, 
e.g. pog = 3 or pog = Sj2 with q3 E Pg. We assume that ir is an element in p \ p 2 

and set a := v. (At) and e := v, (2). If we define 8 E o? (p) by 

(i) = `+vl with k = max{O < 1 < el3c E oiF: a2 _ 'l mod p2l Iif a = O and 
e > 0; 

(ii) 8- 
= 2 if a > O and e = 0; 

(iii) 86 rfif e=O and a- ore-> O and a > 07 

then the elements 1, 6 form a or (p) basis of o? (p). 

The proof is obtained by appropriate modifications of At in order to satisfy the 
assumptions of Theorem 2.7. We note that in the second case of the lemma, the 
definition of 6 strongly depends on the choice of v since the element 8 = 7r La/2j X 

is a proper choice for the second basis element, too. 
As in the case of prime ideals which split completely, the following lemma can 

be proved similarly to Lemma 2.6. 

Lemma 2.9. Let p be a prime ideal in oyx which does not completely split in og 
and let 1, 8 be a oyF(p) basis of o? ()) with an element 6 of Lemma 2.8. Then there 
are ao0 a 1,a2 E oF( p) such that 

6 = ao + aiti + a2'2. 
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We have shown that for every prime ideal p E I,F there is a oy(p) basis 1, 60 of 
os (p) such that there exists k E N and X E p \ p2 with 

k 

An important point for the upcoming steps in the proof is the fact that we can 
represent 6. not only as a linear combination of 1, I, '2 with coefficients from 
oy(p) (i.e. there are ao, al,a2 E o0(p) with 8. = ao + aj1j + a242) but also as a 
linear combination of 4I, '2. By the definition of ay we have a decomposition of ay in 
0o, such that 

n 

a = Ep(i, .. p(i) b()a(i) 
i=l1 

with certain p(i),.. 
pi) E p, b(2) E b and a _ 

yo.p-kbl (1 < i < n). Since ay 
is an integral element, there are elements u(i) E oy(p) and b(i), b02) E o0 subject to 

n 

rk Zu(i) (b() 1 + b(i) 2)a(i) 
i=l1 

n n\ 

= 1rk zt-@i u(i) b) a(i) + 032 a(i)) 

= rk(O3ai + 02a2)- 

From a,, a2 E o(p) we derive the predicted representation. 
With this fact in mind, the next lemma is straightforward. 

Lemma 2.10. Let {p1,... , p,} C P.F be a finite set of prime ideals. Then there 
is an element 6 E F such that 

(i) Os (pi) = [1, 8]?:F( (1 < i < s) 

(ii) 8 - c1&a + ca242 for some ca, ca2 Eni=l F(pi) . 

Lemma 2.10 enables us to complete the proof of Theorem 2.1 (iii). 

Proof. We will prove the statement by showing that the set {wI, . .. , wn, ,... , 1nn} 
is a Z(p) basis of os (p) for all rational primes p. 

Obviously, one has [wI, ... , wn,'rn1, ... ., n].(p) C os (p) since wi, 71i E os (1 < i < 

n). Thus, it suffices to show 

(2.1) Os (P) C [w, I Wni 71i .. v ?In](p) Vlp EE P 

Let p be a rational prime. By the last lemma, we can find an element 6 E S such 
that for all prime ideals p E PWF with plpoyF, 

Therefore, the set {wl,... ,wn,8wI,... ,8wn} is a 2(p) basis for os (p). Hence, it 
suffices to show 

(2.2) 6wi E [WI, , wn 711, , . 71n]z(p) (I < i < n). 

By the second statement of Lemma 2.10, there are a,, a2 E (i) oyF(pi) = oyF(p) 

(poyF = p" p9s) satisfying 

8wi = (aj i + a242)Wi 

= alwil3i + a2Wi132 
+ 
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Since w, is integral in F and i31, /32 are both elements of b, we can find b(i) e Z 

(1 < k < n; j = 1,2) such that w/33j = En=rI b(j)/3. We may also assume that 

a. (j = 1, 2) has a representation as a. = k21 ak IWk with certain k e E(p) 
(j = 1, 2; 1 < k < n). Thus we get 

8w2 = , , a('r ) b( q + ZZ a(2)b2) Wkrhl 
k=1 1=1 k=1 1=1 

We now observe that Wk1 is an element of the ideal b, which means we can find 
(jkil) e 

2 such that n_C (kl)d3 = W0j. Therefore we have Wk'1l = ()=l C3 E Z such that E.=, 3 ~~~~~~~3 7j, 
which yields 

n n n n n n 
8w2z=ZZZa~1(l) (1) k ) ( 2)b(2) (k ) 

j=1 k=1 1=1 j=I k=1 1=1 

Since all coefficients a (1) a (2) b(l)I b(2) c(kl) are in Z or Z(p), we have proven (2.2), 
hence (2.1), and so Theorem 2.1 (iii). D 

We can now prove statement (ii) of Theorem 2.1: 

O0 = [1,-1, 2]o, 

Let a be in 0g. By Theorem 2.1 (iii), there are a,,... ,a2n e Z such that a 

En= a2w2 + i an+ qi. Therefore, we have a( := En a.w. e oy, and we can 
find al, a2 e o0F with a1,31 + a2!2 Z?1 an+iA? 

From the definition of qj, ... ., n and of (l, (2, we conclude 
n 

a I(l + ?a242 - Zan+?n X 

which finally gives 
n n 

ao() + a11 + a242 E aw, +? an+2i7 = a. 
i=l = 

This finishes the proof of Theorem 2.1. 

Remark 2.11. (i) In case the index 1? is a principal ideal (i.e. 1? = yoy), we can 
choose b = oF, leading to a relative integral basis 1, ( - "+7@ of O? over oz. 

(ii) As all proofs are constructive, Theorem 2.1 yields an algorithm for the con- 
struction of a minimal set of oQ generators of 0g. 

(iii) Statement (iii) of Theorem 2.1 gives a simple algorithm for the computation 
of an integral basis of 0-. 

The algorithm is based on the fact that we can compute the relative discriminant 
t)/Y easily by applying Theorem 1.2 and Theorem 1.3. The main problem is the 
computation of 

max{l O < ut < 2e-1 and 3?y e o y2U mod pu} 

for prime ideals p e PWy with v., (2) = e > 0 and v., (,u) 0. An efficient algorithm 
will be discussed by the first author in a forthcoming paper, although it is usually 
quite efficient to check all elements of oy/pc. 

If one is interested in a minimal set of oy generators of o, it is necessary to check 
whether or not the index 4 is a principal ideal. This can be very time consuming, 
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since the check itself is difficult [4] and the principal ideal test algorithm requires 
an independent set of units for oz. On the other hand, the computation of an 
integral basis of o0 is relatively easy, and the only information we need about F is 
an integral basis of oz. 

3. EXAMPLES 

We present two explicit examples of relative extensions and also a short table of 
running times for quadratic extensions. 

We first consider the number field F generated by a root of the polynomial 

f(t) = t6 - 2t5 - 33t4 + 46t3 + 282t2 _ 184t - 559. 

This field has class number 2, and an integral basis of ov is given by 

1, = 1, 

W2 = (106262 + 40764p- 24704p2 - 4428p3 + 1021p4 + 80p5)/43511, 

W3 = (32669 - 58594p - 8531p2 + 8158p3 + 379p4 - 226p5)/43511, 

W4 = (-32669 + 102105p + 8531p2 - 8158p3 - 379p4 + 226p5)/43511, 

WJ5 = (308776 - 8915p - 38373p2 + 1865p3 + 700p4 - 73p5)/43511, 

WJ6 = (220545 - 86386p - 56577p2 + 30249p3 + 2488p4 - 1254p5)/43511. 

We consider the two fields 8l = F( 41) and 52 = ( 7). In on the ideals 
2oy, 4Ioy, 37oT decompose into prime ideals in the following way: 

2o = (2oT + (12w1 + 2w2 + 34W3 + 16W4 - 2W5 - 3W66)O)2 
-: 2 

4lo = (41o + (5w1 + w3 + w4)Oy) * (41lo + (12w, + w3 + w4)Oy) 

(41o + (14wil + w3 + w)4)OF) * (41o + (21w1 + w3 + w4)OF) 

(41 o + (30w 1 + w3 + w4) OF) * (41oF + (39w I + w3 + w4) oF), 

47oT = 47o0. 

In El, 41 is a square modulo the ideal a = p4 since 41 -V2 a for v := 1. By 
Theorem 1.2 we know that P2 does not divide . Moreover, we know that 
4loF divides the discriminant, since all prime ideals dividing 4loF are unramified. 
Therefore, the relative discriminant Z,, /F and the index 1 are: 

D,c,IT = 410o, 

@ = P2 = 2o. 

Since the index (J is a principal ideal, we get a relative integral basis of or via 

4l = 1, 

1 + 
=2 2 

In ?2 = F(V4) the prime number 47 is a square modulo p3, but not modulo 
4. For v :=-w1 - w4 -w5 -w6 we have the relation 47 - v2 E 3. By Theorem 1.2 
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and Theorem 1.3 we know pL082/2F, and since 470o. is a prime ideal, we conclude 
that 47o.F|jZF2/F. This results in 

-F 
2 *47o.r = 94- . 

One can check with KANT V2 [3] that the index 4D is not a principal ideal. It 
follows that there is no integral basis for Os over oy. However, a minimal set of 
generators for o? over oF is given by 

(2 = -W1 W4 - 5 -6 +v"7 

(62w? + 2w2-8w3 + W4 + 7Ws5 + 3Ws)-(2w + 2W2 + 2w3 + w4 + W5 + 6) 

2 

According to the definitions in Theorem 2.1 we chose b = p and -yoFT - p2 = 20o. 
Since an integral basis can also be computed by this algorithm, we will compare 

this method with the standard algorithm for the computation of an integral basis, 
the Round-2 algorithm of H. Zassenhaus [11]. 

For three different number fields YF, F2, .F3 generated by a root of the polynomial 
fi(t) E Z[t] we consider several quadratic extensions and compare the running time 
of the Round-2 with the running time of the relative method. Let the polynomials 
fi(t) be defined as follows: 

fi(t) _ 10, 

f2(t) t4 - 72t2 + 256, 

t) = t6- 2t5 - 33t4 + 46t3 + 282t2 - 184t - 559. 

For a quadratic extension of Fi (i = 1, 2, 3), we consider fields Sip = X (d p) with 
p E P. In the following table we list running times of the Round-2 and the relative 
method. 

Field | Round-2 1 relative method 

l_________ 
[[ [sec] l [sec] 

.F(V'/) 0.3 <0.1 
5F1(VIT) 0.3 <0.1 
.Fr(v'88) 0.4 < 0.1 

_2 (_ _ 14.3 0.7 

_F2 (X/13) 19.3 0.7 
.F2(V'3T) 23.6 0.6 
F2 (V5-3) . 21.5 0.6 
.F3(V2-) 159 9.4 

_F3 (_)_ 464 2.8 

_3_( __ 3)_ 313 2.9 
F3 (v/7) 680 3.0 

All computations were performed on a PC with a 486-33 CPU using software de- 
veloped under KANT V2 [3] under the operating system Linux 0.95. 
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